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Abstract

Comparison of individual gene trees in several recent phylogenomic studies from diverse lineages has revealed a surprising amount of
topological conflict or incongruence, but we still know relatively little about its distribution across the tree of life. To further our
understanding of incongruence, the factors that contribute to it and how it can be ameliorated, we examined its distribution in a clade
of 20 Culicidae mosquito species through the reconstruction and analysis of the phylogenetic histories of 2,007 groups of orthologous
genes. Levels of incongruence were generally low, the three exceptions being the internodes concerned with the branching of
Anopheles christyi, with the branching of the subgenus Anopheles as well as the already reported incongruence within the Anopheles
gambiae species complex. Two of these incongruence events (A. gambiae species complex and A. christyi) are likely due to biological
factors, whereas the third (subgenus Anopheles) is likely due to analytical factors. Similar to previous studies, the use of genes or
internodes with high bootstrap support or internode certainty values, both of which were positively correlated with gene alignment
length, substantially reduced the observed incongruence. However, the clade support values of the internodes concerned with the
branching of the subgenus Anopheles as well as within the A. gambiae species complex remained very low. Based on these results, we
infer that the prevalence of incongruence in Culicidae mosquitoes is generally low, that it likely stems from both analytical and
biological factors, and that it can be ameliorated through the selection of genes with strong phylogenetic signal. More generally,
selection of genes with strong phylogenetic signal may be a general empirical solution for reducing incongruence and increasing the
robustness of inference in phylogenomic studies.
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Recent advances in DNA sequencing technologies provide
great opportunities for using genome-scale data to recon-
struct phylogenetic history (Rokas and Abbot 2009; Hittinger
et al. 2010; Faircloth et al. 2012; Lemmon et al. 2012).
However, recent phylogenomic studies in diverse taxonomic
groups, including plants (Zhong et al. 2013; Wickett et al.
2014), fungi (Hess and Goldman 2011; Salichos and Rokas
2013), and animals (Song et al. 2012; Jarvis et al. 2014), have
shown that a large number of individual gene trees are topo-
logically incongruent with each other. For example, a recent
analysis of 1,070 orthologs from 23 yeast genomes identified
1,070 distinct gene trees, which were all incongruent with the
phylogeny inferred from concatenation analysis (Salichos and
Rokas 2013). Surprisingly, nearly half the internodes of the
yeast phylogeny exhibited very low internode certainty (IC)
values (Salichos and Rokas 2013), a measure of topological
conflict (Salichos and Rokas 2013; Salichos et al. 2014).

Similarly, the analysis of 32 plant taxa found 182 distinct to-
pologies in a set of 184 gene trees (Zhong et al. 2013), and the
analysis of 447 nuclear genes from 37 mammal species re-
vealed 440 distinct topologies (Song et al. 2012).
Incongruence between gene trees can stem from analytical
or biological factors. A wide variety of analytical factors can
lead to failure to accurately infer a gene tree; these can be
either due to stochastic error (e.g., insufficient sequence
length or taxon samples) or due to systematic error (in case
of departure from model assumptions, Jeffroy et al. 2006). In
contrast, a number of biological factors can lead to gene trees
that are actually distinct from each other and from the species
tree. Examples of biological factors include incomplete lineage
sorting (ILS), hidden paralogy, horizontal gene transfer, as well
as gene duplication and loss, recombination and natural se-
lection (Galtier and Daubin 2008; Degnan and Rosenberg
2009; Fontaine et al. 2015). Although gene tree incongruence
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caused by analytical factors can be potentially reduced by
some data filtering approaches, such as using genes with
high phylogenetic information content (Dell’Ampio et al.
2014), slowly evolving genes (Betancur-R et al. 2014), genes
with stationary base composition (Romiguier et al. 2013),
genes with strong phylogenetic signals (Salichos and Rokas
2013), as well as internode-specific genes (Chen et al.
2015), incongruence stemming from biological factors
cannot (Fontaine et al. 2015; Nater et al. 2015; Suh et al.
2015).

Although conflict between gene trees has been reported in
analyses of phylogenomic data matrices from diverse plant,
fungal, and animal taxa, we still know relatively little about the
distribution of incongruence across the tree of life.
Mosquitoes in the genus Anopheles represent an excellent
lineage for investigating incongruence for two reasons. First,
the draft genomes of 16 anophelines from Africa, Asia,
Europe, and South America, representing a variety of geo-
graphic locations and ecological conditions and a range of
evolutionary distances from each other, were recently se-
quenced (Neafsey et al. 2015). In addition to these 16 newly
sequenced Anopheles genomes, the genomes of two addi-
tional Anopheles species, namely A. gambiae (Holt et al. 2002)
and Anopheles darlingi (Marinotti et al. 2013), as well as the
genomes of two other species belonging to the subfamily
Culicinae, namely Aedes aegypti (Nene et al. 2007) and
Culex quinquefasciatus (Arensburger et al. 2010), are also
available.

The second reason is the demonstrated presence of incon-
gruence in the Anopheles phylogeny, particularly within the
Anopheles gambiae species complex (Besansky et al. 1994;
Hittinger et al. 2010; Fontaine et al. 2015). Specifically,
a genome-wide investigation of the relationships between
the five species belonging to the A. gambiae complex,
namely A. gambiae, Anopheles arabiensis, Anopheles quad-
riannulatus, Anopheles melas, and Anopheles merus, reported
extensive introgression (Fontaine et al. 2015), prompting the
authors of an associated commentary to ponder whether the
notion of a bifurcating species phylogeny is a meaningful way
to describe the evolutionary relationships among species in the
complex (Clark and Messer 2015). Remarkably, it appears that
the topology inferred from concatenation analysis, albeit
strongly supported, is likely incorrect (Fontaine et al. 2015).
This very high degree of incongruence raises the question on
whether it is localized between species in the A. gambiae
complex or whether it is also present in other parts of the
Anopheles phylogeny.

Low Levels of Incongruence in
Culicidae Phylogeny
In this study, we assembled a data set of 2,007 groups of

orthologous genes (henceforth referred to simply as genes)
from 20 Culicidae mosquito genomes (table 1). Maximum

likelihood (ML) concatenation analysis of the 2,007-gene
data matrix produced a species phylogeny in which all inter-
nodes exhibited 100% bootstrap support (BS) (fig. 1).
Summarizing the 2,007 gene trees into an extended
Majority Rule Consensus (eMRC) phylogeny or using them
as input to construct a coalescent-based species phylogeny
resulted in topologies that were identical to the concatenation
phylogeny (fig. 1). Interestingly, 12 out of 17 internodes in the
eMRC phylogeny had a gene-support frequency (GSF) of
greater than 80%. Two of the remaining five internodes are
associated with the branchings of Anopheleschristyi (GSF =
53%) and subgenus Anopheles (GSF = 62%), respectively,
whereas the other three internodes show very low GSF
values (33-43%) and all reside within the A. gambiae complex
(fig. 1).

One thousand one hundred twenty-six of the 2,007 gene
trees are unique, which means that about half of the gene
trees do not agree (by at least one internode) with each other,
or with species phylogeny supported by concatenation,
eMRC, and coalescent-based approaches. The average nor-
malized Robinson-Foulds (Robinson and Foulds 1981) tree
distance between the 2,007 gene trees and the species phy-
logeny (0.21) was lower than that generated by an all-pairs
comparison between the 2,007 gene trees (0.29) (fig. 2).

To quantify incongruence, we used IC which evaluates sup-
port for a given internode according its frequency in a given
set of trees jointly with that the most prevalent conflicting
bipartitions in the same set of trees (Salichos and Rokas
2013; Salichos et al. 2014). Examination of the eMRC phylog-
eny showed that 10 out of 17 internodes had IC values equal
or greater than 0.70 and another two values greater than
0.55. The remaining five internodes, namely the branchings
of A. christyi and subgenus Anopheles as well as the inter-
nodes within the A. gambiae species complex, had IC
values less than 0.25. The branching of A. christyi depicts
the bipartition (A. gambiae complex, A. christyi) (GSF = 53,
IC =0.08; fig. 1), which conflicts with the bipartition ([A. chris-
tyi, A. epiroticus],[remaining 18 species]), whose GSF is 27,
yielding an IC value of 0.08. The branching of subgenus
Anopheles depicts the bipartition (subgenus Cellia, subgenus
Anopheles) (GSF = 62, IC=0.19; fig. 1), which conflicts with
the bipartition ([Anopheles albimanus, A. darlingi, Anopheles
atroparvus, Anopheles sinensis],[remaining 16 species)),
whose GSF is 21, yielding an IC value of 0.19.

The incongruence observed in internodes within the A.
gambiae complex is much higher than the rest of the
Culicidae phylogeny. The average GSF in the three internodes
within the complex is 37.33, a value much smaller than the
average GSF of 87.86 that is observed in the rest of the
Culicidae phylogeny (fig. 1 and table 1). Similarly, the IC
values of internodes in the A. gambiae complex rank first,
third, and fifth lowest among the 17 internodes in the
Culicidae phylogeny (fig. 1).
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Fic. 1.—The Culicidae species phylogeny recovered from the concatenation analysis of 2,007 genes using ML. Asterisks denote internodes that received
100% BS by the concatenation analysis. The same topology is also recovered by the eMRC phylogeny as well as by the coalescent phylogeny (ASTRAL and
STAR) of the 2,007 individual gene trees. Black values near internodes correspond to GSF and IC, respectively. Bold red values correspond to support values of
the coalescent phylogeny based on ASTRAL and STAR, respectively. The scale bar is in units of nucleotide substitutions per site.

To measure the degrees of conflict for every internode, IC
can be more informative than GSF (Salichos and Rokas 2013;
Salichos et al. 2014). For example, the placement of
Anopheles stephensi and the placement of Anopheles funes-
tus received 93% and 96% GSF, whereas their ICs were 0.75
and 0.93, respectively. This difference in the IC values of the
two internodes despite similar GSF values is a result of the
secondary conflicting signal difference. Specifically, whereas
the most prevalent conflicting bipartition to the placement of
A. stephensi has a GSF of 4%, the most prevalent conflict to
the placement of A. funestus has a GSF of only 1%.

Using Genes with Strong Phylogenetic
Signal Reduces Incongruence

To test whether using genes with stronger phylogenetic signal
can reduce incongruence, we analyzed four data sets com-
prising genes whose ML trees had average BS values across all
internodes greater than or equal to 70% (1,818 genes), 80%
(1,379 genes), 90% (378 genes), or 95% (66 genes), and four
data sets comprising the 1,818, 1,379, 378, or 66 genes
whose ML trees had the highest tree certainty (TC) values.
Note that gene selection was solely based on the strength
of phylogenetic signal exhibited in their gene trees (measured

by BS or TC) without any consideration to the topology sup-
ported. The concatenation analysis as well as the eMRC anal-
ysis was redone each time when the new data set was
selected. We found that the GSF and IC values of the vast
majority of internodes increased as the stringency of the
BS and TC filters increased (supplementary table S2,
Supplementary Material online), suggesting that selecting
genes with high average BS or high TC significantly reduced
incongruence in the Culicidae phylogeny (table 1).

We also tested whether using internodes with high BS can
reduce the incongruence by extracting bipartitions with BS
values greater than or equal to 70%, 80%, 90% or 95%
from every ML tree of the 2,007 genes and then used them
to construct the eMRC phylogenies. Importantly, the use of
highly supported bipartitions allows one to quantify a given
internode’s IC from only the subset of bipartitions that highly
support or conflict with that internode (Salichos and Rokas
2013; Salichos et al. 2014). Compared to the phylogeny of
figure 1, this practice significantly increased IC values for > 13
internodes (table 1 and supplementary table S2, Supplemen-
tary Material online).

Even though the GSF and IC values of the internodes con-
cerned with the branching of the subgenus Anopheles, with
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nontrivial bipartitions.

the branchings within the A. gambiae species complex, and
with the branching of A. christyi, increased as the stringency of
the BS and TC filters increased, the values themselves were still
lower even for the strictest filters (supplementary table S2,
Supplementary Material online). Thus, incongruence in these
internodes may be the result of biological factors such as ILS,
gene duplication and loss, or introgression (Fontaine et al.
2015).

The Relationship between
Incongruence and Gene
Alignment Length

Both average BS as well as TC values are positively correlated
with genes’ alignment lengths (alignment length vs. BS, r =
0.50, Pvalue < 2.2e-16; alignment length vs. TC, r= 0.56, P
value < 2.2e-16; supplementary fig. S1, Supplementary
Material online). How does incongruence behave if we use
genes with the same lengths? To resolve this question, we
created a new data matrix that contained only the first
999 bp of the sequence alignment of the 1,340 genes that
were 999 bp or longer (genes with shorter alignment lengths
were excluded) and re-analyzed levels of incongruence in the
Culicidae phylogeny. The results are quite similar to the results
from the 2,007-gene data matrix; 12 of the 17 internodes
exhibit high GSF and IC values, whereas internodes within
the A. gambiae species complex as well as internodes associ-
ated with the placement of A. christyi and the subgenus
Anopheles show low GSF and very low IC values (fig. 3).

Thus, although the average BS and TC values were positively
correlated with gene alignment length, using loci that have
the same alignment lengths does not appear to substantially
decrease or increase the incongruence present in this phylo-
genomic data matrix.

We also examined whether the selection of genes or bipar-
titions with strong phylogenetic signal in this set of 1,340
alignment length-standardized genes reduced incongruence.
We tested three data sets comprising genes whose ML trees
showed average BS values across all internodes that were
greater than or equal to 70% (1,138 genes), 80% (603
genes) or 90% (45 genes) (no gene had average BS greater
or equal to 95%), and three data sets comprising the 1,138,
603 or 45 genes whose trees had the highest TC. Almost all
the GSF and IC values of every internode increased as the
value of the BS or TC filter increased (table 2 and supplemen-
tary table S3, Supplementary Material online). Using genes or
internodes with high BS or IC values also significantly reduced
the observed incongruence (table 2 and supplementary table
S3, Supplementary Material online). Similarly, selecting inter-
nodes with high BS decreased incongruence by extracting
only those bipartitions that display BS values greater than or
equal to 70%, 80%, 90% or 95% from every one of the
1,340 genes’ ML trees. This practice significantly increased
IC values for >14 internodes relative to the phylogeny of
figure 3 (table 2 and supplementary table S3,
Supplementary Material online). However, the GSF and IC
values of the internodes concerned with the branching of
the subgenus Anopheles, the branching of A. christyi, as
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Fic. 3.—The Culicidae species phylogeny recovered from the concatenation analysis of first 999 bp sequence of 1,340 genes using ML. Asterisks denote
internodes that received 100% BS by the concatenation analysis. The same topology is also recovered by the eMRC phylogeny as well as the coalescent
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correspond to support values of the coalescent phylogeny based on ASTRAL and STAR, respectively. The scale bar is in units of nucleotide substitutions per

site.

well as with branchings within the A. gambiae species com-
plex, were still lower even for the strictest filters.

Conclusion

In summary, analyses of a 2,007-gene phylogenomic data
matrix from 20 Culicidae mosquito genomes showed that in-
congruence was low and localized to specific branches. Similar
to previous studies, the use of genes or bipartitions with
strong phylogenetic signal (quantified either through the use
of BS or IC values) substantially reduced the observed incon-
gruence. However, the GSF and IC values of the internodes
concerned with the branchings of A. christyi, the subgenus
Anopheles, as well as with branchings within the A. gambiae
species complex remained very low. Combined with the ob-
servation that many of the A. gambiae species complex inter-
nodes are very short, the observed incongruence is consistent
with previous inferences of extensive introgression within the
A. gambiae species complex (Fontaine et al. 2015). Short in-
ternode length makes biological factors, such as ILS or intro-
gression, the most likely explanation for the incongruence
observed in the branching of A. christyi. In contrast, the inter-
node associated with the branching of the subgenus

Anopheles and the subgenus Celia is much longer suggesting
that this incongruence is more likely to be due to analytical
factors. Very similar results were obtained with a 1,340-gene
phylogenomic data matrix in which all genes had the same
length, arguing that the well-known correlation between
alignment length and phylogenetic signal did not have a
major influence on phylogenetic reconstruction in this lineage.
What's more, they add to the body of evidence (Salichos and
Rokas 2013) showing that the selection of genes with strong
phylogenetic signal can reduce incongruence and increase the
robustness of phylogenetic inference. Thus, this strategy may
be a general empirical solution for ameliorating incongruence
in phylogenomic studies.

Materials and Methods

Data Matrix Construction

We used the complete sets of annotated orthology data of 20
Culicidae  mosquito  genomes (supplementary table ST,
Supplementary Material online) from http://cegg.unige.ch/
orthodbmoz2 (Neafsey et al. 2015). We selected 2,008
single-copy genes which that contained sequences from all
20 species as our initial data set. The nucleotide sequences
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13
14
15
15
15

14
NA
NA

1223 0.72

94.86

y the 45 genes with the highest TC
y bipartitions that have > 70% BS

Using on
Using on
Using on
Using on
Using on

NA
NA
NA
NA

11.82 0.70
1253 0.74

NA
NA
NA
NA

Selection of bipartitions with

y bipartitions that have > 80% BS

high BS in the ML trees

of genes

NA
NA

13.10 0.77

y bipartitions that have > 90% BS

1333 0.78

y bipartitions that have > 95% BS

Note.—The columns correspond to: the specific filtering of genes or bipartitions with strong phylogenetic signal tested (treatment and treatment details), the average GSF of the internodes of the Culicidae eMRC phylogeny

(average GSF), the TC of the Culicidae eMRC phylogeny, the RTC of the Culicidae eMRC phylogeny, the numbers of internodes of the Culicidae eMRC phylogeny in which GSF increases or decreases by more than 3%, and the

numbers of internodes of the Culicidae eMRC phylogeny in which IC increases or decreases by more than 0.03. As the maximum value of IC for a given internode is 1, the maximum value of TC for a given phylogeny is the

number of internodes, which in this case is 17. In the analyses concerned with the use of bipartitions, only those bipartitions that displayed BS greater or equal to 70%, 80%, 90%, or 95% in the ML trees of the 1,340 genes

were used to construct eMRC phylogenies, which were then compared with the default analysis. NA, not applicable.

of all genes were translated to amino acids. A series of differ-
ent data sets was constructed using custom Perl scripts.

Gene Alignment

We aligned all genes using the MAFFT software, version 7.182
(Katoh and Toh 2008) based on their amino acid sequence,
using the default settings (automatic selection of the appro-
priate strategy, from L-INS-i, FFT-NS-i, and FFT-NS-2, accord-
ing to data size). Then, we used PAL2NAL (Suyama et al.
2006) to translate amino acid sequence alignments to
codon sequence alignments, and the “automated” option
of trimAl (Capella-Gutierrez et al. 2009) to trim the amino
acid sequence alignments. Trimmed segments of the amino
acid sequence alignments were deleted from their corre-
sponding codon sequence alignments using custom Perl
scripts. Following trimming, our data matrix consisted of
2,007 genes from 20 species and contained no missing data.

To test how incongruence varied independent of gene
alignment length, we also generated a data matrix that was
comprised of only the first 999bp of sequence from each
gene. Since there were 667 genes shorter than 999 bp, this
data matrix contains 1,340 genes from 20 species, every one
of which has a 999 bp long alignment and does not contain
any missing data.

Gene Tree Inference

For the codon sequence alignment of each gene, the un-
rooted phylogenetic tree under the optimality criterion of
ML was inferred using RAXML, version 8.0.20 (Stamatakis
2014), under the GTRGAMMA model and with the values
of the nucleotide base frequencies fixed to “observed” and
those of the substitution rate parameters estimated from the
data (raxmIHPC-PTHREADS-SSE3 -T 8 -f a -x 12345 -p 12345 -
N 100 -m GTRGAMMA -s ALIGNMENT -n NAME). For the
concatenation analysis, codon sequence alignments from all
genes were analyzed as a single super-matrix. The un-rooted
concatenation species phylogeny was inferred through a
single ML search under the GTRGAMMA model in RAXML,
version 8.0.20 (Stamatakis 2014), with the values of the nu-
cleotide base frequencies fixed to “observed” and those of
the substitution rate parameters estimated from the data
(raxmIHPC-PTHREADS-SSE3 -T 8 -f a -x 12345 -p 12345 -N
100 -m GTRGAMMA -s ALIGNMENT -n NAME). In all cases,
robustness in inference was assessed via bootstrap resampling
(100 replicates). Note that the RAXML software first infers the
topologies for each of the bootstrap replicates and then
searches for the best-scoring ML tree using every fifth boot-
strap replicate tree as a starting tree.

The un-rooted eMRC phylogeny that consisted of those
bipartitions that appear in more than half of the ML gene
trees, as well as of additional compatible bipartitions that
appear in less than half of the gene trees, was inferred from
the CONSENSE program in the Phylogeny Inference Package,
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version 3.696 (PHYLIP, J. Felsenstein, University of
Washington, Seattle; http:/evolution.genetics.washington.
edu/phylip.html). The eMRC phylogeny of bipartitions with
high BS was constructed using custom Perl scripts. As the
divergence of Culicinae and Anophelinae lineages is well es-
tablished, all phylogenies shown in figures have been mid-
point rooted at the internode that separates these two
lineages for easier visualization.

The coalescent species phylogeny was estimated using 100
replicates of multi-locus bootstrapping in ASTRAL (Mirarab
and Warnow 2015) (java -Xmx36000M -jar astral.4.7.8.jar -i
TREECOLLECTION -0 OUTPUT -b BS_PATH -r 100), and using
the online version of the STAR software with 100 rooted boot-
strap replicates trees of every gene (Liu et al. 2009; http:/
bioinformatics.publichealth.uga.edu/SpeciesTreeAnalysis/
STAR/STAR php).

Tree Distance Estimation

Distances between trees were estimated using the normalized
Robinson—Foulds tree distance (Robinson and Foulds 1981) as
calculated by RAXML, version 8.0.20 (Stamatakis 2014)
(raxmIHPC-PTHREADS-SSE3 -T 8 -f r -z TREECOLLECTION -m
GTRGAMMA -n NAME).

Evaluation of Incongruence

IC, TC, and relative TC (RTC) (Salichos and Rokas 2013;
Salichos et al. 2014) were calculated using RAXML, version
8.0.20 (Stamatakis 2014) (raxmIHPC-PTHREADS-SSE3 -T 8 -f
i -t REFERENCETREE -z TREECOLLECTION -m PROTGAMM
AAUTO -n NAME).

We used these average BS and TC values to construct eight
subsets of 2,007 orthogroups: four with genes that have av-
erage BS values greater than or equal to 70% (1,818 genes),
80% (1,379 genes), 90% (378 genes), or 95% (66 genes),
respectively, as well as four data sets comprising the 1,818,
1,379, 378, or 66 genes whose ML trees have the highest TC
values, respectively.

For every gene from the 2,007-gene data matrix, we also
extracted all bipartitions from its ML tree that have BS values
greater than or equal to 70%, 80%, 90%, and 95%, respec-
tively. We then used each one of these four sets of highly
supported bipartitions to construct eMRC species phylogenies
with custom Perl scripts.

For the 1,340-gene data matrix, in which each gene’s align-
ment was 999 bp long, we constructed six subsets: three with
genes that have average BS values that are greater than or
equal to 70% (1,138 genes), 80% (603 genes), or 90% (45
genes), respectively, (no gene had average BS values greater
than or equal to 95%); as well as three data sets comprising
the 1,138, 603, or 45 genes whose ML trees have the highest
TC values, respectively.

For every gene from the 1,340-gene data matrix, we also
extracted all bipartitions from its ML tree that have BS values

greater than or equal to 70%, 80%, 90%, and 95%. We then
used each one of these four sets of highly supported biparti-
tions to construct eMRC species phylogenies with custom Perl
scripts.

Data Availability

All data and analyses described in this study are deposited at
Figshare under the accession 10.6084/m9.figshare.1566851.

Supplementary Material

Supplementary figure ST and tables S1-S3 are available at
Genome Biology and Evolution online (http:/Awvww.gbe.
oxfordjournals.org/).
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