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Abstract.

Background and Purpose: Prior work on adaptive organ-at-risk (OAR)-sparing radiation

therapy has typically reported outcomes based on fixed-number or fixed-interval re-

plannings, which represent a one-size-fits-all approach and do not account for the variable

progression of individual patients’ toxicities. The purpose of this study was to determine

the personalized optimal timing for re-planning in adaptive OAR-sparing radiation therapy,

considering limited re-planning resources, specifically for patients with head and neck cancer

(HNC).

Methods and Materials: A novel Markov decision process (MDP) model was developed

to determine optimal timing of re-plannings based on the patient’s expected toxicity,

characterized by normal tissue complication probability (NTCP), for four toxicities. The

MDP parameters were derived from a dataset comprising 52 HNC patients treated at the

University of Texas MD Anderson Cancer Center between 2007 and 2013. Optimal re-

planning strategies were obtained when the permissible number of re-plannings throughout

the treatment was limited to 1, 2, and 3.

Results: The MDP (optimal) solution recommended re-planning when the difference between

planned and actual NTCPs (∆NTCP) was greater than or equal to 1%, 2%, 2%, and 4%

at treatment fractions 10, 15, 20, and 25, respectively, exhibiting a temporally increasing

pattern. The ∆NTCP thresholds remained constant across the number of re-planning

allowances (1, 2, and 3).

Conclusion: The MDP model determines the optimal timing for implementing patient-

specific adaptive re-planning. This approach incorporates ∆NTCP thresholds and considers

varying total re-plannings. The methods are versatile and applicable across cancer types,

institutional settings, and different OARs and NTCP models.

Keywords: Personalized adaptive radiation therapy, organs-at-risk, normal tissue complication

probability, Markov decision process, optimal strategy

1 Introduction

Advancements in radiation delivery techniques, such as intensity-modulated radiation

therapy (IMRT) and volumetric-modulated arc therapy, enable accurate dose delivery

to tumor targets while minimizing radiation exposure of the surrounding organs-at-risk

(OARs) [1]. However, anatomical changes during the treatment, such as weight loss or

tumor shrinkage, may cause the actual delivered dose to OARs to deviate from the planned

dose. This can increase the risk of treatment-induced toxicities, particularly in cases where

multiple OARs are in close proximity to the target, as in head and neck cancer (HNC) [2–

4]. To address this, adaptive radiation therapy (ART) is clinically introduced, proposing

on-therapy re-planning in response to anatomical changes in the target and OARs [5–10].

In practice, however, the clinical implementation of ART with daily (or even less-frequent)

re-plannings remains limited, in large part due to the extensive human/personnel/workflow

resources required to frequently perform key tasks such as segmentation and quality

assurance as well as limited device accessibility time [11, 12]. Recent artificial intelligence

(AI)-based algorithms (such as auto-segmentation or synthetically created CTs [13, 14] may

mitigate some or all of these process level frictions; however, the integration of such AI tools

within the ART workflow is still evolving [15]. With the advent of hybrid MR-Linac devices,
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real-time adjustment of daily radiation plans, known as on-line ART, is now a possibility.

On-line ART can also be enabled with the availability of high-frequency, high-quality cone-

beam CT or CT-on-Rails devices [16, 17]. Regardless of ART implementation imaging inputs

(MR or CT), cancer centers in the U.S. typically have implemented ART at fixed intervals,

notably once mid-therapy [18] and often as a ‘verification’ of re-simulation. Most of the

relevant studies also report on the outcomes of only fixed-number and/or fixed-interval re-

plannings [19–21] (see Table A1 for a comprehensive literature review). Such pre-determined

schedules for treatment re-plannings, however, take a one-size-fits-all approach and do not

account for the uncertain trajectory of individual patients’ toxicities [21], nor patient-specific

tumor regression. As a result, determining the optimal timing of re-planning episodes

remains a crucial unmet need, particularly for OAR-sparing adaptive approaches (whether

for MR-linac as we have implemented in MR-guided clinical trials [19] or for analogous

CT-based approaches [20]).

Heukelom et al. [22] investigated the optimal implementation of ART with a single re-

planning allowance (in OAR-sparing radiation therapy) using daily on-treatment CT imaging

with a CT-on-rails device. Leveraging the same dataset, this paper presents a new analytical

approach for optimal re-planning strategies, based on Markov decision process (MDP)

models, to identify the optimal timing for re-planning under different allowances in HNC.

MDPs constitute a class of mathematical optimization models that aim to determine optimal

decisions/actions in stochastic dynamic systems [23, 24]. MDPs are extensions of Markov

models, which capture the natural evolution of a stochastic process (e.g., cancer progression)

and are more commonly used in cancer research [25–27]. MDPs incorporate possible

interventions (actions) into the stochastic process with the aim of obtaining desired outcomes

at the end of a time horizon, by identifying an optimal course of actions. MDPs have been

successfully employed to find the optimal timing for various medical interventions [27–31];

however, to our knowledge, MDPs have not been applied for triggering adaptive re-planning.

By leveraging a mathematically optimal and rigorous decision process, we propose a method

for evidence-based individualized radiation treatment re-planning, scalable across resource-

rich and resource-limited facilities, and applicable to both CT- and MR-based platforms.

Thus, rather than a class solution based on population estimates of toxicity reduction

potential, we enable personalized adaptive therapy with awareness of a budget.

This study undertakes three specific aims: 1) Develop a generalized framework for the

utilization of MDPs in budgeted re-planning decisions for efficient resource allocation in

clinical settings, 2) identify the optimal timing of re-plannings based on changes in normal

tissue complication probabilities (NTCP) of four toxicities: xerostomia, dysphagia, parotid

gland dysfunction, and feeding tube dependency at 6 months post-treatment to enhance

personalized treatment and efficacy, and 3) provide a foundation for future research efforts,

which could extend the application of these methodologies to more dynamic treatment

scenarios, such as GTV adaptive and/or online adaptive workflows, with the goal of achieving

sufficient speed and flexibility for real-time clinical decision making. Through these aims,
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we seek to not only refine the strategic application of ART but also to contribute to the

broader discourse on improving cancer treatment outcomes through mathematical modeling

and optimization.

2 Materials and Methods

2.1 Data

This study used a prior dataset of CT-on-Rails image-guided radiation therapy (IGRT),

detailed by Heukelom et al. [22], which comprised information from patients treated

for HNC at the University of Texas MD Anderson Cancer Center between 2007 and

2013; this retrospective secondary analysis was performed under MD Anderson Cancer

Center Institutional Review Board approval (MDA RCR03-0800). The treatments involved

(chemo-) radiotherapy with daily CT-on-Rails IGRT. Of the 52 patients, 36 were male

and 16 were female. Among them, 46 patients were aged 18-65, while the remaining

6 were older than 65. The primary cancer sites were as follows: Larynx (1 patient),

Oropharynx (13), Oral cavity (4), Hypopharynx (0), Nasopharynx (15), and Sinonasal (12).

Treatment modalities included radiotherapy alone (16 patients), induction chemotherapy

followed by radiotherapy (2), induction chemotherapy followed by concurrent chemoradiation

(16), concurrent chemoradiation (14), and radiation plus Cetuximab (4). The patients’

characteristics are summarized in Table 1.

For these 52 HNC patients, Heukelom et al. [22] calculated deviation of the actual dose

from the planned dose for nine OARs at fractions 10 and 15 of the treatment. At each

fraction, they estimated NTCP for the toxicities related to the OARs (xerostomia, dysphagia,

parotid gland dysfunction, and tube feeding dependency at 6 months post-treatment) by

projecting the actual dose through the remainder of the treatment period. Subsequently,

they compared these findings with the planned NTCPs and determined the difference, i.e.,

∆NTCP, for each toxicity. The NTCP models were presented in Supplementary Material

B. For each observed ∆NTCP value, they reported the number of patients exhibiting that

∆NTCP or higher in any of the four NTCP models. The MDP model presented in this

paper used the ∆NTCP from this dataset [22], which were summarized in Table 2.

2.2 Decision Model

In the MDP model, estimates of an individual patient’s toxicity outcome, as a function of the

delivered radiation dose to OARs, determine the state of the system at each decision epoch

during the treatment (e.g., day). Depending on the observed state, the clinician may decide

between two possible actions: (1) Re-plan or (2) continue with the current plan. When the

action is to continue with the current plan, the system may transition from one toxicity

state to another stochastically, governed by transition probabilities. Re-planning changes

the probabilistic transition towards more favorable outcomes/states. Given that a limited

number of ‘re-planning’ actions may be taken throughout the treatment, an optimal solution

to the MDP identifies the optimal timing for taking such actions, as a function of the toxicity

states. Fig. 1 illustrates an overview of the analysis method. The MDP model captures the

stochastic evolution of post-treatment toxicity risk and identifies optimal re-planning times
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Table 1: Patient characteristics. Abbreviations: cCRT = concurrent chemoradiation. RT = radiotherapy.

TNM classification according to version 3. Accelerated RT: 2 Gy per fraction, 6 times per week.

Variable Number of Patients = 52 Percentage

Sex Male 69%

Female 31%

Age 18-65 years 88%

≥ 65 years 12%

T-classification Tis-T1 8%

T2 15%

T3 13%

T4 54%

Recurrence 8%

Unknown 2%

Post-surgery 23%

N-classification N0 27%

N1 19%

N2 38%

N3 2%

Primary site Larynx 2%

Oropharynx 25%

Oral cavity 8%

Hypopharynx 0%

Nasopharynx 29%

Sinonasal 23%

Pathology Adenocarcinoma 2%

Neuroblastoma 6%

Neuroendocrine 8%

Squamous cell carcinoma 50%

Undifferentiated carcinoma 17%

Other 17%

Treatment modality Radiotherapy alone 31%

Induction chemotherapy followed by RT 4%

Induction chemotherapy followed by cCRT 31%

Concurrent chemoradiation 27%

Radiation + Cetuximab 8%

Baseline weight loss No weight loss 38%

Moderate weight loss (1 – 10%) 33%

Severe weight loss (>10%) 6%

Unknown 23%

Baseline xerostomia No xerostomia 4%

Some xerostomia 8%

Unknown 88%

Accelerated RT Yes 6%
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Table 2: Observed ∆NTCP values based on the difference between planned dose and actual dose, along

with the number of patients associated with each ∆NTCP value. Adapted from [22] with permission.

(a) Fraction 10

∆NTCP 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

Number of Patients 26 7 4 6 2 2 0 1 0 0 1 1 2

(b) Fraction 15

∆NTCP 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

Number of Patients 23 8 9 2 2 1 1 2 0 0 2 1 1

Fig. 1: Overview of the analysis method. The sub-figures displaying OARs and toxicities are adapted

from [32] with permission.

to mitigate the toxicities (if necessary). The model components are as follows:

Re-plannings allowance: Depending on available resources for plan adaptations, the

model considers a maximum number of re-plannings B that can be implemented throughout
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the treatment. The analysis was performed for B = 1, 2, 3.

Decision epochs: Given a treatment period consisting of 33-35 fractions, the decision

epochs were set at fractions 10, 15, 20, and 25. Prior studies have shown that anatomical

changes are unlikely to happen very early during the treatment [22]; thus fraction 5 was

omitted. Fraction 30 was also excluded due to its proximity to the end of treatment, with

negligible impact on the total dose to the OARs.

States: At each decision epoch, the state of the system was captured by the pair

(∆NTCP, b), where ∆NTCP denotes the deviation of treatment toxicity from the planned

value at that time, and b ≤ B is the number of remaining re-plannings. For example, if

the maximum permissible number of re-plannings is 2 (B = 2), and the clinician opts to

implement a re-planning at fraction 10, then the state of the system at fraction 15 will have

b = 1. The ∆NTCP ranges from 0% to 12% in the model (Table 2).

Actions: At each decision epoch, two possible actions were included: (1) Re-planning, or

(2) continue with the current plan (no re-planning). The stochastic transition of the toxicity

state from one decision epoch to the next is a function of the action taken and is determined

by the associated transition probabilities. Fig. 2 illustrates the states of the MDP and

possible transitions associated with each action at Fractions 10, 15, and 20 along with the

their smoothed transition probabilities, for the case that at most 2 re-plannings may be

performed.

Transition Probabilities: The transition probabilities, governing the stochastic evolution

of toxicity under each action, were estimated using the information presented in Table 2.

Under the ‘no re-planning’ action, the probabilities for transitions from fraction 0 to 10

and from fraction 10 to 15 were directly estimated based on the number of patients in each

∆NTCP category. For example, the probability of transitioning from ∆NTCP = 0% at

fraction 0 to ∆NTCP = 1% at fraction 10 is 7/52 = 0.13, as 7 patients out of 52 exhibited

such a change in ∆NTCP from fraction 0 to fraction 10. To make our transition probabilities

more realistic with a broader spread and to avoid any deterministic transitions between

states, we smoothed the transition probability matrix from Fraction 10 to 15 by convolving

it with a Gaussian kernel function with standard deviation of 0.4. The original and smoothed

probabilities associated with the ‘no re-planning’ action is presented in Supplementary

Material C. It was assumed that transition probabilities from fraction 10 to 15 remained

constant for subsequent decision epochs, due to the absence of reported ∆NTCP information

beyond fraction 15 by Heukelom et al. [22]. To model the impact of the ‘re-planning’ action on

transition probabilities, it was assumed that, at each decision epoch, the action immediately

decreases ∆NTCP to a value proportional to the elapsed treatment time. For example, if

the ‘re-planning’ action is taken at fraction 10 for ∆NTCP = 5%, then the state of toxicity

will immediately decrease to ∆NTCP = 2% at this fraction, as approximately one third of

the treatment period has passed and the dose escalation will not continue through the rest of

the treatment; see Fig. 3. Subsequently, the transition from fraction 10 to 15 is governed by

the probabilities for ∆NTCP = 2%, calculated from Table 2. The probabilities associated
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Fig. 2: Markov Decision Process Model. The permissible number of re-plannings is 2 (B = 2). The states

are shown by ellipses. ∆NTCP values are located in the upper half of the ellipses, while the lower halves

contain the value of b (the number of remaining re-plannings). Transitions between states are shown by

green arrows when the action is ‘no re-planning’ and by red arrows when the action is ‘re-planning.’ Not

all arrows, states, and fractions are included to avoid ambiguity. For example, the smoothed transition

probability from state (2%,2) state to (1%,1) when the action is ‘re-planning’ is 0.86.

with the ‘re-planning’ action, as described above, are presented in Supplementary Material

C.

Rewards: For each set of consecutive actions taken at the decision epoch, the model

considers the expected −∆NTCP at the end of the treatment period (with respect to

the transition probabilities) as the corresponding reward. The objective of the MDP is to

maximize the expected reward by identifying an optimal set of actions, one at each decision

epoch, as a function of the system’s state. Because the rewards are defined by negative values

in the MDP model, smaller end-treatment ∆NTCP values translate to higher rewards.

The MDP was solved using the MDPtoolbox of MATLAB [33], for B = 1, 2, 3.

The MATLAB code and its outputs are available at https://figshare.com/s/

64bc3481737d17fc287e.

3 Results

After solving the MDP, the optimal policy, which specifies the optimal action (‘re-planning’

or ‘no re-planning’) for each state (∆NTCP, b) at each decision epoch, was reported. The

analysis revealed that the optimal policy is a single-threshold policy, where a specific ∆NTCP

threshold is assigned to each fraction. Re-planning is triggered when the ∆NTCP exceeds

the threshold, while no re-planning is needed when it falls below the threshold. That is, if

the optimal action for ∆NTCP = x% at a certain decision epoch was to re-plan, then for
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Fig. 3: Effect of actions on system transitions. The permissible number of re-plannings is 2 (B = 2). The

states are represented by ellipses. The ∆NTCP values are located in the upper halves of the ellipses, while

the lower halves contain the value of b (the number of remaining re-plannings). When the action at a fraction

is ‘re-planning,’ as in Fractions 10 and 15 in Part A and Fraction 10 in Part B, the transition to a state with

a lower ∆NTCP within the same fraction is shown with red arrows. Transitions between states from one

fraction to the next are shown with blue arrows. When the action is ‘no re-planning,’ as in Fraction 15 in

Part B, no transition occurs within that fraction. Instead, the system transitions to a new state at Fraction

20. This is depicted by the gray states at Fraction 15, indicating that there is no immediate decrease in

∆NTCP.

every other state with ∆NTCP = y% > x% and the same b, the optimal action was also to

re-plan.

When only one re-planning was allowed (B = 1), the optimal policy at fraction 10 was
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Table 3: Optimal re-planning thresholds based on ∆NTCP and re-planning allowance.

Re-planning allowance (B) 1 2 3

Number of remaining re-plannings (b) 1 2 1 3 2 1

∆NTCP threshold at fraction 10 1% 1% - 1% - -

∆NTCP threshold at fraction 15 2% 2% 2% 2% 2% -

∆NTCP threshold at fraction 20 2% 2% 2% 2% 2% 2%

∆NTCP threshold at fraction 25 4% 4% 4% 4% 4% 4%

to re-plan for any ∆NTCP value greater than or equal to 1%. Subsequently, at fraction

15, this threshold increased to 2% and remained at 2% for fraction 20. At fraction 25, the

minimum ∆NTCP required for a re-planning was 4%. These thresholds remained the same

in the optimal policies for B = 2, 3. The results are summarized in Table 3 and illustrated

in Fig. 4 for B = 3.

Fig. 4: Optimal ∆NTCP thresholds for re-planning for B = 3.

4 Discussion

This study introduces the first — to our knowledge — application of the mathematically

rigorous MDP methodology, to determine optimal timing of ART in HNC. Although we

focused on HNC as a use case, the methodology described in this paper is applicable to other

radiotherapy cancer sites where an adaptive scheduling regimen is desired for a ‘budget’ of

re-plans with estimable NTCP metrics. By incorporating prior ∆NTCP data from serial

CT-based OAR metrics from Heukelom et al. [22] within the proposed MDP model, we have

successfully derived an optimal policy for treatment re-planning. The MDP model guides
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clinicians in determining the minimum values of ∆NTCP at fractions 10, 15, 20, and 25

for performing a re-planning, given a re-planning allowance of 1, 2, or 3 throughout the

treatment.

The re-planning ∆NTCP threshold increases over time in the optimal policy, consistent

with the diminishing impact of re-planning as the treatment progresses. These values are

1% at fraction 10, 2% at fractions 15 and 20, and 4% at fraction 25. Additionally, the results

suggest optimality of re-planning for any changes in NTCP (∆NTCP ≥ 1) at fraction 10.

This supports the findings of Heukelom et al. [22], who identified fraction 10 as the optimal

time for a single re-planning. Importantly, at a given fraction, the ∆NTCP thresholds remain

the same for different number of re-plannings (B = 1, 2, 3); the re-planning allowance did

not affect these thresholds. Furthermore, in cases where ∆NTCP at fraction 25 is below the

4% threshold, both options (‘re-planning’ or ‘no re-planning’) yield the same impact on the

end-treatment ∆NTCP, indicating that re-planning does not result in an improvement.

We acknowledge that minimizing the expected ∆NTCP might suggest re-planning for

any ∆NTCP value, potentially leading to a high number of false negatives. This arises

from our modeling assumptions, which permit a fixed number of re-plannings at no cost,

encouraging frequent re-planning due to low ∆NTCP thresholds. In an ongoing study, we

are incorporating re-planning costs without limiting the number of re-plannings to better

explore the trade-off between cost and benefit; however, at a minimum, we have opted to err

on the side of patient benefit, rather than cost-control; as patient NTCP benefit is potentially

scalable across any health system, while cost per re-plan and acceptable cost constraints are

variable across national and international health policy and reimbursement systems.

The significance of a ∆NTCP of 4% or below lies in its potential impact on patient

outcomes. While seemingly minor, even slight decreases in NTCP can have considerable

implications for patient health and well-being. For instance, a reduction in severe toxicity

such as osteoradionecrosis by just 4% could significantly enhance the quality of life and

long-term survival prospects for patients. Moreover, customizing treatment to achieve such

reductions underscores the importance of personalized care tailored to individual patient

needs. By focusing on optimizing treatment outcomes at this level, healthcare practitioners

can prioritize patient-centric approaches that aim to minimize treatment-related toxicity and

maximize overall patient benefit.

We leveraged an existing CT-on-rails reference dataset [22] to objectively derive the

∆NTCP listed in the proposed MDP model. It is crucial to acknowledge the limitations

regarding the generalizability of findings from this single-site retrospective in silico

dataset. For instance, the in silico daily dose accumulation was not actively applied to

individual patients, but rather calculated post hoc from a high-granularity CT-on-rails daily

volumetric IGRT series. The CT-on-rails platform at MD Anderson utilized an in-house

custom-contructed intermediary localization and alienation software (CT-Assisted Targeting

(CAT)) [34]. Consequently, there were instances where delivered geometric shifts were either

unrecorded or unrecoverable, or clearly aberrant (such as extensive shift records representing
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an initial setup that was then revised after repositioning) during the secondary export of

coordinate displacement to the commercial Record and Verify software (Mosaiq, Elekta

AB). These discrepancies were subsequently omitted in the in silico model to streamline

data, leading to conceptual gaps in the resultant NTCP modeling where these missing

values were not accounted for. Furthermore, it is important to note that this modeled

secondary dataset did not include adaptation or daily re-optimization of the initial daily

dose in vivo. Consequently, the data presented in this paper should be viewed as a clinically

approximate semi-synthetic illustrative use-case, rather than a definitive rationale for the

large-scale implementation of the observed idealized re-planning thresholds across distinct

operational platforms. Nonetheless, we believe that the resultant MDP model could be

readily scaled using higher-quality prospective or observational cohort data for secondary

validation. In essence, the data presented in this paper should be regarded as informative

rather than definitive, and the individualized planning parameters suggested by MDP should

be viewed as proof of concept rather than a formal criterion barring external validation.

In the prior work, Heukelom et al. [22] exclusively reported ∆NTCP for fractions 10 and

15, consistent with internal re-planning practices at MD Anderson Cancer Center based on

data from a Phase II study by Maki et al. [35]. Consequently, for model extensibility in the

current application, we have explicitly assumed transition probabilities remain stable for the

subsequent epochs. This assumption introduces a known level of uncertainty that warrants

consideration and is an area of future research, as it is unclear for specific OARs whether

these transition states are indeed stable over therapy. Moreover, the MDP model stipulates

weekly re-planning intervals on indexed fractions (e.g., fractions 10, 15, 20, 25, and 30) as a

simplification for clarity of presentation reflective of our current adaptive protocols [19], but

could readily be adapted to continuous daily fraction-based re-planning intervals.

The four NTCP models in Table B1 are among the most currently used models to

calculate the NTCP values for the considered toxicities: xerostomia, dysphagia, parotid

gland dysfunction, and feeding tube dependency at 6 months post-treatment [22, 36]. With

the advent of more recent NTCP models for HNC radiation therapy, e.g., [37], it is possible

that new NTCP models could offer improved estimations. In addition, the presented results

are based on data collected from 52 HNC patients. While we recognize the importance

of sample size in calibrating MDPs, this sample size is considered substantial in HNC

research, considering that HNC accounts for only about 4% of cancer cases in the United

States [38]. Furthermore, our results are contingent upon the available CT-on-Rails data,

and future research may benefit from incorporating higher-dimensional data (e.g., GTV/the

clinical target volume (CTV) modifying approaches, MRI anatomic and/or biomarker data

for TCP/NTCP) for a more extensive insight.

Nonetheless, the proposed MDP model for ART is clinically relevant, mathematically

rigorous, resource-aware, and scalable, and can be adjusted based on new OAR toxicity

with reference NTCP values. Necessarily, the precision of the model relies on accurate

calculations of NTCP, particularly when adhering to rigorous criteria that determine whether
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patients are suitable for or excluded from ART [39]. Despite the challenges and limitations,

our study introduces novel contributions to the field of ART. Unlike previous works [22],

which primarily considered a single re-planning allowance, our optimization model extends

its applicability to scenarios with multiple re-plannings. Furthermore, our optimal policy

spans across fractions 10, 15, 20, and 25, representing an advancement beyond the limited

scope of Heukelom et al. [22], which only reported results for fractions 10 and 15. Gan

et al. [40] achieved optimal timing for re-planning in HNC radiation therapy by analyzing

weekly dose data through semi-auto segmentation and the K-nearest-neighbour method.

They constructed a dose deviation map to visualize differences between planned and actual

doses, simulating different ART scenarios. By evaluating accumulated dose differences

before and after re-planning, the optimal timing for re-planning was determined. Our

methodology differs in that we incorporate ∆NTCP and utilize it to develop an MDP model

for determining the optimal timing for re-planning.

An aspect not explored in this study is the adaptation based on GTV or CTVmodification,

either for shrinking GTV/CTVs [19] or isotoxic boost approaches [41, 42]; we concentrated

solely on OAR-based adaptation. Adapting based on GTV could open avenues for optimal

re-plannings, potentially influencing NTCP and extending into scenarios such as Stereotactic

Body RT [43]. This introduces a distinctive problem and solution space beyond the scope

of our current investigation. Furthermore, we exclusively focused on optimizing the ART

workflow within the context of photon therapy. Similar optimization methodologies could

prove advantageous when exploring ART in the context of proton therapy, particularly in

addressing setup variability reduction [44]. For this study, NTCP calculations were based

on the ‘plan of the day.’ While our findings may vary with deformable dose registration, the

operational implementation remains consistent. Future efforts should consider incorporating

deformable dose registration to enhance the model’s generalization.

Several surveys in both low/middle-income countries [45, 46] and high-income

economies [45] have identified resource constraints as an impediment to ART implementation;

the use of models such as our MDP provides a potential avenue for stratification of

resource allocation. Put simply, with one re-plan allowed, almost all patients would

be best served via re-planning early during treatment; however, as the budget of re-

planning staff/technical/time resources expand, evidence-based personalized re-planning is

potentiated by our MDP approach.

5 Conclusion

Our study introduced an MDP model to guide clinicians in determining the optimal timing

for implementing patient-specific adaptive re-planning. This approach incorporates ∆NTCP

thresholds and considers varying total re-plannings. We also presented a novel in silico

application and accompanying code specifically developed to attain improved ∆NTCP

thresholds for consequential re-planning to alleviate toxicities throughout the course of

treatment. Our methods have wide-ranging applicability, transcending specific cancer types

and being adaptable to diverse institutional settings with limited resources. Additionally,
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our approach accommodates different OARs and NTCP models, emphasizing its versatility

and potential for widespread implementation across a spectrum of clinical contexts.
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Supplementary Material A. Literature Review on Head-and-neck-cancer

Adaptive Radiation Therapy

Table A1: A comprehensive list of relevant papers on head-and-neck-cancer ART along with the number

of re-planning instances and the reported fractions.

Paper Number of Re-plannings and Fractions
Castelli et al. [20] Replan weekly
Lim et al. [47] Replan at F14 based on parotid dose
McDonald et al. [48] Simulated replans at F1, F10, F20, F30.

Patient replans at F6 due to weight loss and at F8, F24, F26 due to shoulder mass loss
Reinders et al. [49] Adapt-to-position every five fraction, adapt-to-shape at beginning of the week
Kee et al. [50] Replan at week 2 and 4, Increase dose at F10 based on apparent diffusion coefficient
Ciarmatori et al. [51] Single replan at F18
Maffei et al. [52] Optimal replan at F18
Wang et al. [53] Single replan at F18
Gros et al. [54] Optimal replan between F1 and F23
Duma et al. [55] Replan varied from F6 to F20
Fung et al. [56] Replan after F25 and F35
Kuo et al. [57] Replan after F25
Hansen et al. [58] Replan after F19 ± 6
Capelle et al. [59] Replan at F20
Brwon et al. [60] Median (CT) re-planning at F22 and source-to-skin distance corrections at F26
Castelli et al. [61] Replan weekly
Brown et al. [62] Median re-planning at F11 for nasopharyngeal and F20 for oropharyngeal
Aly et al. [63] Replan weekly
Figen et al. [7] Mean replan at F15
Bobić et al. [64] Replan weekly
Gupta et al. [65] Replan daily
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Supplementary Material B. NTCP Models

Table B1: The employed NTCP models for xerostomia, dysphagia, parotid gland dysfunction, and feeding

tube dependency at 6 months post-treatment.

1. NTCP model for moderate to severe xerostomia at 6 months [66].

NTCP =
(
1 + e−S

)−1
, where

S = -1.443 + (mean dose to contralateral parotid * 0.047) + (baseline xerostomia score * 0.720).

Baseline xerostomia is 0 (none) or 1 (a bit).

2. NTCP model for physician rated feeding tube dependency at 6 months [67]

NTCP = (1 + e−S)−1, where

S = -11.70 + (advanced T-stage * 0.43) + (moderate weight loss * 0.95)

+ (severe weight loss * 1.63) + (accelerated radiotherapy * 1.20) + (chemoradiation * 1.91)

+ (radiotherapy plus cetuximab * 0.56) + (mean dose PCM superior *0.071)

+ (mean dose PCM inferior * 0.034) + (mean dose contralateral parotid * 0.006)

+ (mean dose cricopharyngeal muscle * 0.023).

The dose variables are in Gy, and for all the other variables 0 (no) or 1 (yes) are filled in.

3. NTCP model for physician rated decreased salivary flow using the mean dose model [68–70].

NTCP = 1√
2π

∫ u

−∞ e
−t2

2 dt, where u = D−TD50

mTD50
,

D is the mean parotid dose, TD50 is the dose resulting in 50% complication probability and m

determines the slope of the model. The employed parameters were TD50=39.9 Gy and m = 0.4.

4. NTCP model for dysphagia (grade 2–4 swallowing dysfunction according to the RTOG/EORTC

Late Radiation Morbidity Scoring Criteria, physician rated 6 months after treatment) [71].

NTCP = (1 + e−S)−1, where

S = −6.09+ (mean dose PCM superior * 0.057) + (mean dose supraglottic larynx * 0.037).
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Supplementary Material C. Transition Probabilities

Action 1: No re-planning

The natural transition probabilities from fraction 0 (pre-treatment) to fraction 10 were

directly estimated using the information provided in Table 2. For each ∆NTCP category,

the ratio of the corresponding number of patients at fraction 10 to the total of 52 patients

was taken as the associated transition probability. We note that all patients exhibit

∆NTCP = 0% at fraction 0. These probabilities apply only to the states with the same

number of remaining re-plannings b, by the definition of the ‘no re-planning’ action. The

transition probabilities are presented in Table C1.

Table C1: Transition probabilities from fraction 0 (F0) to fraction 10 (F10) under ‘no re-planning.’

∆NTCP @ F10 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F0 ↓

0% 0.50 0.13 0.08 0.11 0.04 0.04 0.00 0.02 0.00 0.00 0.02 0.02 0.04

The natural transition probabilities from fraction 10 to fraction 15 were estimated in a similar

manner. As the number of patients in each ∆NTCP category at fraction 15 were aggregated,

a mapping from ∆NTCP categories at fraction 10 to those of fraction 15 was established.

To ensure a feasible map, it was assumed that ∆NTCPs may slightly improve (1%) on its

own, without intervention. The necessity of this assumption may be observed by the number

of patients with ∆NTCP = 12% at Fraction 10 and 15 in Table 2; two patients exhibited

∆NTCP = 12% at fraction 10, while this number at fraction 15 was one patient. As no

patient showed ∆NTCP = 6%, 8%, 9% at fraction 10, it was assumed that the patients in

these categories retain the same ∆NTCP at fraction 15 with probability 1. The transition

probabilities are presented in Table C2.

Table C2: Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘no re-planning.’ The

same probabilities apply to subsequent transitions, i.e., from F15 to F20, from F20 to F25, and from F25 to

end-treatment, under ‘no re-planning.’

∆NTCP @ F15 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F10 ↓

0% 0.88 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.00 0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.00 0.00 0.50 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 7, 2024. ; https://doi.org/10.1101/2024.04.01.24305163doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.01.24305163
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table C3: Smoothed Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘no re-

planning.’ The same probabilities apply to subsequent transitions, i.e., from F15 to F20, from F20 to F25,

and from F25 to end-treatment, under ‘no re-planning.’

∆NTCP @ F15 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F10 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.50 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.88 0.06 0.02
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.46 0.48

Action 2: Re-planning

The impact of ‘re-planning’ on transition probabilities at a specific fraction was modeled

by presuming an immediate reduction in ∆NTCP to a proportion relative to the elapsed

treatment time, followed by a natural transition governed by the probabilities associated

with the reduced ∆NTCP. For instance, ‘re-planning’ at fraction 10 when ∆NTCP is at

5% results in an immediate decrease to ∆NTCP = 2%, reflecting that about one-third of

the treatment has been completed. This is then followed by a transition (from F10 to F15)

according to the probabilities associated with ∆NTCP = 2% @ F10 in Table C2. These

probabilities are presented in the following tables. We note that the earliest decision epoch

for ‘re-planning’ is fraction 10.

Table C4: Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘re-planning.’

∆NTCP @ F15 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F10 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
10% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
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Table C5: Transition probabilities from fraction 15 (F15) to fraction 20 (F20) under ‘re-planning.’

∆NTCP @ F20 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F15 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.50 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.50 0.00 0.00 0.00 0.00

Table C6: Transition probabilities from fraction 20 (F20) to fraction 25 (F25) under ‘re-planning.’

∆NTCP @ F25 → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F20 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.50 0.00 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00

Table C7: Transition probabilities from fraction 25 (F25) to end-treatment under ‘re-planning.’

∆NTCP @ end → 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%
∆NTCP @ F25 ↓

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00
5% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00
6% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.50 0.00 0.00 0.00 0.00 0.00
7% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.50 0.00 0.00 0.00 0.00
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00
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