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Abstract
The visual cortex analyzes motion information along hierarchically arranged visual areas

that interact through bidirectional interconnections. This work suggests a bio-inspired visual

model focusing on the interactions of the cortical areas in which a new mechanism of feed-

forward and feedback processing are introduced. The model uses a neuromorphic vision

sensor (silicon retina) that simulates the spike-generation functionality of the biological ret-

ina. Our model takes into account two main model visual areas, namely V1 and MT, with dif-

ferent feature selectivities. The initial motion is estimated in model area V1 using

spatiotemporal filters to locally detect the direction of motion. Here, we adapt the filtering

scheme originally suggested by Adelson and Bergen to make it consistent with the spike

representation of the DVS. The responses of area V1 are weighted and pooled by area MT

cells which are selective to different velocities, i.e. direction and speed. Such feature selec-

tivity is here derived from compositions of activities in the spatio-temporal domain and inte-

grating over larger space-time regions (receptive fields). In order to account for the

bidirectional coupling of cortical areas we match properties of the feature selectivity in both

areas for feedback processing. For such linkage we integrate the responses over different

speeds along a particular preferred direction. Normalization of activities is carried out over

the spatial as well as the feature domains to balance the activities of individual neurons in

model areas V1 and MT. Our model was tested using different stimuli that moved in different

directions. The results reveal that the error margin between the estimated motion and syn-

thetic ground truth is decreased in area MT comparing with the initial estimation of area V1.

In addition, the modulated V1 cell activations shows an enhancement of the initial motion

estimation that is steered by feedback signals from MT cells.

Introduction
Motion perception is a significant source of information for the cortical visual system in which
this information is analyzed and processed by a large number of interconnected areas [1]. Each
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area is characterized by cells of different feature selectivity and varying tuning properties [2].
The neuron responses increase in complexity from the lower level up to the higher cortical area
[3, 4]. Motion analysis starts in the primary visual cortex V1 (also known as striate cortex or
area 17) [5]. The responses of area V1 are forwarded to subsequent areas, namely middle tem-
poral area (MT), medial superior temporal area (MST) and beyond [6]. Visual areas interact
via feedforward and feedback sweep processing (see [1, 7, 8]). The feedforward sweep processes
information that are transferred from lower to higher levels via bottom-up connections. These
connections are paralleled by top-down connections to project the feedback signals from the
higher to the lower level via a reverse counter stream network [1, 9]. Feedback processing tends
to act as a modulator to amplify earlier area activations [10].

Although neuroscientists confirm the influence of bidirectional integration among cortical
visual areas [1, 11–13], the role of feedback processing is still not fully uncovered [14]. The
question is how the higher levels areas can project activations along feedback stream to the
lower areas in which the response of each area is characterized by specific properties? In this
work, we introduce a model that simulates the visual areas interactions by proposing a new
mechanism of feedforward and feedback processing between two main model visual areas with
different feature selectivity, V1 (direction selectivity) and MT (velocity selectivity). The initial
motion representation generated in model area V1 is weighted and is then subsequently pooled
over a local neighborhood defined in the spatio-temporal domain in model MT using cells
with larger receptive fields (RFs). Here, a new model of MT motion selective neurons which
are tuned to different speeds and directions is introduced.

To enhance the initial motion estimation in area V1 and reduce ambiguity in the estimated
motion, top-down feedback signals from area MT are fed back and re-entered in area V1.
Along the feedforward path different feature representations of the spatio-temporal input are
generated through hierarchically organized filter processes. The specific features extracted are
spatio-temporal frequency (in V1) and velocity (direction, speed) at spatial locations (in MT),
respectively. The model specifically suggests how MT feature representations generate proper
feedback signals that integrate with the spatio-temporal responses in V1. In a nutshell, the re-
entry is accomplished through an integration of MT activations over different speed selectivi-
ties along a preferred direction. Coarse-grained activations integrated over neighboring direc-
tion selectivities emphasis corresponding spatio-temporal directions via modulatory feedback.

To equip the model architecture with realistic input data, we exploit an event-based vision
neuromorphic sensor, in which a Dynamic Vision Sensor (DVS) was used instead of a conven-
tional frame-based camera. The DVS sensor simulates the spike-generation functionality of the
biological retina [15]. The use of event-based retinas requires an adaptive model that is consistent
with the address-event-representation (AER) principle. In our model, we adaptive the spatio-
temporal filters that have been suggested by [16] to be consistent with the DVS functionality.

In order to achieve balanced cell activations against the pool of neighboring cells, a normali-
zation process is generated, following [17] and [18]. Here neurons activities are adjusted in the
spatial as well as in the feature domains.

Our model can be used as a basis scheme for motion estimation based on sparse events repre-
sentation. In a further step, the model can be utilized for articulated and biological motions rec-
ognition. To evaluate the performance of our model to estimate different motions, we tested the
model using different types of stimuli with different translatory and rotational movements.

The paper is organized along the following structure and content. Firstly, we demonstrate
the model methodology of V1-MT feedforward interaction. Secondly, we present response nor-
malization in which neurons activities are adjusted in spatial and feature domains. Thirdly, we
address the problem of feedback interaction between V1 (direction selectively) and MT (veloc-
ity selectively). Fourthly, we present the model results of feedforward sweep processing along
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V1-MT areas and V1 modulated after feedback processing. Finally, discussion along with a
summary of our contributions and future work are introduced.

Motion Processing Architecture
The architecture of the neural model is inspired by the mammalian visual system in which the
input data is evaluated and processed by a hierarchical model of different brain areas. These
areas interact through bidirectional feedforward and feedback signal pathways. Motion analysis
starts in the primary visual cortex (V1) in which the responses of V1 cells are forwarded to sub-
sequent areas in the model, particularly the middle temporal area (MT) which directly receives
V1 projections (see [14, 19]). The action of such re-entrant activation is modulatory in its
nature as it cannot by itself generate activity at the reentry target location. In turn, area V1
receives re-entrant input fromMT neurons through top-down feedback connections. In addi-
tion, the activation in area MT can be modulated through higher level areas such as the medial
superior temporal area (MST). Since we do not incorporate a model MST in the current archi-
tecture, this modulatory input is left void. Fig 1 shows the hierarchical architecture of V1-MT
feedforward and feedback processing in which the model structure of each area is defined by
three column stages which are composed of filtering, modulation and normalization. The fol-
lowing subsections detail the overall processing stages of the model.

Visual input data from the DVS sensor
The functionality of the neuromorphic vision sensor employed here simulates the spike-gener-
ation mechanism of the mammalian retina. The sensor is characterized by high temporal reso-
lution, low response latency and large dynamic range visual sensing [20]. The DVS exploits the
Address-Event-Representation (AER) principle in which each pixel of the vision sensor
responds independently with a high temporal resolution (1 μs) and can be influenced by a
small spectral neighborhood to a accomplished center-surround interaction like in the retina
or LGN [20]. The neuromorphic sensing emulates biological retinal sensing and spike-based
neuronal processing in which spike events are triggered when an intensity change is detected
[21]. The DVS uses the polarity format for event representation, namely ON (+1) for positive
intensity (log I) change and OFF (-1) for negative intensity (log I) change of above threshold
difference. Zero output, however, is produced when no change in intensity (log I) is detected
which in turn discards any redundant information in comparison to frame-based cameras. Fig
1A shows an example of the DVS spike events in response to rotational stimulus. The DVS sen-
sor generates spikes, or events, where each recorded event is indexed using the 2D spatial loca-
tion (x,y), the polarity of the luminance change (ON or OFF), and the time-stamp of the event.
We exploit the neuromorphic vision sensor to pursue the bio-inspired model for motion esti-
mation which is a continuation of our own previous work reported in [22] and builds upon
recent theoretical work reported in [23]. Since a single event in spatio-temporal domain gives
rise an ambiguity for motion estimation using spatiotemporal filtering, pixel activity ON (+1)
and OFF (-1) is accumulated during a temporal window. The accumulation of the ON/OFF
events is described by e(p, t) = eon(p, t) + eoff(p, t) where eon(p, t) and eoff(p, t) represent ON
and OFF events respectively, occurring at position p = (x, y) and time t. The interval length of
the temporal window can be parametrized in accordance with the extent of the temporal
impulse responses of the filter functions employed.

Motion estimation-feedforward processing
In our model, motion is estimated initially by cells in area V1 which are selective to movement
direction. Due to the small RFs of V1 neurons local motion can only be detected along
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direction orthogonal to extended contrasts (i.e., aperture problem). The local estimated motion
is, then, weighted and integrated in the next visual area (MT). Here, cells are modeled using
new mechanism which are selective to different directions and speeds. In the following subsec-
tions the proposed models of the two areas are described.

Model mechanism for area V1. We slightly modified the mechanism of the filtering stage
model that was suggested in [22] in which the motion energy model of [16] was adapted to be
compatible with the AER principle. Our model employs spatiotemporal filters, which are anal-
ogous to the RFs of cells in the primary visual cortex. These filters can be deconstructed into
two 2D kernels in the space domain and two 1D kernels in the temporal domain. The temporal
filters use two different integration windows (fast and slow), while the spatial filter uses two dif-
ferent phases (even and odd). Fig 1B1(b1) shows the two spatial filters (even and odd), in
which 2D Gabor functions, Eqs (1) and (2), are used to implement even and odd symmetric fil-
ters, respectively

Fevenðx; y; yk; fsÞ ¼
1

2ps2
s

� exp � �x2 þ �y2

2s2
s

� �
� cosð2pfs�xÞ; ð1Þ

Foddðx; y; yk; fsÞ ¼
1

2ps2
s

� exp � �x2 þ �y2

2s2
s

� �
� sinð2pfs�xÞ; ð2Þ

where
�x

�y

 !
¼ cosyk �sinyk

sinyk cosyk

 !
� x

y

 !
, θk is the spatial filter orientation with N different

orientations where k = {1, 2, 3 . . . N}, σs is the standard deviation of the spatial filters, and fs
represents the spatial frequency tuning.

In [16], the authors used temporal gamma functions (f(t) = (kt)2 � exp(−kt2) � [1/n! − (kt)2/
(n + 2)!]) of different durations (n = 3, n = 5) in order to achieve temporal smoothing and dif-
ferentiation. Since event-based sensor responses already encode temporal luminance changes,
i.e. temporal derivatives of the input signals, we employ a convolution process utilizing
smoothing temporal filters (Eq (3)) which integrate the input stream of events.

f ðtÞ ¼
Z

ðktÞ2 � expð�kt2Þ � ½1=n!� ðktÞ2=ðnþ 2Þ!�: ð3Þ

This allows us to obtain scaled versions of temporally smoothed derivatives of the input
luminance function as input representation for motion estimation. To simplify the mathemati-
cal description of the temporal filters in Eq (3), we suggest to combine two Gaussian functions
(Λ) having different standard deviations(σ) and mean values (μ). This combination is scaled by
a scale factor c to closely resemble the shape of the Adelson-Bergen temporal filters as given in
Eq (4)

Sslow;fastðtÞ ¼ ½Ls1 ;m1
ðtÞ � Ls2 ;m2

ðtÞ�=c; ð4Þ

Fig 1. Block diagram of V1-MT feedforward and feedback processing. (A) DVS input. (A1) DVS sensor with half-circular rotational stimulus. (A2) Local
changes in intensity (log I) elicit ON or OFF events, depending on the sign of the changes. (A3) eon and eoff identify the event activity (+1) ON and (-1) OFF,
respectively. (A4) Event stream which is represented as a sequence of events e at a position p and time t. (A5) illustrates the generated events via DVS
sensor in 3-dimensional space (x,y,t). (B) The model of area V1 (B1) Spatiotemporal filter construction. (b1) Spatial filters. (b2) Temporal filters. (b3) The first
row represents the products of two spatial and two temporal filters; the second row represents the sum and difference of the product filters. (B2) modulation of
area V1 based on the feedback of area MT. (B3) normalization mechanism of area V1. (C) The model of area MT. (C1) filtering representation of MT cells.
(C2) modulation signal for area MT based on area MST activation which, here, is set to zero. (C3) MT normalizing mechanism.

doi:10.1371/journal.pone.0142488.g001
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with Ls� ;m� ðtÞ ¼ 1=ðs�
ffiffiffiffiffiffi
2p

p Þ � expð�ðt � m�Þ2=ð2s2
�ÞÞ, where μ� and σ� represent the mean and

the width of temporal window extent of the Gaussian function, respectively. Fig 2 shows the
temporal filters (fast and slow) of Adelson-Bergen and the approximation responses of the
Gaussian functions combination. We used σ1 = 1, μ1 = 2.5, σ2 = 2, μ2 = 7, c = 2.6 to generate the
fast temporal filter and σ1 = 1.3, μ1 = 4, σ2 = 2.3, μ2 = 9.2, c = 3.1 to generate the slow temporal
filter. Subsequently, the smoothing temporal filters Tslow, fast(t) are calculated based on the inte-
gral

R
Sslow, fast(t)dt, Eq (4), and then the summation of each filter is scaled to 1 to prevent any

biases in calculating responses. The smoothing temporal filters are thus given by

Tslow;fastðtÞ ¼
1R1

0
ðG1 � G2Þdt

� ðG1 � G2ÞðtÞ; ð5Þ

G1 ¼
1

2
ð1þ erf

ðt � m1Þ
s1

ffiffiffi
2

p
 !" #

=c; ð6Þ

G2 ¼
1

2
ð1þ erf

ðt � m2Þ
s2

ffiffiffi
2

p
 !" #

=c; ð7Þ

Fig 2. Fast and slow temporal filters. Red lines show Adelson-Bergen filters and blue lines show the approximated response derived by two shifted
Gaussian envelopes as filters.

doi:10.1371/journal.pone.0142488.g002
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where Tslow, fast(t) defines the fast and slow temporal filters, G1 and G2 represent the integral of
Gaussian functions

R
Λσ1, μ1(t)dt and

R
Λσ2, μ2(t)dt, respectively. Fig 1B1(b2) shows the fast and

slow temporal filters.
The spatiotemporal separable filters were calculated according to the scheme proposed in

[16] in which the products of two spatial and two temporal filters are shown in the first row of
Fig 1B1(b3). These filters are combined in a linear fashion in order to obtain the oriented selec-
tivity in the spatio-temporal domain, as shown in the second row of Fig 1B1(b3). We get the fil-
ter functions below

Fv1
a ðx; y; yk; fs; tÞ ¼ Fevenðx; y; yk; fsÞ � TslowðtÞ þ Foddðx; y; yk; fsÞ � TfastðtÞ; ð8Þ

Fv1
b ðx; y; yk; fs; tÞ ¼ Fevenðx; y; yk; fsÞ � TfastðtÞ � Foddðx; y; yk; fsÞ � TslowðtÞ: ð9Þ

The filtering response of area V1 for a stream of events input e(x, y, t) can be calculated by

the gradual activation response function _rv1 ¼ �rv1 þ ð½Fv1
a � e�2 þ ½Fv1

b � e�2Þ which has been
solved at equilibrium state

rv1y ¼ ð½Fv1
a � e�2 þ ½Fv1

b � e�2Þ: ð10Þ

The symbol ‘�’ indicates the convolution operator, θ indicates motion directions (left vs. right
relative to the orientation axis). For better readability we omitted the local spatial coordinates
and feature selectivities.

Model mechanism for area MT. In area MT, again, the structural model is defined by three
stages, namely filtering, modulation, and normalization, as shown in Fig 1C. In the filtering stage,
the incoming visual responses from area V1 are weighted and pooled with larger RFs. Here, we
propose a neural model for area MT where neurons are selective to different velocities. In essence,
we modeled the neurons in area MT by taking into account the following features:

1. Speed and direction selectivity of MT cells encoded via V1 cells: Cells in area V1 which are
driven by a sweep of input stimulation are distributed over a larger spatial field of locations.
Due to their small RFs such cells respond spatio-temporally rather coarsely, but can distin-
guish directions (left vs. right orthogonal to the contrast orientation). In area MT, cells have
larger RFs that integrate such spots of V1 activations for a given speed-range. Thus, speed
representation in the MT neurons can be encoded via the V1 cells population with respect to
the temporal axis. Fig 3 shows rectangular object moving from left to right at different speeds
(slow, mid, fast). The translation of the object corresponds to an oblique stream of ON/OFF
events in the spatiotemporal (x,t) domain (we omitted the y-component to keep illustrations
simple). The slope of the distributed stream of events reflects the speed of the motion. Cells in
area V1 are activated according to these distributions of events and thus generate a population
of activated cells that are oriented in spatio-temporal domain. The responses of V1 cells are
integrated in the space-time domain via MT cells with larger RFs. This kind of integration
equips MT cells with contextual information for a particular speed-range.

2. Organization and geometry of MT cells: The RFs geometry of MT neurons has been investi-
gated by [24], where the authors identified two types of MT RFs profiles: classical receptive
field CRF and center-surround cells. CRF responds best to wide field motion, while center-
surround cells are sensitive to motion contrasts, which can be described by center-surround
interaction. We focus on CRF cells in our model in which weighting functions with different
sizes are utilized. These cells are organized in the spatial-temporal domain (x,y,t). We use
Gaussian fall-off functions to integrate the spatial responses of V1 cells over larger RFs (V1:
MT 1:3, 1:3.5 and 1:4). In addition, elongated weighting filters are used to integrate the
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responses of V1 cells population with respect to the temporal axis. The integration process
of V1 responses over time axis encodes the speed representation in area MT. The elongated
weighting filters are tuned to different speeds (fast, mid, and slow) by orienting them in the
spatiotemporal domain in which fast motion tuning filters are more oriented with respect to
the temporal axis. Following the study of [25], we increased the size of the RF profiles with
increasing speed selectivity. Fig 4 shows the model of MT cells. The responses of such cells
are calculated by

rMT
y;si

ðx; y; tÞ ¼
X
��

frv1y � Lsi
�C�� i

gx;y;t; ð11Þ

Lsi
¼ 1

2ps2
i

� exp � x2 þ y2

2s2
i

� �
; ð12Þ

C�� i
¼ 1

2psxst

� exp � �x2

2s2
x

þ �t 2

2s2
t

� �
; ð13Þ

where
�x

�t

 !
¼ cos��i �sin��i

sin��i cos��i

 !
� x

t

 !
, the symbol ‘�’ indicates the convolution opera-

tor, Λσi denotes the fall-off Gaussian weighting functions in which σi is the spatial extent,

C�� i

represents the elongated Gaussian functions where ��i is the orientation of the Gaussian

function (left vs. right relative to the orientation axis ϕi, −ϕi), rv1y is the response of area V1

in which θ denotes motion direction selectivity, the index si represents speed selectivity si =

{fast,mid, slow} that corresponds to the spatial extent σi and the orientation ��i.

Fig 3. speed representation in spatiotemporal (x,t) domain. A rectangular object is moving from left to
right at different speeds. In the first column, streams of ON/OFF events are generated in the spatiotemporal
domain (x,t) for different speeds (slow, mid, fast). The sequences of oriented in the space-time domain
corresponding to the speed of the motion. In the second column, sketch of the activated V1 cells in the 2D
spatiotemporal domain driven by a slow, mid and fast sweep of input stimulus. The third column shows how
cells in area MT encode the speed of the motion via integrate spots of V1 activations in spatiotemporal
domain.

doi:10.1371/journal.pone.0142488.g003
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3. Temporal integration: We incorporated a temporal trace rule suggested by [26] in our
model in order to hold an amount of past neural activations in which the weight of the pres-
ent activities is higher than the past activities. The extent of such temporal windows takes
into account the temporal impulse responses of MT cells reported in, e.g., [27]. Such a rule
has also been adopted in several studies (e.g., [28, 29]).

_rMTout
si;y

ðtÞ ¼ �drMTout
si ;y

ðtÞ þ rMTin
si ;y

ðtÞ; ð14Þ

where δ (0< δ< 1) represents the strength of the temporal integration and _r
MTout

si;y
ðtÞ

denotes the calculated average activity of MT cells, r
MTout

si;y
ðtÞ and rMTin

si;y
ðtÞ represent the

input and output activities of the MT cells.

Response Normalization
Experimental investigation have shown that the responses of cells in visual cortical areas show
significant nonlinearities depending on spatio-temporal activity distribution in the cell activa-
tion in the space-feature domain surrounding a target cell [30, 31]. Such response nonlineari-
ties have been demonstrated in the LGN, early visual cortex (area V1), and beyond. In many
studies, it has been proposed that responses are calculated via the normalization of the target
cell response based on pooling activities in a neighborhood (see [18, 32]). Model neuronal acti-
vation is described by gradual changes of the membrane potential which is here considered as a

Fig 4. Themodel of area MT. The RFs of cells in area MT are modeled using Gaussian functions with
circular and elongated shapes.

doi:10.1371/journal.pone.0142488.g004
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population state variable, as described by [33]

t
dvðtÞ
dt

¼ �A � v tð Þ þ B� C � v tð Þð Þ � netex � Dþ E � v tð Þð Þ � netin; ð15Þ

where A represents the passive leakage, B and D are parameters denoting the saturation poten-
tials (relative to C and E, respectively), and netex and netin denote generic excitatory and inhibi-
tory inputs to the target cell with the state, or membrane potential. Here, the net inputs are
defined by the responses encoding motion from the filtering stage.

A firing-rate function generates positive output activations from the current state level, or
membrane potential. Here, we employ a simple rectification to yield r(t) =max(0, v(t)). We set
the parameters in Eq (15) such that the output range for the membrane potential is bounded to
the range [0, B], setting B = 1 and D = 0 and C = E = 1.

In order to achieve balanced activities of individual cells against neighborhood activities, we
employ a normalization mechanism in which neuron activities are adjusted in the spatial and

feature domains. We solved Eq (15) at equilibrium to drive the steady-state response dvðtÞ
dt

¼ 0,

using the parametrization for constants A to E as defined above

v1 ¼ netex
Aþ netex þ netin

: ð16Þ

As outlined in Fig 1 the activities of areas V1 and MT are normalized in the third stage B3
and C3, of each individual processing cascade, respectively. The normalization of the V1
motion selective responses take the spatial and the feature domain into account. Here, the fea-
tures considered are orientations and directions. The model responses rv1 are normalized in
the spatial domain using a Gaussian weighting function defined over the spatial domain. The
motion selective responses are defined in orthogonal direction space relative to the local con-
trast orientation θ of the spatial filter kernels used. We take the direction feature space into
account as well by summing activity over all directions and then scaling this sum by N. In all,
we can denote the overall pool activation by

rv1poolðx; yÞ ¼ 1

N

X
y

frv1y � Lsnor
gx;y; ð17Þ

with θ denoting the motion directions, ‘�’ denotes the (spatial) convolution operator, N is the
number of contrast filter orientations and Λ is the spatial weighting function of the pooling
operation. The latter is a Gaussian function (as defined in Eq (12)) which is parametrized by
the parameter σnor to denote the width of the spatial extent. Finally, the resulting normalized
responses in the spatial and feature domains is calculated by

rv1nory ðx; yÞ ¼ rv1y ðx; yÞ
Aþ rv1y ðx; yÞ þ rv1poolðx; yÞ : ð18Þ

Like in Eq (16) constant parameter A refers to the passive decay of the corresponding dynamic
mechanism and avoids zero division.

Similarly, the activity of individual neurons in areas MT are balanced in the spatial domain
as well as in the feature domain. Here, features are defined in the velocity space (both directions
and speed). In the spatial domain, again, we used a fall-off function Λσnor to weight the activity
in the spatial neighborhood of the target cell according to the width of the spatial extent σnor.
While in the feature domain, the motion selective responses of MT neurons are defined in
velocity space (direction and speed). We adjust cell activations against the pool of neighboring
cells in the direction domain at each particular speed. This is accomplished by averaging
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activities of each cell over all directions {θk}k = 1� � �N of each speed si. The pooling activities of
individual neuron over spatial and feature domain are defined by

rMTpool
si

ðx; yÞ ¼ 1

N

X
y

frMT
y;si

� Lsnor
gx;y; ð19Þ

where the index si represents the speeds, i = {1 � � � 3} corresponds to (slow, mid and fast). The
resulting normalized response of neurons in area MT in the spatial and feature domain is
finally calculated by

rMTnor
y;si

ðx; yÞ ¼ rMT
y;si

ðx; yÞ
Aþ rMT

y;si
ðx; yÞ þ rMTpool

si ðx; yÞ : ð20Þ

Again constant parameter A refers to the passive decay of the corresponding dynamic
mechanism and avoids zero division.

Feedback from Area MT to V1
Along the feedforward processing sweep the feature representations in area V1 and MT,
respectively, are different. Cells in area V1 are direction-selective while cells in area MT are
velocity-selective (direction and speed). In other words, the bottom-up signals (V1!MT) pre-
dominantly drive from direction features (and do not distinguish between different speeds),
while the top-down signals (MT!V1) drive from both direction and speed features. The ques-
tion here is how can the higher area signals interact with the lower area where both are fed by
different feature domains? We propose integrating different speed responses along a particular
preferred direction. This integration transforms the feature responses of the MT cells from
direction and speed domains to the direction domain. Here, the higher area MT signals can be
re-entered at the lower area V1, in which the properties of both areas are matched. In order to
keep the smoothness of the top-down signals in the feature-space, we weighted the activities in
MT over the neighborhood directions using a Gaussian function. Area V1 cells receive feed-
back signals from the higher area MT such that the feedforward activities can be modified via
the modulatory influence of feedback signals. The top-down signals alone, however, cannot
provoke any activities when feedforward signals are absent. We utilized the feedback modula-
tory mechanism suggested by [34, 35], which in abstract terms is denoted by,

routp;feat / rFFp;feat � ð1þ l � rFBp;featÞ: ð21Þ

In this scheme FF denotes to the feedforward signal stream and FB refers to the feedback
stream. The indices p and feat represent the spatial position p = (x, y) and the considered fea-
ture, and λ denotes a constant amplification factor. Based on this, the modulated V1 responses
in our model are calculated by

rv1mod
x;y;y ¼ rV1x;y;y � ð1þ l �

X
si

rMTnor
y;si

� Lsm
Þ; ð22Þ

where Λσm is Gaussian weighting function of the smoothing operation over direction θ in
which σm denotes the width of the smoothing extent, si refers to discrete speed ranges, indexed
by i = {1 � � � 3} and λ defines the strength of the feedback projection from area MT. In the case
of a pure feedforward processing sweep, the modulator feedback signals are switched off by set-
ting λ = 0. As a consequence, the filtering response signals in model area V1 are forwarded to
the third column stage in which the responses of V1 cells are normalized in the spatial and fea-
ture domains.
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Results
To demonstrate the potential of our model, we used synthetic ground truth data along with a
set of different stimuli with translator and rotational motions. The motions of the stimuli were
recorded using the dynamic visual sensor (DVS 128 sensor) that introduced by [20]. In our
model, the size of the spatial filters in area V1 has been defined as a function of the spatial fre-
quency [36] and [37] such that ss ¼ 0:5622

fs
. This parametrization is taken in accordance to sug-

gestion in [38]. We have used a spatial frequency of fs = 0.25 in which the size of the spatial
kernel in area V1 is (15 × 15). The estimated motion of our result is based on 8 directions θ =
{0°,45°,90°,135°,180°,225°,270°,315°}. In the filtering stage of area MT the sizes of the fall-off
kernels in the spatial (x,y) domain are (45 × 45), (49 × 49) and (53 × 53) pixels for the slow,
mid and fast motion, respectively. These sizes keep the integration process in area MT with
larger RFs (V1:MT 1:3, 1:3.5 and 1:4). The sizes of the elongated Gaussian filters in spatiotem-
poral (x,t) domain are (21 × 57), (21 × 63) and (21 × 69) which are oriented by (240°(left), 300°
(right)), (280°(left), 340°(right)) and (175°(left), 355°(right)) for slow, mid and fast motion
respectively. In order to hold an amount of past neural activation, δ has been set to 0.5. In the
normalization stage of areas V1 and MT, we set the standard deviation σnor of the spatial
weighing function to 15 which exceeds the size of the RFs of both areas. Here, the passive decay
parameter is set to a small value (A = 0.01) to avoid zero division. In the feedback processing
stream we set λ to 0.8 and σm to 2. The following subsections introduce our experimental
results to probe the speed sensitivity in area MT. In addition, motion representation in areas
V1 and MT via feedforward processing stream will be demonstrated along with the motion
representation of the modulated V1 via feedback processing stream.

Speed selectivity in areas V1 and MT
To verify the speed sensitivity of the MT cells, a translating stimulus with different speeds was
used. The stimulus movements were recorded using DVS 128 sensor that was mounted on a
tripod and placed 25 cm away from the center of the stimulus. We used a dark bar stimulus
(5 × 95mm) moving from left to right on a light background. The bar was moved with different
speeds (slow 7 cm/sec, medium 17 cm/sec and fast 23 cm/sec) using a linear actuator. Fig 5
shows the movement of the bar stimulus to the right. The events configuration that are gener-
ated by the DVS sensor is shown in Fig 5(b) in which ON-events are generated at the leading
contrast edge of the bar and OFF-events at the tail edge. Fig 5(c1)–5(c3) show a translating one-
dimensional signal of the bar movement in the spatiotemporal (x,t) domain in response to
slow, mid and fast bar motion, respectively. The bar translation traces out a diagonal path in
the spatiotemporal (x,t) domain in which the slope of the diagonal path reflects the speed of
the bar movement. Cells in area V1 are driven by the input stimulus and respond in a spatio-
temporal fashion. Fig 6 shows the distribution of V1 responses using box plot in which mid
speed of bar movement encodes higher responses. This indicates the response of filtering stage
in model area V1 is sensible to a limited speed inside a spatiotemporal frequency bandwidth
which is defined by the filter weighting kernel. V1 responses are integrated in (x,y,t) space via
area MT in which sizes of the RFs, or kernels, in area MT are larger than in area V1 (V1:MT
1:3, 1:3.5 and 1:4). Here, cells in area MT are modeled using elongated filters which are tuned
to different speeds (slow, medium and fast motion) by oriented these filters with 300°, 340° and
355°, respectively. Hence, higher responses are generated when the RFs of MT cells match the
diagonal path of motion configurations. Fig 7 demonstrates how MT cells integrate V1
responses from spatial locations along the diagonally arranged event configurations (generated
by slow, mid and fast speeds of motion). The sketch outlines the initial events and the corre-
sponding localized V1 cell responses for rightward motions occurring with different speeds.
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Fig 5. Bar movement with three different speeds. The bar was moved to the right with three speeds (slow 7 cm/sec, medium 17 cm/sec and fast 23 cm/
sec). (a) Shows the input stimulus. (b) The representation of the ON/OFF spike responses that are generated via the DVS 128 sensor. (c1) The ON/OFF
events in the spatial-temporal domain of the bar movement to the rightward with slow motion. (c2) and (c3) show the spatial-temporal domain of the bar
movement to the rightward with mid and fast motions, respectively. The responses of slow, mid and fast selective MT cells are depicted by solid-green, solid-
blue and solid-red lines, respectively. The slow, mid and fast selective cells are depicted over V1 responses as dashed-green, dashed-blue and dashed-red,
respectively.

doi:10.1371/journal.pone.0142488.g005
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The result reveals that cells in area MT that are oriented by 300° are highly responsive to the
slow motion whereas the responses of the other cells are greatly reduced with the time, see
third column of Fig 5(c1)–5(c3). This is due to the fact that the two cells with higher speed selec-
tivity (orientation 340° and 355°) are activated at the beginning and then these activations
diminish over time since the RFs do not match the locations of the diagonal path of motion
configurations with the cells preferred tuning. Similarly, filters that are oriented by 340° and
355° are highly responsive to the medium and fast motions respectively. The results confirm
that the proposed cells respond correctly to the used speeds (slow, mid and fast).

Motion representation in feedforward and feedback sweeps
A set of different stimuli were recorded using the DVS 128 sensor to evaluate motion represen-
tations in the feedforward and feedback sweeps. The DVS sensor is mounted on a tripod and
placed 23 cm away from the center of the stimuli. These stimuli were moved via translatory
and rotatory motions in which the movements of the stimuli are highlighted in the top-left of
the stimuli images. To produce these motions, we used linear and rotational actuators in which
the speed of the linear actuator is 20 cm/sec while the speed of the rotational actuator is 5.23
rad/sec. In order to keep a single motion hypothesis, the estimated results of the optic flow in
area V1 are generated based on a weighted sum of the fundamental directions θ, which gener-

ates a confidence for the motion direction ðuV1
e ðpÞ vV1e ðpÞÞT ¼Py r

V1nor
p;y � ðcos y ; � sin yÞT .

The index p represents the spatial position p = (x, y). Similarly, the estimated results of the
optic flow in area MT are generated based on a weighted sum of the fundamental directions θ

and si which can be described by ðuMT
e ðpÞ vMT

e ðpÞÞT ¼Py

P
si
rMTnor
p;y;si

� ðcos y ; � sin yÞT . In
order to measure the accuracy of our approach, we calculated the angular error

Fig 6. The distribution of V1 responses. The first box shows the distribution of the responses in area V1
which are driven by slow bar motion (slow 7 cm/sec). The second and third boxes show the output distribution
of area V1 cells (filters) in response to mid and fast bar motion (17 cm/sec and 23 cm/sec), respectively.

doi:10.1371/journal.pone.0142488.g006
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FV1;MT ; ðpÞ ¼ cos�1ðvV1;MT
e ðpÞ � vgðpÞÞ=ðjvV1;MT

e ðpÞjjvgðpÞjÞ, where vV1;MT
e ðpÞT ¼

ðuV1;MT
e ðpÞ; vV1;MT

e ðpÞÞ and vg(p)T = (ug(p), vg(p)) represent the estimated motion of the visual
areas (V1, MT) and ground truth flow vectors, respectively. The error values in the range of
[0°, 180°] are displayed as a histogram.

Feedforward motion representation. In the Feedforward sweep, motion is estimated via
areas V1 and MT in which the normal flow that are derived from the spatio-temporal filter is
weighted and integrated using the model filter mechanisms suggested for area MT. In the
translatory motion, Fig 8, we used two stimuli, namely tiger and ball. The first stimulus, tiger,
is characterized with a texture that comprises different striped patterns while the second stimu-
lus, the ball, contains different slanted bars that are connected to form the ball interior. The
nature of these stimuli makes the estimation complex and, then, challenging in translatory
motion. The preferred direction of areas V1 and MT are depicted in polar diagrams. In tiger
stimulus, the polar diagram shows that the V1 population is selective to a broad range of direc-
tions around the correct direction (0°), while this region is shrunk close to (0°) in area MT. In

Fig 7. MT cell selectivity in the spatiotemporal (x, t) domain. Slow, mid and fast motion selective cells for
rightward motion are depicted in green, blue and red, respectively. The diagonal lines of green, blue and red
dots represent idealized event responses for slow, mid and fast input motions (with initial inputs generated
from the DVS sensor). In accordance to the representation of spatio-temporal inputs increases in speed
coincides with an increase in angle relative to the time axis. Model MT cells are suggested to have larger
receptive field size in space in comparison to the spatio-temporally selective cells in V1. They also integrate
input responses from V1 cells over a temporal period. MT cells with different speed selectivities preferentially
integrate V1 responses at the proper spatial offset positions (as depicted in the elliptic outlines). The same
representation occurs for leftward motions.

doi:10.1371/journal.pone.0142488.g007

Neural Mechanisms of Cortical Motion Computation

PLOS ONE | DOI:10.1371/journal.pone.0142488 November 10, 2015 15 / 33



Neural Mechanisms of Cortical Motion Computation

PLOS ONE | DOI:10.1371/journal.pone.0142488 November 10, 2015 16 / 33



the ball stimulus, motion representation in model area V1 suffers from aperture problem.
Here, the motion is estimated orthogonal to the bar contrast (along bar contour) while the real
motion is estimated at the corner regions. Motion ambiguity (aperture problem) is reduced in
model area MT due to integrate the unambiguous motion (real motion) with larger RFs. The
polar diagram of the direction selectivity shows that the responses of area MT are more tuned
towards (0°) than area V1. According to the error-histograms of both stimuli, the error values
are reduced and concentrated at range of [0°, 15°) which indicates that motion is estimated
more accurately in area MT compared with area V1. These results are consistent with physio-
logical findings (see e.g., [39]) that showed that cells in area MT are highly directionally-selec-
tive compared to cells in area V1.

Neurons in the primary visual cortex area V1 that are selective to spatio-temporal stimulus
features have small RFs, or filter sizes. Consequently, they can only detect local motion compo-
nents that occur within their RFs. That means along elongated contrasts only ambiguous
motion information can be detected locally. It is the normal flow component that can be mea-
sured along the local contrast gradient of the luminance function (aperture problem). To probe
the performance of our model to reduce motion ambiguity in area V1, we recorded a stimulus
namely temp�1. This stimulus contains a set of black bars that are slanted with 45° and moved
in a direction that differs from the normal flow as highlighted in the top-left of the stimulus.
The drifting bars is seen through a circular aperture as shown in Fig 9. The result reveals that
the V1 population responds in a direction (135°) which referred to the motion was estimated
as orthogonal to the bar contrast. This is because the motion was estimated in a local surround,
nevertheless actual motions were estimated at the bar ends. In other words, the normal flow
can be computed along the local one-dimensional contour while at the ends of the bars the
local two-dimensional structure enables to compute the actual motion direction. In area MT,
cells integrate initial responses of model area V1 in which the sizes of the RFs are larger (V1:
MT 1:3, 1:3.5 and 1:4). Such cells operate at a much larger spatial context to properly integrate
localized responses. As a consequence, localized feature responses at line ends lead to stronger
responses in the integration process. In all, this leads to that the preferred direction of area MT
is more tuned toward the correct direction (90°). The error-histogram in Fig 9 shows that
motion ambiguity is reduced in area MT in which the fourth bin [45,60) of the error values is
decreased.

Object terminators, e.g. end-bar or corner, contain unambiguous motion (real motion
direction), hence, the motion direction of an object can be enhanced with increasing the num-
ber of object terminators. In our test scenarios this has been investigated by recording two
other stimuli, namely temp�2 and temp�3 as shown in Figs 10 and 11 respectively. In the
temp�2 stimulus, the slanted bares (45°) are moving through rectangular aperture rather than
circular aperture as shown in Fig 10. Here, the bars-ends are distributed along the vertical
edges of the rectangular aperture allowing more localized real motion to be integrated in area
MT. The results reveal that in area V1 the motion was estimated with preferred direction of

Fig 8. Motion estimation of tiger and ball stimuli. The stimuli are moved in rightward direction. The first column of each stimulus contains the input image,
accumulated events eon and eoff, and a sketch of the ground truth optical flow field. The first rows of the second, third and fourth columns represent the
estimated motion in areas V1, MT and the modulated V1, respectively. The direction selectivity for these areas are depicted in the polar plot where blue,
green and red lines represent the responses of V1, MT and V1 modulated by MT, respectively. The histogram shows the angular error between the estimated
motion and the ground truth of rightward motion direction. The abscissa of the histogram represents the binning in the range of the angular errorΦ which are
combined into one bar [θ − 7.5°, θ + 7.5°), and the ordinate represents the number of events. The ball image is adopted from johncarlosbaez.wordpress.com.

doi:10.1371/journal.pone.0142488.g008
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(135°) (i.e., the motion was estimated as orthogonal to the bar contrast (normal flow)) while
the preferred direction of the cells in area MT was shifted to (112°). According to our results,
the responses of area MT which are driven from the rectangular aperture are more tuned
toward the real motion comparing with the responses of MT cells in circular aperture. This is
due to the rectangular aperture contains larger number of terminators (bar ends) that align ver-
tically on the longer edges, which in turn leads to integrate more unambiguous information
through large RFs of MT cells. In contrast, the integration process for unambiguous motion is
decreased in the circular aperture due to the terminators are distributed along circular edge.
The results confirm that the shape of the aperture and the number of terminators play a key
rule in determining the direction of object movement. These findings are consistent with the

Fig 9. Motion estimation of bars movement through circular aperture, temp�1. The bars are oriented by (45°) and moved in upward direction through
circular aperture. The V1 cell and one of the MT cells (V1:MT 1:3) are depicted over the accumulated events as blue circle and green circle, respectively.
Motion representation in areas V1, MT and the modulated V1 for each stimulus are shown in the second, third and fourth column respectively. In this stimuli,
the real motion direction is estimated at bar endings while the normal flow is estimated along bar contour. The polar plot shows the direction selectivity of V1,
MT and the modulated V1 responses which are depicted by blue, green and red lines, respectively. The histogram shows the angular error between the
estimated motion and the ground truth of upward motion direction. The abscissa of the histogram represents the binning in the range of the angular errorΦ
which are combined into one bar [θ − 7.5°, θ + 7.5°), and the ordinate represents the number of events.

doi:10.1371/journal.pone.0142488.g009
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previous studies (see e.g., [40, 41]) that showed that the direction of the perceived motion is
biased towards the higher number of the terminators.

Fig 11 shows an example of 2D structure of corner terminators, temp�3. This stimulus con-
tains two superimposed gratings where each grating formed by parallel lines. The stimulus was
moved in upward direction which is different from the normal flow of both gratings. Here, the
perceived motion is not ambiguous anymore in which the responses of both areas V1 and MT
are tuned towards the real motion direction (90°). However, in area V1 ambiguous motions are
estimated along bars contours (45°) and (135°) while this ambiguity is reduced in area MT.
This is due to the existence of the 2D structure of the corners in which real motion can be esti-
mated. The larger RFs of the cells in area MT allow to integrate more real motion direction that
are generated at the corners regions. As a consequence, the direction selectivity of MT cells

Fig 10. Motion estimation of bars movement through rectangular aperture, temp�2. The bars are oriented by (45°) and moved in upward direction
through rectangular aperture with aspect ratio 5:2. The V1 cell and one of the MT cells (V1:MT 1:3) are depicted over the accumulated events as blue circle
and green circle, respectively. Motion representation in areas V1, MT and the modulated V1 for each stimulus are shown in the second, third and fourth
column respectively. Here, the real motion direction is estimated at bar endings which are distributed along the vertical edges of the rectangular aperture
while the normal flow is estimated along bar contour. The polar plot shows the direction selectivity of V1, MT and the modulated V1 responses which are
depicted by blue, green and red lines, respectively. The histogram shows the angular error between the estimated motion and the ground truth of upward
motion direction. The abscissa of the histogram represents the binning in the range of the angular errorΦ which are combined into one bar [θ − 7.5°, θ + 7.5°),
and the ordinate represents the number of events.

doi:10.1371/journal.pone.0142488.g010
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shrinks toward the real movement as shown in the polar diagram of the direction selectivity.
According to the angular error histograms, values of the angular errors between the synthetic
ground truth of the object movement and the estimated motion are decreased in area MT com-
paring with area V1.

In the case of rotational motion, we used smooth-cross and plaid stimuli, Fig 12. These sti-
muli were rotated counter clockwise, as highlighted in the top-left of the stimulus images. The
smooth-cross stimulus contains four blades with smoothed gray-level interior. These blades

Fig 11. Motion estimation of 2D structure of corner terminators, temp�2. Two superimposed gratings are moved upward direction through circular
aperture. The image input is shown in the first column of the first row. V1 cell and one of the MT cells (V1:MT 1:3) are depicted over the accumulated events
as blue circle and green circle, respectively. The upper row shows the estimated motion in areas V1, MT and the modulated V1. The real motion is estimated
at the 2D features (corner regions) while the normal flow is estimated along bars contours. The small polar plots show the direction selectivity of selective
cells that are located on the bars contours and corner while the whole direction selectivity of the stimulus are depicted in the large polar plot. The histogram
shows the angular error between the estimated motion and upward motion ground truth, where the abscissa represents the binning in the range of the
angular errorΦ which are combined into one bar [θ − 7.5°, θ + 7.5°), and the ordinate represents the number of events.

doi:10.1371/journal.pone.0142488.g011
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produce changes in intensity during the rotational motion, rendering the DVS sensor to gener-
ate ON/OFF events on the edges as well as the interior of the blades. The plaid stimulus is
shaped as two sets of black perpendicular bars on white background. The generated motion
components represent a challenge in terms of calculating motion direction. This is due to each
set of bars generates different stream of rotational component that suffers locally from aperture
problem. The input stimulus and the respective ON/OFF events are presented in the first and
second rows of the first column respectively. In order to calculate the angular error for the feed-
forward estimated motion, we used synthetic rotational ground truth that was built based on
continuous flow motion as shown in the third row of the first column. The results reveal that
motion prediction via V1 area is improved in area MT in which the magnitude of the error-
bins (F� 45°) and (F� 30°) are decreased in the smooth-cross and plaid stimuli, respectively.
In the rotational sweep, the high temporal of input events delivered by the DVS sensor leads to
motion components that can be considered as to mainly represent motion components tangen-
tial to a rotational sweep. However, Cells in area V1 can only measure the normal flow motion
components (movement orthogonal to the bar contrast). Cells in area MT with larger receptive
fields integrate these components resulting motion representation that are tangential to rota-
tional sweep. The direction selectivity of the model areas V1 and MT are presented in the polar
diagrams as shown in Fig 12. The polar diagram shows the direction selectivity in area MT is
highly tuned toward the correct direction. According to the error histogram, the error values
are reduced in area MT and accumulated in the error-bins of [0, 30). The reason for the high
error value in rotational motion is that the rotational ground truth was built based on continu-
ous flow motion, while our model estimates eight directions. Thus the error value can be
decreased by increasing the number of estimated directions in our model.

Since the rotational motion contains different speeds as a function of the radius from the
center of the motion, we utilized a rotational bar stimulus to demonstrate the speed selectivity
of the MT cells, see Fig 13. Here, three regions are chosen at the bar contour in which the first
region is located closed to the center (a) while the rest are located away from the center (b and
c). The speeds of these points are calculated based on the length of the flow vectorsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðueðpÞÞ2 þ ðveðpÞÞ2

q
in which p represents the spatial position p = (x, y). The results reveal

that the slow sensitive MT cell is more selective to the speed of region (a) while mid and fast
sensitive cells are selective to the speed at regions (b) and (c), respectively. These results con-
firm that cells in area MT can differentiate different speeds of the rotational motion.

Feedback motion representation. In the feedback sweep, cells in area V1 receive feedback
signals from the higher area MT such that the feedforward activities can be modified via the
modulatory influence of feedback signals. Here, the feedback signals alone cannot excite any
activation when feedforward signals are absent. In order to evaluate the impact of the MT feed-
back signals to enhance the initial estimation of area V1, we used the former stimuli that are
used in feedforward motion representation in which the results of the modulated V1 are illus-
trated after 12 feedback iterations. In case of translatory motion, Fig 8, the motion estimation

Fig 12. Motion estimation for smooth-cross and plaid stimuli. The stimuli are rotated in a counterclockwise direction. The first column of each stimulus
contains the input image, accumulated events eon and eoff, and the ground truth optical flow field. The first rows of the second, third and fourth columns
represent the estimated motion in areas V1, MT and the modulated V1, respectively. The polar plot shows the direction selectivity of V1, MT and the
modulated V1 of the bounded region (red square). The overall errors between the estimated motion and their respective ground truth are depicted in the
histograms where the abscissa represents the binning in the range of the angular errorΦ which are combined into one bar [θ − 7.5°, θ + 7.5°), and the
ordinate represents the number of events.

doi:10.1371/journal.pone.0142488.g012
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of the modulated V1 is shown in the fourth column. The modulated motion of area V1 in tiger
stimulus shows that the re-entered signals form area MT to V1 cells enhance the initial estima-
tion of area V1 in which the magnitude of error-bins [30°, 60°) is decreased along with increas-
ing the magnitude of the smaller error-bins as shown in the error-histogram. In the ball
stimulus, MT projection improves the initial prediction of area V1 cells in which motion ambi-
guity is reduced and amended to the right direction. In addition, the magnitude of the angular
error-bins [30°, 60°) is decreased in the modulated responses while the magnitude of the first
error-bin is increased. This confirm that the top-down feedback projection can enhance the
initial motion representation of area V1 in which uncertain estimated flow is corrected.

To probe the impact of the MT feedback to reduce the ambiguity (aperture problem) of the
initial estimation of area V1, we used the previous stimuli temp�1, temp�2 and temp�3. In the
circular and rectangular apertures, Figs 9 and 10, the motion in area V1 is initially estimated
orthogonal to the bar contrast (135°). This ambiguity is reduced in area MT due to cells in this
area integrate the V1 activations with larger RFs. As a consequence, the feedback signal which
contains disambiguate contextual information modulates the local initial responses of V1 cells.
The error histograms demonstrate that the motion ambiguity in the modulated responses of
area V1 is enhanced in which the magnitude of the error-bins in the range of [45,60) is
decreased. On the other hand, the existence of the 2D structure of the corners in the temp�3,
Fig 11, reduces the ambiguity of the perceived motion in which the preferred direction of cells

Fig 13. Speed selectivity of MT cells. A black bar (5 × 80 mm) is rotated counterclockwise on a white background. The first row shows the input stimulus
and the ON/OFF events. The second row shows the responses of the slow, mid and fast selective cells respectively. Here, the average speeds of thee
regions (a, b and c) were calculated. In the slow selective cell, the average speed at region (a) is 0.7 while the average speeds at (b) and (c) are 0.6 and 0.4,
respectively. In the mid selective cell, the average speed at region (a) is 0.6 while the average speeds at (b) and (c) are 0.7 and 0.5, respectively. In the slow
selective cells, the average speed at region (a) is 0.3 while the average speeds at (b) and (c) are 0.5 and 0.6, respectively.

doi:10.1371/journal.pone.0142488.g013
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in area MT is more tuned toward the real motion direction. Thus, the top-down signal from
area MT enhances the initial local estimation of area V1 where the direction selectivity shrink
toward the actual motion (90°). The error-histograms show an increasing in unambiguous
motion estimation where the error of [45°, 60°) is reduced and cumulated within a small range
of [0°, 15°).

In the rotational motion, Fig 12, the results of the smooth-cross and plaid stimuli show that
the feedforward response from the V1 population of cells is improved by feedback modulator
of area MT. The direction selectivity of the modulated V1 responses is more tuned toward the
correct direction comparing with the initial estimation of area V1. The error-histogram dem-
onstrates that the error of the modulated V1 is reduced comparing with synthetic rotational
ground truth where the magnitude of the error-bins [0,30) gains more increment. The results
of our model are consistent with the findings of the literature (see e.g., [34, 42]) in which the
top-down modulatory signals emphasize the activities of V1 cells, which in turn, enhance the
uncertain flow estimation.

Discussion

Summary and main contributions
We have introduced a new model for motion estimation in neural architecture utilizing the pri-
mary stages of the dorsal pathway in the primate visual cortex. We take into account event-
based input that has been generated by a DVS sensor (see [43] for more details of DVS sen-
sors). The model is inspired by the hierarchical structure of the visual system in which two cor-
tical areas for motion perception were considered, namely the response properties of V1 and
MT. These areas interact via feedforward and feedback connections in which each area builds
up different feature selectivities. Areas V1 and MT were modeled using properties of direction-
selective and velocity-selective cells, respectively. Here, the spatio-temporal filters are modeled
to be compatible with the AER principle. The filters are inspired by the work of [16] in which
the authors proposed biphasic temporal filters that can be decomposed into a convolution of a
first order derivative kernel with a temporal smoothing filter. Given that the response of the
DVS sensor is based on changes in the luminance of the scene, it generates an output response
which related to a first order temporal derivative of the luminance input signal.

This work contributes to the state of the art in four main ways. First, by adapting the spatio-
temporal filters of the type suggested by findings of [16] to be consistent with the address-
events representation. In the model of Adelson-Bergen, the authors suggested to utilize tempo-
ral gamma functions of different duration in order to accomplish temporal smoothing and dif-
ferentiation, leading to a temporally biphasic response shape. In order to transcribe this
functionality to the spike-trains output of the DVS sensor, we make use of the following
approximation: The biphasic Adelson-Bergen temporal filters can be decomposed into a con-
volution of numerical difference kernel (to approximate a first-order derivative operation) with
a temporal smoothing filter. The event-based sensor already operates by generating discrete
events based on changes, i.e. temporal derivatives, in the input signal. For that reason, we
employ temporal smoothing filters which are calculated from the integral of Adelson-Bergen
temporal filters (see Eq (3)) and convolve them with the input stream of events to obtain scaled
versions of temporally smoothed derivatives of the input luminance function. To simplify the
integral operation, we suggest to reconstruct Adelson-Bergen gamma functions by combining
two temporally offset Gaussian functions. Here, the integration results of the Gaussian combi-
nations generate new temporal filters that consistent with the spike-generation of the DVS sen-
sor. Second, by proposing a new mechanism to simulate the functionality of the cortical area
MT. The suggested neural mechanisms of area MT is motivated by principle findings of
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neuroscientistsâ?? studies. The localized measures from area V1 are integrated in area MT [44]
through larger RFs which are roughly ten times the RFs of V1 cells [45, 46]. In our model, we
integrated the responses of the spatio-temporal filters through RFs, or filters, which are larger
in their size by up to an order of magnitude. However, the limited spatial resolution of the DVS
sensor (128 × 128) [20] handicaps us from increasing the size of the MT filters to ten time the
size of V1 filters. For that reason, we set the filters sizes with range of (V1:MT 1:�3). This prob-
lem is however not a conceptual one of our approach and will most likely be solved with future
versions of the DVS sensor. The geometry of the RFs in area MT has been investigated by [24]
in which two types of RFs profiles are defined. The first type is classical receptive field (CRF)
which responds best to wide field motion. While the second type is center-surround cell which
is sensitive to motion contrast. In our modeling, we focused on CRF cells in which Gaussian
weighting function has been used to describe the RFs profiles. This function has been used in
many studies to describe the neural RF model (see e.g., [38, 42, 47]). The neural functionality
of MT cells is modeled to be selective to different directions and speeds which is consistent
with the physiological findings [48–50]. Here, we integrate the early motion responses of area
V1 by utilizing circular RFs weighting functions with Gaussian profile. Such integration oper-
ates at a much larger spatial context to properly integrate localized responses of area V1. As a
consequence, the uncertain flow estimation will be enhanced in area MT. In order to equip MT
cells with different speed selectivity, we suggest to incorporate elongated RFs of Gaussian
weighting function in our model. These RFs are oriented in the spatial-temporal domain
which, in turn, enables the integration strategy to increase the speed selectivity of MT cells to
different speeds (slow, mid and fast motions). The orientation in space-time domain with dif-
ferent angles encodes the speed of the input stimulation in which high oriented angles repre-
sent high-speed detectors, while small oriented angles represent slow-speed detectors. Third,
by matching the properties of the feature selectivity in areas V1 and MT for feedback process-
ing. Here, we integrated the responses over different speeds along a particular preferred direc-
tion. Such matching allows top-down feedback signals from area MT to to be compatible with
the feature property of area V1. Fourth, by incorporating the response normalization in our
model to achieve balance activities of individual neurons in areas V1 and MT. The interaction
between the normalization of responses and the enhancement activities via feedback projection
establishes the dynamics of visual cortical processing. Following the suggestion of [34] and the-
oretical studies (e.g., [18]) we carried out the normalization process using model neuronal acti-
vation which is described by [33] as gradual changes of the membrane potential. Activity
normalization of model area V1 and MT is computed by realizing a slightly simplified version
of the scheme described in [18] and solve the normalization interaction at equilibrium, namely

evaluating the state response for dvðtÞ
dt

¼ 0. Here, the normalization process is carried out in spa-

tial domain by calculating the pool of activities of individual neuron over a circular spatial
neighborhood. In addition, we normalize neuron activities in the feature domain. Since differ-
ent properties are derived from both visual areas, V1 (directions and spatio-temporal selectiv-
ity) and MT (speed and directions), we normalized responses of area V1 by averaging activities
of each cell over all directions. In area MT, on the other hand, we normalized the responses by
averaging activities for individual directions by integrating the activities of cells over different
speeds.

As pointed out below (Section Feedforward and feedback interaction) we incorporate mech-
anisms of modulating feedback which enhances driving feedforward activations. In a nutshell,
the architecture enhances signals which match along the feedforward and the feedback path-
ways while those feedforward signals that do not cohere with top-down predictions are
reduced. In order to augment the modulatory feedback mechanisms with a mechanism to
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reduce and even extinguish activations, a context sensitive down-modulating mechanism
needs to be employed. The proposed normalization stage that operates upon a pool of cells in
the surrounding neighborhood of spatial and feature selectivity serves a mechanism to reduce
the overall activation. The normalization tends to conserve the overall signal energy in the pool
of cells which competitively interact. The prior enhancement of selected cells in turn reduces
the activity of those cells that have not received any feedback.

Feedforward and feedback interaction
The feedforward and feedback hierarchical model in this work considers two main areas of the
visual system, V1 and MT. The structural model of each of such visual areas is defined by three
stages: (i) a stage of initial input filtering, (ii) a stage of activity modulation of the filtering
responses via top-down feedback signals, and (iii) a stage of activity normalization in the spa-
tial and feature domains to achieve balanced activations of a target cell against a pool of neigh-
boring cells. The structural model proposed here can be transcribed to the cortical areas
architecture that are suggested in [51]. Each of such areas has a specific filtering stage model to
generate the driving feedforward signal with particular features. Feedforward signals propa-
gated from area V1 drives the direction feature while the feedforward signal of area MT drives
the velocity feature (direction and speed). This framework of feature selectivity of areas V1 and
MT is consistent with experimental findings [6, 50, 52]. The activations of each area are nor-
malized using a divisive mechanism suggested in [53–55]. Here, the same principle is utilized
in which the normalization operation uses contextual information from a local neighborhood
that is defined in space as well as feature domain.

Higher-level areas in the visual cortex send feedback signals that are re-entered to the earlier
areas in the visual hierarchy [56, 57]. Different hypotheses for cortical feedback have been dis-
cussed in the literature in which two major hypotheses have received different support from
the experimental evidence [58]. These hypotheses are defined as modulatory (biased competi-
tion) and predictive coding feedback. In a nutshell, modulatory feedback suggests that signals
in the feedforward stream are enhanced by feedback projection. This feedback projection
driven gain control mechanism to bias subsequent competition between neurons which leads
to enhance responses patterns [59–62]. While predictive coding aims to reduce the residual
error between the feedforward signals and feedback projection in order to approach sensory
prediction that generated via higher level of processing [63–65]. Further evidence shows that
feedback processing tends to act as a modulator that amplifies the neuronal spiking signals at
the level of cortical pyramidal cells [10]. In our model, we adopted the concept of modulatory
feedback (biased competition). Here, the responses from lower level cortical area V1 are modu-
lated via feedback projection of the higher area MT. Feedback modulation process is thereby
carried out in such a way that feedback signals could not provoke any activity in the absence of
the feedforward signals.

Although, the neuroscientists’ studies confirm the impact of feedback processing stream
among cortical visual areas, the precise function of feedback role is still not fully uncovered. A
fundamental question here is how MT cell responses project activations along their feedback
stream to area V1, since cells in area V1 are selective for direction while cells in area MT are
selective for both speed and direction? This question directly addresses the suggestion made by
[57] that maps in different (cortical) area re-enter their signal. We proposed integrating the
responses over different speeds along a particular preferred direction. As far as we know, this is
the first event-based mechanism to address feedforward and feedback interactions between
two areas that have different feature selectivity. In addition, response normalization for areas
V1 and MT was embedded to obtain balanced activities in both areas. Here, we implemented
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the normalization at equilibrium state. The activities of the cells were normalized in the spatial
domain through a distance weighting dependency filter (fall-off function), where the size of the
filter is larger than the size of the cell RFs. In addition, we regulated the responses over feature
space by calculating the average activity over all directions.

Relation to previous models of motion estimation
Motion estimation is an interesting topic that is investigated intensively using conventional
frame-based cameras (see, e.g., [16, 66–70]). Relatively few studies have been reported how to
transcribe the functionality of such classical approaches to be consistent with neuromorphic
vision sensors (see [20] for more details about neuromorphic vision sensors). In [71] the
authors used a least squares error minimization technique introduced in [66] to estimate the
motion using an DVS sensor. Due to DVS sensor generates a stream of events (ON or OFF)
and does not provide gray levels, thus, the authors have been suggested to use pixel activities by
integrating events within a short temporal window. Benosman and co-authors showed benefi-
cial results for motion estimation, however, their numerical approximation of the local gradi-
ents of the luminance function from event-sequences has its limitations and may lead to
inconclusive results (see [23, 47]).

In [72], the authors introduced an algorithm for motion estimation using a DVS sensor in
which spatiotemporal filters of the type suggested by findings of [73] were utilized to estimate a
local motion for each generating event in the scene. The authors implemented the spatiotem-
poral filters using a spatial buffer in which the timestamp of each event is stored. Recently,
Tschechne and co-authors extend their work in [47] by introducing a framework of a hierar-
chical architecture of multi-stage motion detection and integration in which V1 responses are
integrated in area MT over a larger neighborhood using circular RFs. Here, the authors have
focused on motion direction selectivity in area MT. The implications of event-based sensing in
the context of visual motion have been investigated by [23]. Brosch and co-authors discussed
different principal approaches for optical flow detection. They showed that gradient-based
methods for local motion detection in principle suffer from the sparse encoding in address-
event representations (AER) because they are rare with respect to a local weighted integration
during filtering. The authors further investigated approaches to exploit the local plane-like
structure of the event cloud and how local filtering can be properly defined.

The weighted intersection mechanism (WIM) sensor has been proposed by [74] and devel-
oped in [3]. Here, a motion sensor built up in stages from two spatiotemporal filters with prop-
erties based on V1 neurons. The sensor mechanism incorporates two V1-like units based on
spatio-temporal energy filters. The first unit has sustained low-pass temporal frequency tuning
(referred to non-directional type), whereas the second unit has transient band-pass temporal
tuning (referred to directional type). This mechanism enables two filters with broad temporal
tuning (one low-pass and the other band-pass) to be converted into a filter with tight temporal
frequency tuning and an orientation that maps onto the oriented spectra generated by moving
edges. Perrone and co-authors showed that the speed tuning property of such a WIM filter is
comparable to that found in many MT neurons.

Feedback processing tends to act as a modulator input from higher areas that mediate top-
down contextual effects [8]. Such processing has been demonstrated to enhance the gain of
neural representations during different processing phase in several tasks such as texture segre-
gation (figure-ground segregation) [75] as well as increasing the visual awareness [76]. The
feedback modulation hypothesis, No-Strong-Loops, implements a distinct driving and modu-
lating inputs principle (see [77]). The driving input can strongly activate the neurons that are
concerned with sensory input processing, or filtering. The modulatory inputs, on the other
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hand, cannot generate any activity by themselves but can modify the driving input of a target
neuron utilizing contextual information provided by higher-level representation. The modula-
tory feedback is considered as a common principle that has been observed in many studies. In
[34, 42] a model of motion processing in areas V1 and MT has been proposed in which driving
feedforward and modulating feedback signals interaction are considered for the purpose of
motion detection and integration. In the model, the localized motion response in area V1 was
integrated in area MT via feedforward processing stream while in feedback processing the ini-
tial estimation of area V1 was modified via feedback projection from area MT. The authors
showed that top-down modulatory signals emphasize the activities of V1 cells, which in turn,
enhance the uncertain flow estimation and improve the visual motion segregation. In [78], the
authors presented a hierarchical architecture of cortical feedforward and feedback computation
where they proposed how a top-down feedback-modulatory learning mechanism can increase
the gain of the feedforward driving inputs. This results in network feature representations that
automatically adjust the connection weights utilizing unsupervised learning. As a result the
top-down predictions are improved for the input pattern.

The motion boundary contour system (or Motion BCS) model have been introduced in [79]
and [80]. The authors suggested a neural model for the purpose of motion detection and inte-
gration. The input of the model taken to be the outputs of FACADE mechanisms (Form And
Color and DEpth processing) which is firstly described by [81]. This model has been extended
by [82] where several processing stages with a feedback interaction between MT and MST
stages are presented. Grossberg and co-authors showed how the aperture problem can be
solved based on 2D feature signals. This has been accomplished by computed unambiguous
motion from feature tracking points which are amplified before they propagate across position
and are integrated with ambiguous motion signals within bar interiors. Grossberg and co-
authors demonstrated how the feedback signals from model MST to MT cells which encode
the winning direction boost directionally consistent cell activities and suppress inconsistent
activities over the spatial region to which they project. A model of recurrent motion processing
between areas V1 and MT has been suggested by [42], where the authors suggested a model of
V1-MT feedforward and feedback processing in which the model of each area consists of three
steps, namely feedback modulation, feedforward integration, and lateral inhibition. The initial
motion detectors in area V1 consists of a set modified elaborated Reichardt detector. In feed-
forward processing the localized motion representation in area V1 were integrated via model
area MT using larger receptive fields (V1:MT, 1:5). In the feedback processing the initial esti-
mation of area V1 were modified via the feedback projection from area MT. The authors
showed how ambiguities of detected visual motion can be solved by combining mechanisms of
local lateral interaction with modulatory feedback.

In [34], a model of motion processing in areas V1 and MT has been proposed in which driv-
ing feedforward and modulating feedback signals interaction are considered. Here, the local-
ized motion response in area V1 were integrated in area MT via feedforward processing signals
while in the feedback processing signals the initial estimation of area V1 were modified via the
feedback projection from area MT. The authors showed that top-down modulatory signals
emphasize the activities of V1 cells, which in turn, enhance the uncertain flow estimation and
improve the visual motion segregation.

Our model differs from these other approaches in the initial method of motion detection.
Here, we adopted the bio-inspired model suggested in [16] and adapted the filtering principle
to make the approach consistent with the functionality of DVS sensors. The event-based tech-
nology of visual sensors provides our model with a high temporal resolution (1 μs). In addition,
the redundant information captured by conventional frame-based camera is reduced. The
architecture of the proposed model takes into accounts feedforward and feedback interactions
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in which area V1 are modeled as direction selective cells while area MT modeled as velocity
(speed and direction) selective cells. Here, V1 responses are integrated via elongated RFs that
are tilted in space-time domain. This kind of integration increases the cells sensitivity to detect
different speeds, fast, mid and slow. Our model take into accounts feedback processing and
focuses on how context information from higher-level area can re-enter into lower-level area
in which both areas have different feature selectivity. This has been done by integrating the
responses of MT cells over different speeds to match the properties of both areas, V1 and MT.

Model evaluation and future work
To verify the speed sensitivity of the proposed elongated RFs, a translating bar with different
speeds (slow 7 cm/sec, medium 17 cm/sec and fast 23 cm/sec) was used. The results demonstrate
the correct speed sensitivity of the suggested cells. Our model was tested using different kinds
of stimuli moving in different directions. In feedforward processing, the results show that V1
population responses are selective to broad directions. These responses are enhanced in area
MT in which the responses are highly tuned to the correct directions. This outcome is consis-
tent with the functionality of MT cells which increases the direction selectivity (see e.g., [39]).
Feedback modulation processing, on the other hand, improves the direction selectivity of the
initial motion estimation via area V1. However, the aperture problem has not been completely
solved. Further work is needed to resolve this issue.

We demonstrated the angular error for the bottom-up and top-down predictions using a
histogram, where the error was calculated by comparing the estimated flow with synthetic
ground truth. The stimuli results show an improvement in the flow estimation in area MT and
modulated V1, compared with the initial motion estimation in area V1.

Our model can be extend by adding other functions of the cortical areas such as medial
superior temporal (MST). This will bolster the model’s ability to process more complex
motions in which the cells in this area have larger RFs than area MT and can respond to com-
plex patterns of visual motions. In addition, the projection feedback from this area to MT will
enhance the response activities of MT cells. The architecture of our model can be used as a
basic adaptive scheme for motion estimation based on sparse event-based input. It is thus con-
ceivable that other researchers interested in biologically inspired technology based on address
event representation may start from this point in order to further develop mechanisms in this
framework.
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