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Abstract: In this study, new photocurable biobased hydrogels deriving from chitosan and gelatin are
designed and tested as sorbents for As(V) and Pb(II) removal from water. Those renewable materials
were modified by a simple methacrylation reaction in order to make them light processable. The
success of the reaction was evaluated by both 1H-NMR and FTIR spectroscopy. The reactivity of
those formulations was subsequently investigated by a real-time photorheology test. The obtained
hydrogels showed high swelling capability reaching up to 1200% in the case of methacrylated
gelatin (GelMA). Subsequently, the Z-potential of the methacrylated chitosan (MCH) and GelMA
was measured to correlate their electrostatic surface characteristics with their adsorption properties
for As(V) and Pb(II). The pH of the solutions proved to have a huge influence on the As(V) and Pb(II)
adsorption capacity of the obtained hydrogels. Furthermore, the effect of As(V) and Pb(II) initial
concentration and contact time on the adsorption capability of MCH and GelMA were investigated
and discussed. The MCH and GelMA hydrogels demonstrated to be promising sorbents for the
removal of heavy metals from polluted waters.

Keywords: chitosan; gelatin; hydrogels; UV-curing; heavy metals adsorption

1. Introduction

Considering the exponential growth of the industrial and urban areas affecting water
quality, water contamination is becoming a global environmental issue that needs to be
addressed urgently. Among the aqueous pollutants, heavy metals are considered the
environmental priority contaminants due to their non-biodegradability, high toxicity, and
bioaccumulative effects, which cause major negative effects on public health [1]. The most
common heavy metals present in streams and lakes are arsenic, lead, copper, zinc, and
nickel. The presence of these heavy metals in the environment can be addressed to both
geological sources (volcanic emission and natural reaction) and anthropogenic sources
(such as pharmaceutical, metallurgy, mining, electronic, and agricultural industries) [2].

Since the presence of those contaminants cannot be completely avoided the World
Health Organization (WHO) has fixed their maximum amount in drinking water. For
example, the concentrations of arsenic and lead should be less than 0.01 mg/L and 0.1 mg/L,
respectively [3,4].

Different strategies have been employed for heavy-metal removals such as mem-
brane filtration [5], photocatalysis [6] ion-exchange [7], coagulation [8], and adsorption [9].
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Among them, adsorption is recognized as the most effective method for heavy metal pol-
luted water remediation. Activated carbon, carbon nanotubes, mesoporous silica, and
magnetic particles have been proposed in the literature as typical adsorbents for heavy
metals removal from water [10–12]. However, those sorbents are usually quite expensive.
To overcome this problem, different researchers have focused their attention on the develop-
ment of new polymeric hydrogels (HG) as low-cost adsorbents. HG are three-dimensional
polymer networks that can be physically or chemically crosslinked. They are particularly
interesting compared to other adsorbent materials due to their water affinity, high swelling
properties, and high porosity, which allows the diffusion of ions towards the polymeric
network. In the last years, bio-derived sorbents have been recognized as promising can-
didates for water treatment. In fact, carbohydrate or other natural based-hydrogels can
be interestingly exploited as bio-sorbents since they are renewable, bio-degradable, and
non-toxic [13–15].

For this reason, cellulose, starch, chitosan, and alginate hydrogels have been recently
proposed in environmental applications for the removal of heavy metals [16–18].

During the sorption process various hydrogel-heavy metal interactions can occur, such
as electrostatic interaction, complexation, hydrogen bonding, and coordination/chelation
depending on the type of pollutant, the experimental conditions (e.g., pH, temperature),
ions concentration, and certainly on the different functional groups present on the polymeric
hydrogels. Therefore, it is essential to properly design an adequate polymeric structure
to remove the target heavy metal species in defined conditions. However, physically
crosslinked natural hydrogels usually possess a low adsorption rate, poor stability, and
poor mechanical properties. To overcome those drawbacks different strategies can be
applied such as the chemical modification of the polymer or the development of hybrid
hydrogels based on the mixture of organic and inorganic components [19–21].

Among biobased polymers, chitosan is one of the most promising. It derives from
the N-deacetylation of chitin which is the second most abundant biopolymer in nature
commonly present in fungi, algae, exoskeleton of crustacea, insects, and mollusks. The
polymeric chains of chitosan are composed of a random mixture of β-(1→4)-D-glucosamine
and N-acetyl-D-glucosamine units possessing many reactive groups such as amino and hy-
droxyl ones that can be easily modified [22]. Therefore, in recent years chitosan-based gels
and membranes have attracted widespread research interest [23–25]. Another interesting
natural polymer is gelatin which is an animal protein consisting of linear ionic polymeric
chains bearing different amino and carboxylic functional groups. Gelatine is mostly used
in biomedical applications due to its transparency and high biocompatibility [26,27].

In the past few decades, many attempts have been made to create chemically crosslinked
hydrogels mainly involving the use of crosslinkers such as N,N′-methylenebisacrylamide [28],
formaldehyde [29], and epichlorohydrin [30] which, nonetheless, are toxic and have to be
removed from the hydrogels. Up to now, very few works have evaluated the possibility to
modify biobased polymers to obtain photo-crosslinked hydrogels for water treatment and
only two of them address specifically the removal of heavy metals [14,31,32].

Within this framework, we have methacrylated two natural polymers, chitosan, and
gelatin, via a previously reported procedure [33,34]. This chemical modification makes
these polymers suitable for photopolymerization in water, which is a fast-curing process
and an environmentally friendly technique occurring at room temperature that allows
achieving crosslinked hydrogels [35,36].

The modification of the starting biobased precursors was investigated by both 1H-
NMR and FTIR spectroscopy. The curing process of the photocurable formulations was
evaluated via a real-time photo-rheology. The swelling capability of the photocured hydro-
gels was investigated and correlated with their adsorption efficiency. Finally, the adsorption
properties of the photocured hydrogels towards arsenic and lead species were deeply in-
vestigated by analyzing the equilibrium and kinetics of the adsorption process and the
influence of pH.
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2. Materials and Methods
2.1. Materials

Medium molecular weight chitosan (CH) (Mw = 190–310 KDa, 75–85% degree of N-
deacetylation), methacrylic anhydride (MA), acetic acid (≥99%), Irgacure2959, gelatin from
cold-water fish skin were purchased from Sigma-Aldrich (Milano, Italy) and used as received
without further purification. Ammonium molybdate tetrahydrate [(NH4)6Mo7O24·4H2O
(0.004M)], sulfuric acid [H2SO4 (1.25M)], potassium antimonyl tartrate trihydrate
[C8H4K2O12Sb2·3H2O (0.004M)], ascorbic acid [C6H8O6 (0.06M)], sodium arsenate dibasic
heptahydrate salt [Na2HAsO4·7H2O] and lead nitrate [Pb(NO3)2] were also purchased
from Aldrich. All of the materials were used without further purification.

2.2. Synthesis of Methacrylated Chitosan (MCH)

The chitosan (CH) methacrylation was accomplished as previously reported [33].
Briefly, the CH (1.5 wt%) was solubilized in an acetic acid-water solution (2 wt%), then MA
was added (molar ratio NH2:MA = 1:1). The mixture was then placed into the microwave
furnace (Milestone STARTSynth, Milestone Inc., Shelton, CT, USA). The reaction time was
set to 5 min, at 100 ◦C, and a launch time of 30 s. The obtained product was dialyzed for
five days and subsequently freeze-dried.

2.3. Synthesis of Methacrylated Gelatin (GelMA)

The gelatin (Gel) methacrylation reaction was conducted by modifying a previously
reported protocol [34]. Briefly, gelatin from fish skin was initially dissolved in distilled
water at 50 ◦C (30 wt%). Then, MA was added dropwise (0.6 g of MA for 1 g of gelatin).
The reaction was left to react for 4 h at 50 ◦C under stirring conditions. The pH of the
solution was kept at 8 by adding NaOH solution (3 M). The product solution was dialyzed
against distilled water for three days and then freeze-dried.

2.4. UV-Curing of Hydrogels

MCH (3 wt%) was solubilized in an acetic acid-water solution (2 wt%). Then, 2 phr
(per hundred resin) of Irgacure 2959 was added to the solution as the photoinitiator.
GelMA (10 wt%) was solubilized in distilled water, then 1 phr of Irgacure was added.
Subsequently, the liquid solutions were poured into a silicon mold and irradiated with UV
light (100 mW/cm2) using a Hamamatsu LC8 lamp equipped with an 8 mm light guide
(240–400 nm as spectral distribution). The irradiation time was set at 5 min for the MCH
formulation and 3 min for the GelMA one.

2.5. Characterization Techniques

2.5.1. Proton Nuclear Magnetic Resonance (1H-NMR)

CH, MCH, Gel, and GelMA were analyzed by Bruker Advance 400 Fourier Trans-
formNMRspectrometer (FT NMR, Bruker, Billerica, MA, USA) operating at 400 MHz. The
1H-NMR was conducted at room temperature. Approximately 8 mg of each sample were
dissolved in 1 mL of D2O.

2.5.2. Photorheology

The photorheology tests were performed with an Anton PAAR Modular Compact
Rheometer (Physica MCR 302, Graz, Austria) using a parallel plate configuration
(diameter = 15 mm) with a quartz bottom glass. The gap value was set as 300 µm. The time
sweep experiment was performed in the linear viscoelastic region (LVR) at a constant strain
amplitude (γ) of 0.5% and a constant frequency (ω) of 5 rad/s to monitor the in-situ gel
formation by following the evolution of elastic storage modulus G’ with time. The reaction
can be considered completed when the G’ plateau is reached. In these experiments, the UV
lamp was switched on after 30 s. The UV lamp used in the photorheology experiments was
a Hamamatsu LC8 lamp (Hamamatsu, Japan) with a light intensity of 28 mW/cm2. All
experiments were carried out at room temperature and repeated in triplicates.
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2.5.3. Swelling

The swelling capability of the UV-cured hydrogels was tested by a gravimetric proce-
dure. Air-dried samples were placed in distilled water at room temperature. The weight
increase was monitored at different time steps by taking out the sample from water and
weighting it after the removal of the surface free water. The swelling degree percentage
(SD%), the swelling at equilibrium (Seq), and the equilibrium water content (ECW) were
calculated with Equations (1)–(3), respectively.

SD% =

(
Wt −Wd

Wd

)
∗ 100 (1)

SDeq =
We −Wd

Wd
(2)

EWC% =
We −Wd

We
∗ 100 (3)

where Wt is the weight at time t, Wd is the weight of the dry sample, and We is the weight
of the sample at the equilibrium state. All of the experiments were repeated in triplicates.

2.5.4. Surface Charge

The electric charge on the hydrogels, zeta potential values, of samples were determined
for aqueous particle suspensions using A NanoPlus DLS Zeta Potential from Micromeritics
(Aqueous suspensions were prepared with a mass to volume ratio of 0.5 mg/mL at pH 2, 4,
6, and 9 by adjusting the pH with HCl and NaOH solutions.

2.5.5. Adsorption Experiments

The adsorption experiments were performed to investigate the effect of Arsenic(V)
and Lead(II) initial concentration, contact time, and pH by monitoring the decrease of As(V)
and Pb(II) in the aqueous solutions. Each experiment was repeated three times, and the
mean values were reported in this investigation.

The solutions of As(V) were prepared from sodium arsenate dibasic heptahydrate
salt [Na2HAsO4·7H2O]. The As(V) concentration in the aqueous solution over time was
assessed using a colorimetric procedure based on the formation of an arsenate-molybdate
complex (max absorbance 884 nm) with a UV–visible spectrometer (JASCO V-630). This
complex was formed by reacting As(V) with an acidic solution composed of ammonium
molybdate tetrahydrate [(NH4)6Mo7O24·4H2O (0.004M)], sulfuric acid [H2SO4 (1.25M)],
potassium antimonyl tartrate trihydrate [C8H4K2O12Sb2.3H2O (0.004M)] and ascorbic acid
[C6H8O6 (0.06M)] [37].

The solution of Pb(II) was prepared from lead nitrate [Pb(NO3)2]. The total Pb con-
centration in solution was monitored by inductively coupled plasma atomic emission
spectroscopy (ICP-AES) with a Varian Vista AX spectrometer, after calibration with stock
solutions in the 0–15 mg/L range. Two emission mercury lines (217.00 and 220.35 nm) were
used. The adsorbed amount was determined by the difference between initial and final
concentrations in the solutions for each experiment.

To evaluate the effect of pH on the As(V) and Pb(II) adsorption four different solutions
were prepared having the same initial concentration of metal ions but with pH = 2, 4, 6,
and 9. The pH was adjusted with NaOH (3 M) and HCl (1 M) [38,39].

The adsorption kinetic study was conducted by contacting 15 mL of each metal
ion solution (10–20 mg/L (As), 50–75 mg/L (Pb(II)), and 15 mg of the dried hydrogel.
Subsequently, a fixed amount of supernatant was taken out at different time intervals to
monitor the metal adsorption. On the other hand, the equilibrium adsorption isotherms
were recorded by keeping the volume of the solution constant and varying the initial metal
concentration in the 1–100 mg/L range for arsenic(V) with different individual points (1,
5, 10, 20, 30, 50, 75 and 100 mg/L respectively) while for Pb(II) the ion concentration was
in the 1–200 mg/L range (10, 30, 50, 75, 100, 150, and 200 mg/L) maintaining the stirring
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for 24 h to assure equilibrium time. The experiments were conducted at 20 ◦C under mild
stirring conditions.

The adsorbent capacity at time t (qt [mg/g]), the equilibrium adsorption capacity (qe
[mg/g]) and the removal efficiency (R%) were calculated according to Equations (4)–(6),
respectively [40,41].

qt =
(C0 − Ct)×V

W
(4)

qe =
(C0 − Ce)×V

W
(5)

R(%) =

(
C0 − Ce

C0

)
× 100 (6)

where C0 (mg/L) is the initial metal ion concentration, while Ct (mg/L) and Ce (mg/L) are
the metal concentration at time t and at equilibrium, respectively. V (mL) is the volume of
the metal solution, and W (g) is the mass of the dried hydrogel.

2.6. Adsorption Kinetics Models

Two different kinetic models were then used to evaluate the adsorption rate and the
potential rate-controlling step. The kinetic data were analyzed by means of pseudo-first-order
and pseudo-second-order models [42], using the Lagergren Equations (7) and (8).

dqt

dt
= k1(qe − qt) (7)

− ln
(

1− qt

qe

)
= k1t (8)

where k1 is the rate constant of pseudo-first-order sorption [1/min]. According to this
approximation, a plot of −ln(1 − (qt/qe)) vs. t gives a straight line with slope k1.

Equations (9) and (10) report the second-order kinetic rate equation and its integrated
formula, respectively.

dq
dt

= k2(qe − qt)
2 (9)

t
qt

=
1

k2q2
e
+

t
qe

(10)

where k2 is the rate constant of the pseudo-second-order sorption [g/(mg ∗min)]. Accord-
ing to this approximation, a plot of t/qt vs. t gives a linear relationship with slope 1/qe and
intercept 1/k2qe2.

2.7. Equilibrium Isotherms Models

Three equilibrium isotherm models, Langmuir, Freundlich, and Sips were used to
describe the adsorption mechanism.

The Langmuir model (Equation (11)) considers the adsorption to be chemisorption
and can be applied to homogeneous adsorption phenomena, in which the metal adsorption
energy is constant through every site of the surface, thus explaining the formation of a
monolayer of adsorbate [43].

qe =
qmKLCe

1 + KLCe
(11)

where Ce (mg/L) is the equilibrium concentration of adsorbate in the remaining solution,
qm (mg/g) is the adsorbed amount present in the monolayer related to the maximum
adsorption capacity, KL (L/mg) is Langmuir constant related to the metal affinity to the
binding sites.
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The Freundlich model (Equation (12)) can be applied to the heterogeneous surface
with different energies for monolayer surface adsorption or to the formation of multilayers
of adsorbate. The model can be expressed by the following equation:

qe = KFC
1
n
e (12)

where Ce (mg/L) is the equilibrium concentration of adsorbate in the remaining solution,
and KF and n are the empirical Freundlich constant and the heterogeneity factor, respec-
tively. The value 1/n indicates if the isotherm is favourable (0 < 1/n < 1), unfavourable
(1/n > 1) or irreversible (1/n = 0) [44].

Sips model (Equation (13)) is a hybrid model which combines the Langmuir and the
Freundlich models. This model is able to describe the homogeneous or heterogeneous
model for monolayer adsorption. The Equation (12) represents the non-linear Sips isotherm.

qe =
qmKsCns

e

1 + KsCns
e

(13)

where qm (mg/g) is the maximum adsorbed amount, KS is the Sips constant related with
the affinity between the metal and the adsorption site and ns is the Sips exponent (dimen-
sionless). It can be noticed that the Sips model becomes the Langmuir model when ns = 1,
and the Freundlich model at low C0 [45–47].

3. Results and Discussion
3.1. Bio-Based Polymers Methacrylation

Chitosan and gelatin were methacrylated, following the previously reported experi-
mental procedure, to make them photocurable [33,34]. The schemes of the methacrylation
reactions are reported in Figure 1.
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Figure 1. Scheme of the methacrylation reaction of (a) chitosan and (b) gelatin.

The CH and Gel methacrylation reactions were investigated and confirmed by 1H-
NMR and FTIR. Figure 2a shows a comparison between the CH and MCH 1H-NMR spectra.
The CH spectrum displays the typical CH peaks: the quadruplet peak at δ = 3.59 ppm
represents the protons in 1–4, 6–10, 12 positions while the peak at 3.02 ppm represents the
protons in 5, 11 positions of the chitosan ring. The peak at δ = 1.9 ppm represents the (N-
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acetyl)D-glucosamine group [48,49]. In the MCH spectrum, new peaks can be seen at δ = 6,
5.60 and 5.41 ppm representing the =CH2 of the methacrylic double bonds and at δ = 1.85
and 1.78 ppm corresponding to the −CH3 methyl groups of the grafted methacrylated
moieties. As can be observed, there are two types of −CH3 signals and three different
peaks corresponding to the =CH2 protons, meaning that the methacrylated groups are
bonded to both the −NH2 and the −OH groups of the chitosan.
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From the integrals of the 1H-NMR of MCH, it was possible to calculate the degree of
substitution (DOS) following Equation (14).

DOS =

(
I6+I5.6+I5.41

2
I3.59+I3.02

14

)
/6 (14)

where I6, I5.6 and I5.41 are the integrals of the =CH2 intensity, coloured violet on the spec-
trum, and the I3.59 and I3.02 are the integrals of the H protons in 1–12 positions, coloured in
green and blue. The whole formula is divided by six since there are approximately six re-
active groups in each chitosan double rings (not taking into account the acetylation side
chain). The obtained DOS was 0.27, which is very similar to the one previously reported by
other methacrylated chitosan [48,50].

In Figure 2b are reported the Gel and GelMA 1H-NMR spectra in which the success
of the methacrylation reaction was clearly assessed. In fact, in the GelMA spectrum, it is
possible to observe the presence of new peaks at δ = 5.6 and 5.8 ppm representing the =CH2
protons and at δ = 3.5 ppm which can be ascribed to the CH3 protons of the methacrylated
group [48,51,52]. However, since the complete gelatin structure is still unknown, due to the
presence in its chains of a vast variety of amino sequencies, it was not possible to calculate
the GelMA degree of substitution.

The methacrylation reactions were further confirmed by FTIR analysis. In Figure 3a
are reported the FTIR spectra of CH and MCH. In the spectrum of MCH there can be
clearly observed the presence of a new peak at 1720 (1/cm) that can be attributed to the
C=O stretching vibrations, and at 1620 and 810 (1/cm) which can be attributed to the C=C
and C=CH2 stretching and out of plane bending vibrations, respectively [49,53–55]. In
the spectra comparison, it can also be observed a shift of the peak centred in 1580 (1/cm)
towards lower a wavenumber (1538 (1/cm)) assigned to the −NH stretching vibration
indicating a N-methacrylation [50]. Moreover, it can also be observed a decrease of the
broad band centred in 3300 (1/cm) assigned to the −OH vibrations, suggesting that also
the hydroxyl groups can be a grafting site for the methacrylated group, which is in good
agreement with the 1H-NMR result.
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In Figure 3b the spectra of Gel before and after the methacrylation reaction are reported.
Also in this case, the accomplishment of the methacrylation reaction was confirmed by the
appearance of new bands in the GelMA spectrum at 1380 and 830 (1/cm) which can be
assigned to the C−O stretching and C=C bending vibrations, respectively [56,57].
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3.2. Photoreactivity of Methacrylated Polymers and Swelling of UV-Cured Hydrogels

The photoreactivity of the methacrylated polymers dispersed into deionized water
was investigated by means of real-time photorheology. Either the MCH and GelMA
formulations were investigated.

The phothorheology curves of the MCH and GelMA formulations are reported in
Figure 4. As it can be observed, the MCH formulation started reacting immediately after
the lamp was switched on and reached a G’ plateau after 300 s. On the contrary, the
GelMA formulation showed an induction time, i.e., the minimum time required to start the
photocrosslinking, of about 20 s and reached a G’ plateau after 180 s.
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These data clearly indicate a very high reactivity of the methacrylated polymers
towards the radical-induced UV-curing process, leading to the formation of crosslinked
hydrogel networks.

The swelling capability of the UV-cured hydrogels was measured following the exper-
imental procedure previously described. The swelling curve of the UV-cured hydrogels
is reported in Figure 5, while the SDeq and EWC are reported in Table 1. Interestingly, as
can be observed from Figure 5, GelMA hydrogel shows superior swelling capability with
respect to the MCH ones, with a final swelling degree of about 1200%. Besides the different
molecular structure of those two polymers, the huge differences in the final swelling degree
can possibly be ascribed to a lower GelMA functionalization with respect to MCH leading
to a lower crosslinking density and resulting in the decrease of the swelling capability of
the hydrogel in the aqueous solution [15,58]. The high equilibrium water content (EWC%)
values measured from both hydrogels assessed their high-water permeability [59].
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Table 1. Swelling properties of UV-Cured hydrogels.

SDeq EWC%

MCH 6.16 ± 0.4 86 ± 3
GelMA 12.31 ± 0.7 93 ± 1

3.3. Removal of As(V) and Pb(II) from Water

The influence of pH variation toward hydrogel adsorption capacity was monitored
for both metals as the ionic state of the surface functional groups on hydrogel can change.
On MCH and GelMA hydrogels, surface free amino-groups (−NH2) are still present after
the methacrylation reaction. Chitosan has primary amino groups and a pKa value close
to 6.5 [58]. Therefore, at pH lower than 6.5 the free-amino groups become protonated,
inducing an enhancement of positive charges on the surface, which provokes a repulsion
among the polymeric chains. On the contrary, in alkaline conditions, the amine groups are
completely deprotonated, which results in the attraction of polymer chains due to Van der
Waals forces. These aspects together with the metal charge are of paramount importance to
unravel the adsorption process [60].

3.3.1. As(V) Adsorption from Water

The As(V) adsorption was initially investigated by varying the pH from 2 to 9. Note
that no degradation was observed when the samples were immersed in the solutions at
different pH.

The Z-potential of the hydrogels was evaluated at different pH and correlated with
the qe values measured.

From the experimental data collected in Figure 6a comes up that the optimum con-
dition for the As(V) adsorption with MCH was achieved at pH = 6. In fact, a favourable
interaction between the positive charged surface of the hydrogel and the negatively charged
metal may be occurring; furthermore, at this pH a balance between the charge of the surface
amino groups and the distance between the polymer chains it can exist.

Regarding the charge of the surface, zeta potential measured for MCH shows that the
surface is positively charged from pH 2 to pH 6, with a point of zero charge (PZC) of ca.
7.4. GelMA surface displays also a positive Z-potential at low pH, but the PZC is close to
4.4. To explain the effectiveness of arsenic adsorption, its speciation in solution must be
taken into account. The equilibrium dissociation constants indicate that arsenate species
are negative at pH > 2.2 (Equations (15)–(17)). Therefore, As(V) was better adsorbed on the
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positive surface of MCH at pH 4 and 6, where H2AsO4
− species is predominant, while the

adsorption decreased for pH 9 since the surface of the hydrogel changes to negative.

H3AsO4 → H2AsO4
− + H+ pKa1 = 2.20 (15)

H2AsO4
− → HAsO4

2− + H+ pKa2 = 6.94 (16)

HAsO4
2− → AsO4

3− + H+ pKa3 = 11.50 (17)
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of pH for the different investigated UV-Cured hydrogels.

However, even if the GelMA surface shows a positive Z-potential at low pH, the
overall As(V) adsorption is quite low. This result can possibly be ascribed to the presence
of a high number of carboxylic groups in the GelMA structure which can interact with the
amine also present in its structure, hindering the As(V) adsorption capability [61,62].

Figure 7 reports the adsorption kinetics profiles of As(V) obtained for two initial
concentration (10 and 20 mg/L) at different time intervals at pH 6. The adsorption on the
hydrogels is fast with GelMA as it reaches a plateau after 1 h, while in the case of MCH 8h
are required (see Figure 7a,d). In both cases, the adsorption rates are higher in the initial
part of the experiments suggesting that the adsorption mainly occurs on the surface of the
hydrogels. The MCH sorption equilibrium time is slightly shorter than the one previously
reported in the literature for other chitosan-based systems such as chitosan beads (24 h) [38]
and modified chitosan gel beads (24 h) [63].

The adsorption equilibrium qe is reached slightly later when the initial As(V) concen-
tration was set to 20 mg/L (Figure 7c).

Two mathematical models were used to fit the data and to perceive the mechanism
of adsorption. The pseudo-first-order model resulted not applicable as the obtained trend
is not linear (Figure 7b,e). On the contrary, a linear trend was obtained when data were
plotted by applying the pseudo-second-order kinetics model (Figure 7c,f) which means
that this model can correctly describe the mechanism for the As(V) adsorption. According
to this model, the main adsorption mechanism is chemisorption. The pseudo-second-order
fitting parameters at two different initial As(V) concentrations are reported in Table 2.

Noteworthy, the removal percentage [R(%)] of MCH was 98 and 92% for C0 = 1 and
5 mg/L, respectively, indicating a high As(V) removal efficiency of this hydrogel at low
concentration.
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Table 2. Pseudo-second order fitting parameters for As(V) adsorption.

C0(As) = 10 mg/L

qe,calc [mg/g] qe,exp [mg/g] k2 [g/(mg ×min)] R2

MCH 5.67 5.59 0.18 0.994
GelMA 1.22 1.24 0.81 0.998

C0(As) = 20 mg/L

qe,calc [mg/g] qe,exp [mg/g] k2 [g/(mg ×min)] R2

MCH 17.85 17.54 0.06 0.994
GelMA 2.17 2.13 0.47 0.996

Figure 8 shows the experimental data of equilibrium adsorption of As(V) along with
their non-linear isotherm models used to fit the adsorption data (Langmuir, Freundlich and
Sips). The parameters of the adsorption isotherm model are summarized in Table 3. The
isotherm model with the highest R2 value was selected as the most representative of the
As(V) adsorption process. All of the hydrogels adsorption mechanisms can be correctly
described by the Sips model.

For both MCH and GelMA the value 1/n is less than 1 in the Langmuir model, so
implying that the adsorption of As(V) metal is favourable. Furthermore, the maximum
qe values obtained for the adsorption of the As(V) ions are slightly higher than the one
previously reported in the literature using other types of chitosan and other adsorbents
such as goethite and cellulose (see Table 5).
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Table 3. Adsorption isotherm parameters for As(V) adsorption on MCH and GelMA at pH = 6.

Langmuir parameters

qm [mg/g] KL [L/mg] R2

MCH 136.7 0.05 0.885

GelMA 3.5 0.13 0.543

Freundlich parameters

n KF [L/mg] R2

MCH 1.56 9.44 0.831

GelMA 5.47 1.42 0.339

Sips parameters

qm [mg/g] ns KS [L/mg] R2

MCH 84.8 2.0 0.02 0.939

GelMA 3.0 6.0 8.59 0.963

3.3.2. Lead Adsorption from Water

The adosorption capacity of Pb(II) was investigated following the same procedure
previously reported for As(V) oxyanions. Figure 9 reports the Pb(II) adsorption of the
MCH and GelMA hydrogels as a function of pH. At pH 6 the GelMA, with the net negative
surface charge is the only material capable to interact with the positively charged metal
cation. At basic pH it can be noticed that both MCH and GelMA possess a negative Z-
potential and can therefore be applied to lead removal (see Figure 6b). As such, all of the
Pb(II) adsorption tests were conducted only on MCH at pH = 9 and on GelMA at pH = 6.

In Figure 10a,d are reported the Pb(II) adsorption kinetics of MCH at pH = 9 and
GelMA at pH = 6 at C0 = 50 mg/L and C0 = 75 mg/L, respectively, while Table 4 collects
the kinetic fitting parameters. As in the case of As(V), the first-order kinetics model is not
suitable to describe the kinetics profile of MCH and GelMA hydrogels, while the second-
order kinetic model could fit the experimental values of Pb(II) adsorption; therefore, again
the rate-determining step of the process is chemisorption.
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Figure 10. Pb(II) adsorption kinetics at (a) 50 mg/L and (d) 75 mg/L of initial concentration; (b,e) data
fitted using the pseudo-first-order kinetic model with 50 mg/L and 75 mg/L of C0, respectively,
(c,f) data fitted using the pseudo-second-order kinetic model with 50 mg/L and 75 mg/L of C0,
respectively.

Figure 11a shows the isotherm values obtained for MCH and GelMA hydrogels,
where it can be seen that both solids are able to adsorb significant amounts of Pb(II),
achieving values of ca 66 and 48 mg/g, respectively. It is important to underline that the
achieved maximum values of Pb(II) adsorption capacities are similar to those previously
obtained with other adsorbents. For comparison purpose, Table 5 summarizes the list of
other Pb(II) absorbents available in the literature. Figure 11b, reports the R(%) of MCH
and GelMA at the different initial Pb(II) concentrations. Interestingly, those percentages
were very high, achieving almost 99% for low initial concentration and (>80%), also with
high content of metal, so highlighting the great removal capability toward Pb(II) of these
biobased hydrogels.
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Table 4. Pseudo-second order fitting parameters for Pb(II) adsorption.

C0(Pb) = 50 mg/L

qe,calc [mg/g] qe,exp [mg/g] k1 [g/(mg ×min)] R2

MCH 56.55 55.56 0.02 0.897

GelMA 28.94 33.33 0.03 0.975

C0(Pb) = 75 mg/L

qe,calc [mg/g] qe,exp [mg/g] k2 [g/(mg ×min)] R2

MCH 63.26 700 0.003 0.685

GelMA 40.05 50 0.02 0.985
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Figure 11. (a) Isotherm plots of MCH and GelMA hydrogels obtained from the experimental data;
(b) removal percentage R(%) of Pb(II) by MCH and GelMA at different initial concentration.

Table 5. Maximum As(V) and Pb(II) equilibrium adsorption capacity of different adsorbents reported
in the literature.

Adsorbent Metal
Initial

Concentration-C0
[mg/L]

Temperature [◦C]
Equilibrium
Adsorption

Capacity qe [mg/g]
References

Goethite

As(V)

1000 25 12 [64]

Chitosan 400 25 58 [63]

Cellulose with Fe2O3 100 25 32 [65]

Ce–Fe oxide decorated
multiwalled carbon

nanotubes
20 25 31 [66]

MCH
GelMA 100 25 36

22 Present work

Chitosan/PVA

Pb(II)

30 25 0.9 [67]

Chitosan 250 25 47.4 [68]

Chitosan(Chitin)/
Cellulose Composite 160 25 27.31 [69]

MCH
GelMA 150 25 66

48 Present work
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4. Conclusions

New biobased UV-curable hydrogels were developed using modified chitosan and
gelatin and applied as adsorbents for the removal of As(V) and Pb(II) from an aqueous
solution. Methacrylated chitosan (MCH) and methacrylated gelatin (GelMA) were success-
fully synthetized as assessed by 1H-NMR and FTIR spectroscopy. The modified materials
were then dispersed in water together with BAPO photoinitiator. The high reactivity of
these formulations was confirmed by a photo-rheology test, in which the rapid in situ gel
formation was evaluated by following the evolution of elastic storage modulus G’ with
time. MCH formulation reached a G’ plateau after 300 s, while the GelMA formulation
required only 180 s. The swelling test highlights that those hydrogels possess a very high
swelling capability reaching 616% and 1230% for MCH and GelMA, respectively. The
adsorption parameters such as initial metal ions concentration, contact time, and pH no-
ticeably influenced the removal efficiency of the hydrogels. The Z-potential analysis was
performed on the hydrogels at different pH and the outcomes were used to discuss the
measured qe values of the hydrogels. The kinetics studies revealed that a pseudo-second
order kinetic model can correctly describes the adsorption of As(V) and Pb(II) on MCH
GelMA hydrogels, therefore suggesting a chemical adsorption. The obtained qe were in the
same order of magnitude than one previously reported in the literature for other types of
chitosan and other adsorbents such as goethite and cellulose. All o the As(V) isotherms
were correctly fitted by the Sips model. The removal efficiency of As(V) in water was very
high for MCH reaching up to 98 and 92% in the case of C0 = 1 and 5 mg/L. Even better
results were reached for the Pb(II) removal in which the R(%) remains above 80% for both
MCH and GelMA even for C0 = 75 mg/L.

To conclude, this study successfully demonstrates the possibility to use modified
chitosan and gelatin to obtain innovative UV-curable sorbents for the removal of As(V) and
Pb(II) from polluted waters.
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