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Improving satellite-based PM2.5 
estimates in China using Gaussian 
processes modeling in a Bayesian 
hierarchical setting
Wenxi Yu1, Yang Liu   2, Zongwei Ma1,3 & Jun Bi1,4

Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate 
ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. 
The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and 
Geographically Weighted Regression (GWR) models. In this study, we developed a new regression 
model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian 
processes model the stochastic nature of the spatial random effects, where the mean surface and the 
covariance function is specified. The spatial stochastic process is incorporated under the Bayesian 
hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, 
such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and 
compare them with those of other, conventional statistical models (GWR and LME) by within-sample 
model fitting and out-of-sample validation (cross validation, CV). The results show that our model 
possesses a CV result (R2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 
0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the 
accuracy of satellite-based PM2.5 estimates.

Particulate matter with aerodynamic diameters less than 2.5 μm (PM2.5) can penetrate into human lungs and 
bronchi; thus, they may lead to many adverse health effects1, 2. In recent years, particulate matter has become 
one of the most important air pollutants in China and has received considerable public attention3. In 2012, the 
Chinese government issued national PM2.5 standards and began to establish a ground-level PM2.5 monitoring 
network. In contrast to the unsatisfactory temporal and spatial coverage of ground-based monitoring sites, PM2.5 
estimates derived from satellite-retrieved aerosol optical depths (AODs) can provide more detailed and com-
prehensive data support for further health-related research in both the spatial and temporal dimensions4. Of the 
many satellite AOD products, the AOD data retrieved by the Moderate Resolution Imaging Spectroradiometer 
(MODIS, http://modis.gsfc.nasa.gov) instrument aboard the Terra and Aqua satellites launched by the National 
Aeronautics and Space Administration (NASA) have been the most widely used.

To date, numerous studies have focused on constructing statistical relationships between satellite AOD 
retrievals and ground-level PM2.5 measurements that can then be used to estimate PM2.5 concentrations in places 
where AOD data are available. The statistical methods used in previous studies mainly include generalized linear 
regression models (GLMs)5, linear mixed effects (LME) models6, 7, geographically weighted regression (GWR) 
models8–10, generalized additive models (GAMs)11 or two-stage hierarchical models that include combinations of 
different statistical models12, 13.

Previous studies have determined that the relationship between PM2.5 and AOD values varies in space14, 15. 
GWR models can address the spatial variability and non-stationarity of regression parameters; thus, many studies 
have employed this method to address the spatial heterogeneity of the PM2.5-AOD relationship8, 9, 16, 17. Unlike 
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traditional geostatistical methods, which rely on particular functions (such as wavelets and splines) to represent 
spatial relationships, Gaussian processes are one of the most intuitive methods to model spatial surfaces as reali-
zation of stochastic processes18, 19. Specifically, Gaussian processes consider the spatial effects as random variables 
by specifying their means and covariance functions, which is the major feature that distinguishes them from other 
traditional methods.

The hierarchical nature can help explain various sources of variations in PM2.5. In particular, our model can be 
described in the following three stages: for the first stage, PM2.5 concentrations are conditional on the distribution 
of AOD values, spatial and non-spatial random effects, which is the basic foundation of our model; the second 
stage mainly focuses on the distribution of spatial random effects, which are modeled by Gaussian processes with 
specific mean surface and covariance functions; the last stage concentrates on the conditional distribution of the 
covariance functions of Gaussian processes given by the hyperparameters we chose. This hierarchical approach is 
helpful when dealing with ambiguous variations20.

Comparatively, for GWR models, the coefficients of each independent variable (in our case, there is a single 
explanatory variable, AOD) and intercept are different at different locations, and the coefficients are intrinsically 
modeled as fixed numbers. In Gaussian processes settings, the AOD coefficient and the intercept (which are defined 
later as β1 and β0) remain the same in each daily mode, and it is the spatial random effect (defined later as ωi)  
that captures the geographical variations. Thus, compared to GWR, Gaussian processes separate out different 
sources of variation (the independent variable AOD, spatial random effects and non-spatial random effects) in 
explaining PM2.5. This feature can be invaluable in uncertainty assessment, although this aspect is not covered in 
this article21, 22. Notably, uncertainty analyses of PM2.5 exposures can be useful for future environmental health 
research. However, to date, few studies have developed Gaussian process models for PM2.5-AOD modeling.

Along with the advancement of Geographical Information Systems (GISs), an increasing number of studies in 
areas such as environmental science, epidemiology and health policy management are using large spatiotemporal 
datasets. Of the existing spatial statistical methods, Bayesian methods have gained in popularity because of its 
sound reasoning of treating parameters as random quantities rather than fixed values. Parameters are updated 
by calculating the posterior distribution (prob(parameters|data)) by the incorporated external knowledge with 
respect to the distribution of parameters and the likelihood function (prob(data|parameters)). The Bayesian meth-
odology is flexible because it allows non-informative priors, as well as informative priors acquired by relevant 
research or spatial variogram analysis23.

In recent years, several studies have employed Bayesian methods to improve satellite PM2.5 modeling. For 
example, Chang et al. applied a unified Bayesian hierarchical framework to improve PM2.5-AOD modeling that 
allows the model to calculate the prediction uncertainties, which are invaluable in further health impact analyses24.  
However, to our knowledge, no published studies have captured the spatial effects as stochastic processes in the 
Bayesian hierarchical setting to enhance the modeling performance of PM2.5 values estimated from satellite data. 
Overall, the uniqueness of our model comparing to previous research lies in: (1) treating the spatial relationships 
as random variables, (2) enabling the explanation of multiple sources of variations and (3) flexible in including 
prior knowledge.

Additionally, fitting hierarchical models can be time-consuming owing to the large sample size and high cost 
of matrix decomposition, which is known as a “large-N” problem. However, the recent development of the R 
package “spBayes” has enabled researchers to construct multivariate Gaussian processes for point-referenced 
spatial models with high computational efficiency. This outcome is achieved by projecting the spatial random 
terms into a lower-dimensional subspace (i.e., performing dimension reduction)20, 25. In our study, the number of 
daily PM2.5 observations was acceptable, so we did not use dimension reduction. We believe that the concept of 
employing Gaussian processes in a Bayesian hierarchical framework has the statistical and computational poten-
tial to improve the performance of spatial PM2.5-AOD modeling.

In this article, we applied Gaussian processes using Bayesian computation methods to construct daily 
PM2.5-AOD models for China in 2013. We anticipate that our research will increase the accuracy of model fitting 
and cross validation and thus lead to more reliable predictions of PM2.5 concentrations in China. The spatial dis-
tribution and seasonal variations of PM2.5 in China in 2013 are also examined in this paper.

Data and Methods
Ground-level PM2.5 measurements.  Daily average PM2.5 concentrations in China from Jan 1, 2013 to Dec 
31, 2013 were primarily downloaded from the website of the China Environmental Monitoring Center (CEMC). 
We also collected PM2.5 data from additional ground-based monitoring sites that are not included in the CEMC 
database (including sites in the provinces of Shandong, Shanxi, Zhejiang and Guangdong and the cities of Beijing 
and Tianjin, as well as Macao, Hong Kong and Taiwan) from their official websites. We also obtained data from 
the U.S. consulate sites in Beijing, Shanghai, Guangzhou, Shenyang and Chengdu for use in this research. The 
ground-level PM2.5 concentrations were measured by Tapered Element Oscillating Microbalances (TEOM) or the 
beta-attenuation method. In summary, we obtained data from a total number of 840 sites located in 113 cities for 
this study. The spatial distribution of all of the ground-based monitoring sites is depicted in Fig. 1.

Satellite AOD retrievals.  In early 2014, NASA released the Aqua MODIS Collection 6 (C6) AOD prod-
ucts. These products include AOD data retrieved by the enhanced Dark Target (DT) and Deep Blue (DB) algo-
rithms, which have been shown to be more accurate than previous versions of the DT and DB algorithms28, 29. The 
Aqua MODIS C6 data products also include an operational combined AOD product calculated from DB and DT 
AOD28. As the operational combined AOD data discards all DB AOD data with normalized difference vegetation 
index (NDVI) values > 0.3, which also has good performance, Ma et al.13 developed an inverse variance weighting 
(IVW) approach to combine the DT and DB AOD estimates. Their results show that the IVW-combined AOD 
has a performance that is comparable to that of the operational combined AOD values of MODIS, but it has a data 
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coverage that is 90% greater. In this study, we used these IVW-combined AOD values as our AOD input dataset. 
A detailed description of the algorithm for generating IVW-combined AOD values can be found elsewhere13.

Data processing.  A 0.1° × 0.1° grid with 100,699 grid cells was created that covers all of China. The 
ground-level PM2.5 data were assigned to the corresponding grid cell by longitude and latitude. Following Ma et al.13,  
Thiessen polygons representing individual MODIS AOD pixels were created and overlapped with the grid to 
assign the IVW-combined AOD values to the grid cells. The ground-level PM2.5 data and the IVW AOD data 
were matched in those grid cells where both ground-level PM2.5 data and IVW AOD data were available to fit the 
model. Owing to the impact of clouds and coverage of the ground surface by snow and ice, the AOD coverage 
of the western parts of China (i.e., Tibet and Qinghai Province) is relatively low, causing a smaller sample size of 
PM2.5-AOD matchups in western China. For example, there are only 84 days with PM2.5-AOD matchups in Tibet. 
Our preliminary test shows that the small sample size in Western China could greatly affect the performance of 
our spatial model, which is similar to the conclusion reached in our previous study17. The main reason for this 
result is that we cannot determine the local relationship between the dependent and independent variables for 
Tibet for those days without PM2.5-AOD matchups. To address this problem, we followed Ma et al.17 in employ-
ing the Ordinary Kriging method to increase the sample size of PM2.5-AOD matchups. To ensure that we only 
interpolated AOD values that were spatially correlated with the IVW-combined AOD values, we conducted a var-
iogram analysis to obtain the range values and then used the range values to create buffer zones for the grid cells 
where the IVW-combined AOD values were missing. If there were five or more grid cells with IVW-combined 
AOD values in the buffer zones, we then used interpolation to estimate AOD values for those grid cells that were 
lacking AOD values. The gridded PM2.5 data and interpolated AOD data were then matched by grid cell ID and 
Day of Year (DOY) for model development. This interpolation process increased the number of PM2.5-AOD 
matchups from 63,189 to 162,089. The interpolated AOD data are not used in the prediction process.

Gaussian processes model development and validation.  A separate PM2.5-AOD Gaussian process 
model was fitted for each day in this study. The basic daily spatial model can be described as

β β ω ε. = + + +PM AOD2 5 (1)i i i0 1

where PM2.5i (μg/m3) and AODi are the daily ground-level PM2.5 concentration and AOD value at location i, 
respectively; β1 and β0 are coefficients for AODi and the intercept, respectively, which are selected so that, for each 
daily model, β1 and β0 are consistent for all locations i; and ωi and ε are terms that capture the spatial random 
effect and the random error, respectively. ε τ~ N(0, )2 , where τ2 is called the nugget. ωi is a multivariate Gaussian 
process (MVGP) with a distribution having a mean of 0 and covariance function of θK h( ; ). That is, 
ω θ~ MVGP K h(0, ( ; ))i . We can further specify the covariance function by θ σ ρ φ ν=K h h( ; ) ( ; , )2 . K is the 
covariance function; h is the Euclidean distance between any two spatial locations; θ σ φ ν= ( , , )2  denotes all of 
the parameters used in the covariance function; σ2 is a variance parameter; ρ φ νh( ; , ) is the correlation function; 
φ is the spatial decay parameter (

φ
1  stands for the effective range parameter, that is, the distance at which spatial 

correlations become negligible) and ν is the smoothness parameter that is often used in correlation functions, 

Figure 1.  Spatial distribution of PM2.5 monitoring sites included this study. This map was generated using 
ArcGIS 9.3 (http://www.esri.com/software/arcgis)26 based on the geo-location information of the PM2.5 ground-
based monitoring sites and elevation data. The elevation data were obtained from the Global Multi-resolution 
Terrain Elevation Data 2010 data product (https://lta.cr.usgs.gov/GMTED2010)27.

http://www.esri.com/software/arcgis
https://lta.cr.usgs.gov/GMTED2010
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such as the Matérn correlation function. The spherical model30 was chosen as the spatial correlation model (see 
the Supplementary Information, Text S1) for use in this paper by conducting a daily variogram analysis of the 
PM2.5 concentrations and comparing the equally weighted ordinary least squares among four traditional methods 
(spherical, Matérn, linear and Gaussian). We note that the smoothness parameter v does not exist in the spherical 
model by definition. Therefore, we use ρ φh( ; ) and θ σ φ= ( , )2  instead of ρ φ νh( ; , ) and θ σ φ ν= ( , , )2  in the 
following discussion.

The spherical model can be summarized as follows.

ρ φ
φ φ

φ=







− . + . < <
h

h h h

otherwise
( ; )

1 1 5 0 5( ) , 0 1

0 (2)

3

We also defined the prior distributions for each parameter. Specifically, the mean parameters β β β= ( , )0 1  
follow normal distributions with assigned means and covariances. The variance parameters τ2 and σ2 both obey 
inverse gamma distributions with shape hyperparameters equal to 2 (thus, the variance is infinite, by definition), 
whereas the spatial decay parameter φ follows a uniform distribution. The reasons for selecting the corresponding 
prior distribution for each parameter are twofold. On the one hand, the type of distribution of each parameter was 
chosen by referencing previous studies20. On the other hand, some of the values of hyperparameters were selected 
so that each parameter has a broad range of potential values (greater variance), which allows for daily variations. 
The selection of prior distributions is mainly heuristic and subject to change. The parameters were updated using 
the Metropolis-Hastings algorithm. A summary of the prior distributions of all the parameters is presented in the 
Supplementary Information (Table S2).

We set the number of iterations for each parameter to 5,000. By monitoring the changes in these parameters, 
we found that they changed dramatically from the beginning (within 3,000 iterations) and gradually stabilized 
over time (See Supplementary Information, Text S2). Then, we recovered the regression coefficients β and spatial 
random effects ωI from the parameters after a burn-in period of 3,000 iterations. With regard to the model fitting 
and cross-validation processes, we obtained the mean value of daily predictive PM2.5 according to the parameters 
of each iteration.

The flowchart shown in Fig. 2 summarizes both the hierarchical nature and the overall procedure of selecting 
prior distributions, estimating parameters and generating predictive values. gray Yi is the daily average of PM2.5 
concentrations at location i, which is what we use in the further discussion.

We also provide a summary of the posterior distributions of the parameters in the Supplementary Information 
(Table S3). We first calculated the daily mean for each parameter by averaging the values after the burn-in period 
and then calculated the corresponding annual and seasonal averages.

In model fitting, the modeling dataset was used in both the model fitting and the model validation. This proce-
dure does not account for the over-fitting problem; that is, the model might display better predictive performance 
for the dataset that was used to fit the model than in the rest of the data from the study area. In this study, 10-fold 
cross validation (CV)31 was used in the model validation process to avoid the obvious problem of over-fitting. In 
10-fold CV, the modeling dataset is randomly split into 10 subsets of equal size. Of the 10 subsets, nine subsets 
are used for the model fit and the remaining subset is used to validate the model. The CV process is then repeated 
10 times, and each of the 10 subsets is used exactly once for model validation. We compared the coefficient of 

Figure 2.  Hierarchical nature and procedures involved in constructing the daily Gaussian processes models. 
= ...i n1 ,  is the location index (n differs in each daily model); the iterations have indices = ...J 1, , 5,000; 

after the burn-in period, only the iterations after 3,000 (including 3,000) are retained, so = ...j 1 , 2001. 
ω β β σ, , ,i 0 1

2, and φ τ, 2 are the daily mean values of each parameter. Other symbols have the same definitions 
as given previously.

http://S1
http://S2
http://S2
http://S3
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determination (R2) and the root mean squared error (RMSE) from the model fitting and CV results. Finally, we 
applied the Gaussian processes model to estimate the PM2.5 concentrations in those grid cells where IVW AOD 
values were available.

Comparisons with other statistical models.  GWR and LME models are two statistical methods that are 
widely used in constructing relationships between PM2.5 and satellite AOD values. In this article, we compared 
the performance of our model with that of these two common methods by comparing the results of model fitting 
and 10-fold cross validation. Regarding the GWR model, the bandwidth of each daily model was selected by 
minimizing the result of leave-one-out cross validation and the geographical weighting function was constructed 
under Gaussian scheme32, 33. The daily GWR model for each day in 2013 can be described as follows:

β β ε. = + +PM AOD2 5 (3)i i i i i0 1

where .PM2 5i and AODi are the daily average values, respectively, at location i; βoi and β1i denote the intercept 
and slope, respectively, at location i; and εi is the error term for grid cell i. Thus at places where ground-level PM2.5 
concentrations are not available, coefficients β0i and β1i are estimated by weighted least squares by taking distance 
and bandwidth into consideration.

Regarding the LME model,

µ µ β β ε ψ. = + ′ + + ′ + ~PM AOD N2 5 ( ) ( ) [(0, 0), ] (4)i t t t i t i t, , , 1

where .PM2 5i t,  and AODi t,  are the PM2.5 concentration and the AOD value, respectively, at location i on day t; 
µ µ ′and t  are the fixed intercept and the random daily intercept, respectively; β and β ′t  are the fixed slope and 
daily random slope, respectively; and εs,t is the error term. In this LME model, the fixed effect represents the aver-
age intercept and linear PM2.5-AOD relationship for all study days. The random effects explain the daily variabil-
ity of the intercept and slope of the linear PM2.5-AOD relationship7.

Results and Discussion
Descriptive statistics.  Table 1 provides a summary of the descriptive statistics of the PM2.5 model dataset 
from annual and seasonal perspectives. The annual mean PM2.5 and AOD values are 67.9 µg/m3 and 0.77, respec-
tively. Notably, winter is associated with the highest mean value of the daily PM2.5. Spring and fall share similar 
values, whereas summer is associated with the lowest daily average value. For AOD, the highest AOD values occur 
in winter, whereas spring, summer, and autumn share similar AOD levels.

Gaussian processes model fitting and validation.  Figure 3 shows a scatterplot displaying the model 
fitting and 10-fold cross validation results of our Gaussian processes models. The R2 value for the model fit is 
very close to 1 because a large amount of the variation in PM2.5 is captured by our spatial random effects term ωi,  
which is generated from the posterior samples of σ2 and φ. The RMSE value for the model fit is 0.01 µg/m3. For 
the model cross validation, the R2 and RMSE values are 0.81 and 21.87 µg/m3 respectively. This result shows that 
Gaussian processes in the Bayesian hierarchical setting may provide an improved description of daily spatial 
variations and generate more precise model results, given appropriate data. Regarding the R2 value, which is 
close to 1, similar results were found in a recent study34, which successfully developed a machine learning algo-
rithm to estimate global PM2.5 values using satellite-based remote sensing data. They also obtained high model 
fitting correlation coefficients when training their models using the Terra and Aqua DB AOD datasets (both of 
which were associated with R2 = 1)34. However, the correlation coefficients of their model validation (R2 = 0.56 
and 0.40 for Terra and Aqua DB AOD datasets, respectively) were lower than those of our Gaussian processes 
model (R2 = 0.81). Unlike model fitting procedures in which the entire dataset is used to both fit and validate the 
model, the cross-validation process does not use the PM2.5 data that have been used in the model fitting process 
to validate the model. Therefore, the cross-validation result will decrease compared to the model fitting result. In 
addition, in the application of this Gaussian processes model, the accuracy with which the PM2.5 values can be 
predicted in the grid cells where AOD values are available but ground-level PM2.5 values are unavailable will be 
close to our result from the cross validation (R2 = 0.81).

Comparisons with other statistical models.  In this study, we compared our results with those from 
other commonly adopted methods, specifically a Linear Mixed Effects model (LME) and Geographically 

Mean Standard Deviation Min Max

PM2.5 (µg/m3) AOD PM2.5 (µg/m3) AOD PM2.5 (µg/m3) AOD PM2.5 (µg/m3) AOD

Annual 67.9 0.77 60.6 0.63 0.63 −0.03* 902 4.38

Spring 58.2 0.76 40.1 0.50 3.00 0.01 407 3.75

Summer 42.8 0.77 33.5 0.67 1.62 −0.01 417 4.28

Autumn 65.5 0.76 50.4 0.66 2.43 −0.03 902 4.37

Winter 106 0.81 85.7 0.67 0.63 0.01 852 3.61

Table 1.  Summary statistics of the model dataset. *Note that the MODIS Dark Target (DT) algorithm allows 
retrievals of small negative AOD values (down to −0.05)28.
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Figure 3.  Model fitting (a) and cross validation (b) of the Bayesian Gaussian processes model (N = 162,089). 
RMSE: root mean squared prediction error (µg/m3). For reference, the 1:1 line is shown as a dashed line.

Figure 4.  Model fitting and cross validation using GWR and the LME model (N = 162,089). RMSE: root mean 
squared error of the predictions (µg/m3). For reference, the 1:1 line is shown as a dashed line. Panels (a) and 
(b) show the model fitting and cross-validation results of the GWR model, whereas panels (c) and (d) show the 
model fitting and cross-validation results of the LME model, respectively.
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Weighted Regression (GWR). Figure 4 presents the comprehensive model fitting and cross-validation results of 
these two models. Values of R2 that are close to 1 and small values of the RMSE suggest a more precise predictive 
ability of the model. Thus, GWR displays better performance in terms of its model fitting and cross-validation 
results than the LME model, as summarized in Table S5 (Supplementary Information).

Compared to GWR and LME, our Gaussian processes model is more strongly over-fitted; the value of R2 
drops to a greater degree in the cross validation compared to the model fitting results (1–0.81 = 0.19), whereas 
the corresponding numbers for GWR and LME are 0.12 and 0.01, respectively. However, the Gaussian processes 
model obtains the highest cross-validation R2 of 0.81, which is much higher than those of the GWR model 
(cross-validation R2 = 0.74) and the LME model (cross-validation R2 = 0.48).

You et al.16 developed a national GWR model to estimate PM2.5 concentrations in China using MODIS and 
Multiangle Imaging Spectroradiometer (MISR) AOD products. They obtained cross-validation R2 values for 
MODIS and MISR AOD-based GWR models of 0.76 and 0.81, respectively, and these values are higher than 

Figure 5.  Seasonal and annual distributions of PM2.5 concentrations estimated using the Bayesian Gaussian 
process model. This map was generated using ArcGIS 9.326 based on our Gaussian processes estimated PM2.5 
data (left column) and the ground-level PM2.5 measurements (right column).

http://S5
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those that we obtained with our GWR model and are comparable to those of our Gaussian processes model. 
However, this earlier study also included wind speed, air temperature, visibility, and relative humidity as covar-
iates in their models. Previous studies have revealed that meteorological and land use variables can greatly 
improve PM2.5-AOD model performance11, 35. In our study, AOD is used as the sole explanatory variable. We 
expect that the performance of our Gaussian processes and GWR models could be improved if we incorporated 
meteorological and land use variables.

One previous study developed a two-stage spatial statistical model using MODIS AOD data, assimilated 
meteorological data, and land use data13. The first-stage of that model was an LME model, and the first-stage 
cross-validation R2 value was 0.79. This value is much higher than that of our LME model and approaches that of 
our Gaussian processes model. However, that study fitted the first-stage LME model for each province separately. 
They also emphasized that the cross-validation R2 of the first-stage LME model would drop to 0.63 if a single 
LME model was fitted for the whole of China13. In addition, their model performance could decrease further if 
the meteorology and land use variables were excluded. Comparing the GWR and LME models in our study and 
previous studies, our Gaussian processes model displays better model performance, and this method has the 
potential to improve the accuracy of satellite-based PM2.5 estimates.

Spatial and seasonal variations in model-estimated PM2.5 concentrations.  We applied the 
Gaussian processes model to the original IVW AOD data without first interpolating the data to generate daily 
PM2.5 concentrations for the year 2013. To compare the annual and seasonal variations in the PM2.5 concentra-
tions, we averaged the result from each daily model on annual and seasonal bases. Figure 5 shows the annual 
and seasonal distributions of PM2.5 concentrations estimated by the Gaussian processes model (left column) 
and determined by ground-based measurements (right column). The left column reflects better spatial cover-
age because satellite-retrieved AOD values possess better spatial coverage than ground-based PM2.5 monitoring 
sites. Overall, the spatial patterns of our model-estimated PM2.5 concentrations are consistent with the data from 
the ground-based monitoring sites on both annual and seasonal scales. Specifically, the model predicted values 
substantially expand the area covered by valid PM2.5 data on the national grid compared to the ground-based 
air quality monitoring sites. The latter are mainly concentrated within the eastern coastal areas, whereas the for-
mer possess a more comprehensive coverage of the whole area of China. This result is consistent with previous 
PM2.5-AOD studies that indicated that AOD has a better spatial and temporal coverage than the ground-based 
monitoring network.

Regarding the variations in the seasonal averages, winter has the highest seasonal average PM2.5 value of all 
the seasons, with a value of 82.69 µg/m3. Spring and autumn have similar seasonal average values of 41.10 µg/m3  
and 44.06 µg/m3, respectively, whereas summer has the lowest value of 16.52 µg/m3. There is also an apparent 
geographic variation among the different parts of China. The North China Plain and the Sichuan Basin, as well 
as central and eastern China, possess higher annual average PM2.5 values compared to other areas with better air 
quality, such as the northeastern and western parts of China. This spatial difference is consistent with the une-
ven distribution of socio-economic development; more developed areas may have higher annual average PM2.5 
concentrations.

In summary, our Gaussian process model exhibits superior performance compared to two commonly used 
types of models (LME and GWR); it has more accurate predictive performance in model fitting and cross val-
idation. Compared to the GWR model, the Gaussian process model increased the model cross-validation R2 
value dramatically, from 0.74 to 0.81. Our model represents the first example of employing Gaussian processes 
in a Bayesian hierarchical setting to construct a spatial regression between PM2.5 and AOD. We hope that our 
preliminary study will play a part in stimulating further research and improving the prediction accuracy of future 
PM2.5-AOD modeling studies.

We did not include meteorological parameters and land use information in our Gaussian process model, 
which is a limitation that needs to be further examined in our future research work. However, the aim of this 
study is to examine the feasibility of producing improved PM2.5-AOD models using Gaussian processes. In addi-
tion, the results indicate that our model can potentially improve the accuracy of satellite-based PM2.5 modeling. 
It is expected that the Gaussian process model can be further improved if meteorological and land use variables 
are included.
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