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Abstract: Chimeric antigen receptor (CAR)-T cells are effective in the treatment of hematologic
malignancies but have shown limited efficacy against solid tumors. Here, we demonstrated an
approach to inhibit recurrence of B cell lymphoma by co-expressing both a human anti-CD19-
specific single-chain variable fragment (scFv) CAR (CD19 CAR) and a TGF-β/IL-7 chimeric switch
receptor (tTRII-I7R) in T cells (CD19 CAR-tTRII-I7R-T cells). The tTRII-I7R was designed to convert
immunosuppressive TGF-β signaling into immune-activating IL-7 signaling. The effect of TGF-β on
CD19 CAR-tTRII-I7R-T cells was assessed by western blotting. Target-specific killing by CD19 CAR-
tTRII-I7R-T cells was evaluated by Eu-TDA assay. Daudi tumor-bearing NSG (NOD/SCID/IL2Rγ-/-)
mice were treated with CD19 CAR-tTRII-I7R-T cells to analyze the in vivo anti-tumor effect. In vitro,
CD19 CAR-tTRII-I7R-T cells had a lower level of phosphorylated SMAD2 and a higher level of
target-specific cytotoxicity than controls in the presence of rhTGF-β1. In the animal model, the
overall survival and recurrence-free survival of mice that received CD19 CAR-tTRII-I7R-T cells were
significantly longer than in control mice. These findings strongly suggest that CD19 CAR-tTRII-I7R-T
cell therapy provides a new strategy for long-lasting, TGF-β-resistant anti-tumor effects against B
cell lymphoma, which may lead ultimately to increased clinical efficacy.

Keywords: chimeric antigen receptor-T cell; chimeric switch receptor; TGF-β; B cell lymphoma

1. Introduction

In recent years, adoptive T cell immunotherapy has emerged as a promising therapy
for cancer patients [1]. In particular, chimeric antigen receptor (CAR)-T cell therapy has
dramatically shifted the landscape of treatment for lymphoid malignancies [2]. CAR-T
cells are genetically engineered T cells that carry major histocompatibility complex (MHC)-
independent specific antigen (Ag) receptors and co-stimulatory molecules, and that can
therefore induce an immune response against cells expressing cancer-associated Ags [3,4].
CAR-T cell therapy is successful in hematologic malignancies such as acute lymphoblastic
leukemia and chronic lymphocytic leukemia [5–7]. However, in solid tumors, which
include B cell lymphoma, CAR-T cell therapy faces multiple challenges and has only
had limited success, largely because of the immunosuppressive tumor microenvironment
(TME) [8–10].
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The microenvironment of solid tumors often protects tumor cells from the immune
system. A hostile TME is a strong barrier to effective CAR-T cells. One of the most
significant hurdles is the suppression of CAR-T cell function by soluble immunosuppressive
factors [11]. Transforming growth factor-beta (TGF-β) is a soluble immunosuppressive
cytokine commonly present in the solid tumor TME.

The TGF-β protein is released as an inactive latent complex. Latent TGF-β is usu-
ally activated by proteases such as matrix metalloprotease (MMP)-9 and MMP-2 [12]. In
mammals, TGF-β1 is predominantly expressed by hematopoietic cells, whereas two other
members of the TGF-β family, TGF-β2 and TGF-β3, are present in negligible amounts
and are thought to have an insignificant role in the immune system [13]. Active TGF-β1
binds to TGF-β receptor (TR) II on the T cell surface. The interaction of TGF-β1 with the
receptor results in activation of the TRII intracellular kinase domain, which recruits TRI and
phosphorylates TRI. The resulting TR heterodimeric complex consists of TRI and TRII and
its phosphorylation induces the phosphorylation of receptor-regulated (R)-mothers against
decapentaplegic homologs (SMADs). Phosphorylated R-SMADs form homo-oligomeric
and hetero-oligomeric complexes with co-mediator (Co)-SMADs. These complexes are
translocated to the nucleus where they associate with DNA-binding co-factors and tran-
scriptional co-activators (Co-A) and/or co-repressors to regulate the transcriptional activity
of target genes, resulting in cell cycle inhibition [14]. TGF-β promotes tumor invasion and
metastasis and inhibits T cell activation and proliferation [15–17].

Many strategies have been designed to circumvent the T cell inhibitory effects of
TGF-β for cancer therapy. For example, the expression of a dominant-negative TRII (tTRII)
was used to create T cells that are insensitive to TGF-β. tTRII is truncated and lacks the
intracellular domains necessary for downstream signaling. Therefore, it renders effector
T cells resistant to TGF-β but leaves their proliferation, cytokine secretion, and cytolytic
functions unchanged [18–20]. Expression of tTRII enhances anti-tumor immunity [21,22].

Meanwhile, immune-stimulatory cytokines such as interleukin (IL)-7 play an impor-
tant role in anti-tumor immunity [23]. The binding of IL-7 to its receptor (I7R) results in
the phosphorylation of tyrosine residues on the receptor. This leads to activation of the
Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 5 and phospho-
inositide 3-kinase (PI3-K)/Protein kinase B (PKB, or Akt)/mechanistic target of rapamycin
(mTOR) signaling pathways [24]. IL-7 signaling through I7R plays a critical role in T cell
survival, activation, and proliferation, as well as in-memory T cell (TM) formation [25–28].
Therefore, activation of I7R signaling can enhance T cell anti-tumor effects.

Chimeric switch receptors (CSRs) are designed to reverse the outcomes of their origi-
nal signaling pathways. These receptors were used to confer immune cells with the ability
to overcome immunosuppressive signals in the TME and increase their in vivo efficacy
and persistence. CSRs combine the extracellular portion of an inhibitory receptor with an
alternative signaling domain that provides an immune-activating function [29]. Based on
our understanding of the TGF-β and IL-7 signaling pathways, we developed a TGF-β/IL-7
CSR encoding the cytokine-binding portion of the TGF-β receptor extracellular domain
linked to the immunostimulatory I7R signaling endodomain (tTRII-I7R). Therefore, when-
ever TGF-β binds to the tTRII-I7R, instead of transducing a TRII-mediated inhibitory signal,
it will transduce an I7R-mediated immune activating signal. This signal is expected to
promote potent and sustained T cell-dependent anti-tumor effects in the TGF-β-rich TME.

The aim of this study was to determine whether T cells co-expressing both a human
anti-CD19-specific single-chain variable fragment (scFv) CAR (CD19 CAR) and tTRII-I7R
(CD19 CAR-tTRII-I7R-T cells) showed improved anti-tumor efficacy and inhibition of
recurrence in a CD19+ B cell lymphoma mouse model.

2. Results
2.1. Characterization of CAR-T Cells

We constructed three CARs that incorporated (1) CD19 CAR only, (2) CD19 CAR and
tTRII (CD19 CAR-tTRII), and (3) CD19 CAR and tTRII-I7R (CD19 CAR-tTRII-I7R) (Figure 1).
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Each CAR was cloned into a third-generation self-inactivating (SIN) lentiviral vector under
the control of the human elongation factor 1 alpha (EF1α) promoter (pPVLV2) and tested in
peripheral blood mononuclear cell (PBMC)-derived activated human T cells. CD19 CAR-
expressing T cells (CD19 CAR-T cells, CD19 CAR-tTRII-T cells, and CD19 CAR-tTRII-I7R-T
cells) showed significantly superior expansion as compared with untransduced T cells at
day (D) 9 post-transduction (Figure 2A). Subsequently, to verify the expression of the CD19
CAR and tTRII, all T cells were stained with fluorescein isothiocyanate (FITC)-conjugated
recombinant human (rh) CD19 and allophycocyanin (APC)-conjugated anti-TRII and
analyzed by flow cytometry. All CD19 CAR-expressing T cells stably expressed the CD19
CAR construct, and the tTRII-expressing T cells (CD19 CAR-tTRII-T cells and CD19 CAR-
tTRII-I7R-T cells) also stably expressed the tTRII construct. The transduction efficiency of
each CAR-T cell type was approximately 40–65% (Figure 2B). These results demonstrate
efficient expression of the CD19 CAR and tTRII constructs in T cells. Furthermore, the
expression of these constructs increased the T cell expansion efficiency.

Figure 1. Design of CD19 CAR, CD19 CAR-tTRII, and CD19 CAR-tTRII-I7R constructs.

2.2. tTRII Improves TGF-β1-Mediated Inhibition of Ag-Specific Tumor Killing by CAR-T Cells

To investigate the effect of tTRII on CAR-T cells, we exposed untransduced T cells,
CD19 CAR-T cells, CD19 CAR-tTRII-T cells, and CD19 CAR-tTRII-I7R-T cells to rhTGF-β1
for 24 h (hours). TGF-β1 binds to a specific cell surface receptor on T cells, TRII. Ligand
binding to this receptor results in the activation of SMAD2. Western blot analysis revealed
that levels of phosphorylated (p) SMAD2 in tTRII-expressing CAR-T cells were markedly
lower than in CD19 CAR-T cells without tTRII expression (Figure 3A). In addition, we
confirmed that levels of phosphorylated Tyr284, one of the major phosphorylation sites in
the TR downstream signaling pathway [30], in tTRII-expressing CAR-T cells were markedly
lower than in CD19 CAR-T cells (data not shown). These data indicate that tTRII acts
as a dominant-negative inhibitor of the TGF-β signaling pathway. Next, to test whether
tTRII-expressing CAR-T cells maintain their ability to produce pro-inflammatory cytokines
(interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α)) in the presence of
TGF-β1, we cultured each T cell type with or without 10 ng/mL rhTGF-β1 for 24 h. Expres-
sion of mRNA encoding pro-inflammatory cytokines was analyzed by quantitative reverse
transcription-polymerase chain reaction (qRT-PCR). In the absence of rhTGF-β1, CD19
CAR-expressing T cells showed higher mRNA expression of pro-inflammatory cytokines
than untransduced T cells. Interestingly, tTRII-expressing CAR-T cells maintained a high
level of pro-inflammatory cytokine mRNA expression in the presence of rhTGF-β1, while
the level of expression decreased in CD19 CAR-T cells without tTRII expression (Figure
3B). These results indicated that CAR-T cells expressing tTRII retain the ability to produce
pro-inflammatory cytokines. Then, to study the effect of tTRII on Ag-specific cytotoxicity of
CAR-T cells, cytolytic activity was measured by europium (Eu)-2,2′:6′,2”-terpyridine-6,6”-
dicarboxylate (TDA) release assay. All CD19 CAR-expressing T cells showed significant
cytotoxicity against CD19+-K562 cells in the absence of rhTGF-β1. However, in the pres-
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ence of rhTGF-β1, CD19 CAR-T cells lost their cytotoxicity against CD19+-K562 cells. By
contrast, tTRII-expressing CAR-T cells showed a high level of Ag-specific cytotoxicity in
the presence of rhTGF-β1 (Figure 3C). These results suggest that tTRII induces resistance
to TGF-β1-mediated suppression of Ag-specific cytotoxicity. Taken together, these results
suggest that tTRII reduces the inhibitory effect of TGF-β1 on Ag-specific tumor killing by
CAR-T cells by blocking the TGF-β1 signaling pathway.

Figure 2. Characterization of CD19 CAR-, CD19 CAR-tTRII-, and CD19 CAR-tTRII-I7R-T cells.
Human PBMCs from healthy volunteer donors were stimulated with anti-CD3/CD28 Dynabeads
(beads:cells = 3:1) for 2 d. The stimulated T cells were suspended in IMSF100 serum-free media
supplemented with rhIL-2 (200 IU/mL), and then transduced with the constructed lentiviral vectors
encoding CD19 CAR, CD19 CAR-tTRII, or CD19 CAR-tTRII-I7R. Untransduced T cells were used
as an NC. Cells were cultured with rhIL-2 (200 IU/mL) for 12 d post-transduction. (A) The T cell
number was counted every 2 or 3 d in triplicate using a hemacytometer. Data are expressed as the
mean ± SEM of three independent experiments. (B) Activated T cells were transduced with lentiviral
vectors to express the CD19 CAR and/or tTRII, and assessed by flow cytometry. The numbers in
the panels indicate the percentage of positive cells for the CD19 CAR (left) or tTRII (right) versus an
NC of untransduced T cells. Results are representative of three independent experiments. ** p < 0.01.
*** p < 0.001.
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Figure 3. Improved anti-tumor efficacy of tTRII-expressing T cells compared with CD19 CAR-T cells
in vitro. (A) Western blot analysis of pSAMD2, SMAD2, and GAPDH. CD19 CAR-, CD19 CAR-tTRII-,
and CD19 CAR-tTRII-I7R-T cells were cultured with rhTGF-β1 (10 ng/mL) for 24 h starting at D9
after post-transduction. Whole-cell lysates prepared from CD19 CAR-, CD19 CAR-tTRII-, or CD19
CAR-tTRII-I7R-T cells were evaluated by western blotting for pSAMD2, SMAD2, and GAPDH. The
expression of pSMAD2 of Untransduced T cells (Control) was described as 100%. Data were obtained
by densitometric analysis of western blots. Data are expressed as the mean ± SEM. (B) IFN-γ and
TNF-α mRNA levels in CD19 CAR- and CD19 CAR-tTRII-T cells by qRT-PCR. CD19 CAR-, CD19
CAR-tTRII-, and CD19 CAR-tTRII-I7R-T cells were cultured with or without rhTGF-β1 (10 ng/mL)
for 24 h starting at D9 post-transduction. Each T cell type was mixed with CD19+-K562 cells for
24 h and then total mRNA was extracted. The IFN-γ and TNF-α mRNA levels were determined by
qRT-PCR. The 18s-rRNA were used as an internal control. Data are expressed as the mean ± SEM.
(C) CD19 CAR-, CD19 CAR-tTRII-, and CD19 CAR-tTRII-I7R-T cells demonstrate Ag-specific killing
of CD19+ tumor cells in the presence of TGF-β1. The cytolytic activity of transduced CAR-T cells
was determined in a 4 h EU- TDA release assay. T cells were harvested and cultured with rhTGF-β1
(10 ng/mL) for 72 h before use in cytotoxicity assays. Target cell lines were labeled with BATDA for
15 min and subsequently combined with the transduced T cells at the indicated E:T ratios. Lysis was
determined after 4 h of incubation. * p < 0.05. ** p < 0.01.

2.3. CD19 CAR-tTRII-I7R-T Cells Show Increased Anti-Tumor Efficacy In Vivo

To determine whether CD19 CAR-tTRII-I7R-T cells show improved anti-tumor efficacy
in vivo, NSGA mice were inoculated with Daudi-Fluc tumor cells. On D10 post-injection
(PI), mice followed received CD19 CAR-T cells (Group CAR-19, n = 5), CD19 CAR-tTRII-T
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cells (Group tTRII, n = 4), CD19 CAR-tTRII-I7R-T cells (Group I7R, n = 4), or phosphate-
buffered saline (PBS) (Group negative control [NC], n = 5). In all mice (n = 18), in vivo
bioluminescence imaging was performed on D10, D14, D21, D28, D35, D42, D49, D59, D63,
D77, and D84 PI (Figure 4A). Imaging performed on D21 PI revealed a significant decrease
in the total flux from all mice that received CD19 CAR-expressing T cells compared with
Group NC (Figure 4B), suggesting that CD19 CAR-expressing T cells effectively killed
Daudi-Fluc tumor cells. As shown in Figure 4B, all mice from Group NC died by D21–28 PI.
All mice from Group CAR-19 and Group tTRII died by D35–77 and D35–63, respectively.
All mice from Group I7R survived more than 84 days (d). In Group CAR-19, all mice died
due to tumor recurrence on D35 or D63. In Group tTRII, one mouse died of unknown
causes on D59 and three mice died due to tumor recurrence on D35 or D59. By contrast, in
Group I7R, all mice survived and were tumor-free until the experimental endpoint of 84 d.
Group I7R, therefore, showed a notably improved survival rate (Figure 4C) and reduced
tumor recurrence (Figure 4D) when compared with Group CAR-19 and Group tTRII. Taken
together, these results demonstrate that CD19 CAR-tTRII-I7R-T cell therapy prolongs
survival and prevents tumor recurrence in a CD19+ B cell lymphoma mouse model.

Figure 4. Treatment with CD19 CAR-tTRII-I7R-T cells enhanced survival and inhibited tumor
recurrence in a mouse CD19+ B cell lymphoma model. Daudi-Fluc cells (1 × 106 cells per mouse)
were intravenously (i.v.) injected on D0. Mice received an i.v. injection of CD19 CAR-, CD19 CAR-
tTRII-, or CD19 CAR-tTRII-I7R-T cells (3 × 106 cells per mouse) on D10 post-injection of Daudi-Fluc
cells. The control group was injected i.v. with PBS on D10. (A) Schematic illustration of the animal
experiment. (B) Bioluminescence images showing the total flux in the organs and tissues of different
groups of mice. NC, control group treated with PBS; CAR-19, positive group treated with CD19
CAR-T cells; tTRII, negative group treated with CD19 CAR-tTRII-T cells; I7R, group treated with
CD19 CAR-tTRII-I7R-T cells. (C) Kaplan–Meier curves of overall survival were constructed to
monitor the eradication of systemic disease. (D) Kaplan–Meier curves of recurrence-free survival
were constructed to estimate recurrence inhibition efficacy.
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3. Discussion

Non-Hodgkin’s lymphoma (NHL) is the 13th most commonly diagnosed cancer
and the 12th leading cause of cancer death, with approximately 544,000 new cases and
260,000 deaths worldwide in 2020 [31]. B cell lymphoma, the most common type of NHL,
is a malignant neoplasm derived from B cells that affect mainly the lymph nodes, spleen,
and other non-hematopoietic tissues [32].

CD19 Ag is an attractive target for CAR-based T cell therapy since it is a B cell lineage-
specific surface molecule that is expressed on normal and most malignant B cells, but
not on hematopoietic stem cells [33]. Currently, two commercial CAR-T cell products
targeting the CD19 Ag have been FDA-approved, tisagenlecleucel (Kymriah, Novartis)
and axicabtagene ciloleucel (Yescarta, Kite/Gilead). Multicenter global phase II trials have
evaluated the safety and efficacy of these two CAR-T cell products in adult refractory or
relapsed (R/R) B cell acute lymphoblastic leukemia (B-ALL) and B cell NHL (B-NHL). The
efficacy of tisagenlecleucel in children and young adults with R/R B-ALL was assessed
in the ELIANA trial. These trials showed overall response rates (ORRs) and complete
remission rates (CRRs) of 80% and 60%, respectively [6]. In adults with R/R B-NHL,
the efficacy of tisagenlecleucel was evaluated in the ZULIET trial and the efficacy of
axicabtagene ciloleucel was evaluated in the JUMA-1 trial. Both trials showed similar ORRs
(50–80%) and CRRs (40–50%) [8,9,34,35]. CD19 CAR-T cell therapy in B-NHL patients
results in a lower CRR than in B-ALL patients. It is thought that the TME plays a more
prominent role in CAR-T cell anti-tumor efficacy in B-NHL than in B-ALL, as CAR-T cell
penetration of a solid tumor mass is limited, and the TME inhibits T cell function [11].

To achieve therapeutic success within solid tumors, CAR-T cells need to overcome
immunosuppressive signals within the TME. Many cancers, including B cell lymphoma,
are known to secrete TGF-β, which promotes immunosuppression within the TME. TGF-β
has a crucial immunosuppressive role in both innate and adaptive immune responses [36].
It can directly dampen the function of CD8+ and CD4+ T cells while promoting the re-
cruitment and differentiation of regulatory T cells. It can inhibit the cytotoxic function of
tumor-specific cytolytic T cells (CTLs) and promote T cell apoptosis. It can also induce the
differentiation of CD4+ T cell subsets with immune-regulatory properties [37].

Previous studies have reported that TGF-β signaling can be blocked using tTRII
in vitro and in vivo, in mouse models. These studies demonstrated that Ag-specific T cells
expressing a transgenic tTRII were resistant to the inhibitory effects of TGF-β without
impaired Ag specificity [21,22,38]. Furthermore, several groups have explored immune
checkpoint-based CSRs that consist of the extracellular and transmembrane domains of an
immune checkpoint fused to a cytoplasmic CD28 domain, such as a PD-1/CD28 CSR [39,40]
or a CTLA4/CD28 CSR [41]. These CSRs convert the negative signaling of the immune
checkpoint into a positive signal in Ag-specific T cells [29].

In addition, previous reports have shown the long-term benefits of IL-7 therapy on
the anti-tumor efficacy of Ag-specific effector CD8+ T cells [42]. It results from activation
of IL-7/I7R-mediated activation of both JAK-STAT and PI3K-Akt-mTOR signaling. These
signaling pathways promote T cell survival and proliferation. Interestingly, while some
studies have suggested that IL-7 might have anti-tumor effects, other studies indicate that
IL-7 might also have potential pro-tumor effects. In addition to the anti-apoptotic effect of
IL-7, IL-7 may also promote c-Fos and c-Jun activity in cancers such as non-small cell lung
cancer. Thus, IL-7 treatment seems also to have a potential tumor-promoting effect [23].

Based on that observation, we designed a TGF-β/IL-7 CSR encoding the cytokine-
binding site of the TGF-β receptor extracellular domain linked to the immunostimulatory
I7R signaling endodomain (tTRII-I7R). We generated CD19 CAR-tTRII-T cells co-expressing
both the CD19 CAR and tTRII-I7R.

We demonstrated CD19 CAR and tTRII expression in CD19 CAR-T cells, CD19 CAR-
tTRII-T cells, and CD19 CAR-tTRII-I7R-T cells. Although tTRII-expressing CAR-T cells
showed little activation of SMAD2, their regular function (pro-inflammatory cytokine
secretion and Ag-specific cytotoxicity) was sustained even in the presence of TGF-β1. In a
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CD19+ B cell lymphoma mouse model, the overall survival and recurrence-free survival
rates of Group I7R was significantly increased compared with the control group. In
particular, there was no recurrence in any mouse in Group I7R, unlike in the other groups
(Group CAR-19, Group tTRII, and Group NC). Thus, the efficacy of CAR-tTRII-I7R-T is
significant and in line with other studies using CSRs.

To the best of our knowledge, this is the first report that B cell lymphoma therapy
using tTRII-I7R and CD19 CAR-tTRII-I7R-T cells could be beneficial for the treatment of
solid tumors. Therefore, it is expected that CD19 CAR-tTRII-I7R-T cells could be clinically
applied as a new treatment strategy for patients suffering from CD19+ B cell lymphoma.
In addition, for other solid cancers, using T cells that simultaneously express CAR and
tTRII-I7R, which target the cancer-associated Ags of each solid cancer, are expected to be
used to overcome TME in solid cancer. It may be necessary to generate CD19 and CD20
bi-specific CAR-tTRII-I7R-T cells to overcome the problem of CD19 Ag loss and subsequent
relapse. The tTRII-I7R CSR may lead to the development of powerful CAR-T cell-based
immunotherapies that overcome the immunosuppressive effects of TGF-β in the TME.

4. Materials and Methods
4.1. Ethics Statement

All protocols involving the use of animals were approved by the Institutional Animal
Care and Use Committee of PharosVaccine Inc. (PV-IACUC-2108), and all experiments
were carried out in accordance with these approved protocols.

4.2. Cell Lines

293T cells (American Type Culture Collection [ATCC], CRL-3216) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM; HyClone, Logan, Utah, USA) supplemented
with 10% fetal bovine serum (FBS) and 100 U/mL penicillin/streptomycin. Daudi-Fluc
(Imanis Life Sciences, CL158 or CL160) and K562 (ATCC, CCL-243) cells were cultivated
in Roswell Park Memorial Institute (RPMI)-1640 medium supplemented with 10% FBS
and 100 U/mL penicillin/streptomycin. To generate CD19+ K562 cells, K562 cells were
transduced with human CD19-expressing lentivirus. All media and antibiotics were
purchased from Gibco/Thermo Fisher Scientific (Waltham, MA, USA).

4.3. Mice

NOD/ShiLtJ-Prkdcem1BaekIl2rgem1Baek (NSGA) mice (Female, 4–5 weeks old, weight
25 ± 2 g; JA BIO, Gyeonggi, Republic of Korea) were housed and maintained according
to the guidelines of the Association for the Assessment and Accreditation of Laboratory
Animal Care. All mice were housed in a temperature- and humidity-controlled room under
a 12 h light/dark cycle.

4.4. Construction of Lentivirus-Based Vectors and Vector Design

CD19 CAR construct comprised an scFv derived from the CD19-specific FMC63
monoclonal antibody (Ab), the hinge and transmembrane regions of the CD8 molecule,
the 4-1BB co-stimulatory domain, and the intracellular CD3ζ chain of the T cell receptor
(TCR) complex. The tTRII construct was created by truncating human TRII to remove
the intracellular kinase domain, and the tTRII-I7R construct was created by fusing tTRII
and the IL-7 intracellular domain. Co-expression of the CD19 CAR and either tTRII or
tTRII-I7R was achieved by linking the respective gene encoding sequences to the CAR
expression cassette with P2A (Figure 1). These genes were cloned into the backbone of the
third-generation SIN lentiviral vector pPVLV2 (Pharos Vaccine Inc., Gyeonggi, Republic of
Korea), which includes the human EF1α (212 bp) promoter region.

4.5. Lentiviral Vector Production and Titration

The lentivirus was packaged with the pPVLV2, pMDLg/pRRE, pRSV-Rev, and pMD.G
plasmids by transfection of 293T cells, as described previously [43,44]. Briefly, 2.5 × 107
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293T cells were seeded 24 h before transfection into a T175 flask. For lentivirus production,
38.72 µg pPVLV2, which encodes the CD19 CAR, CD19 CAR-tTRII, or CD19 CAR-tTRII-I7R,
19.36 µg each of pMDLg/pRRE and pRSV-Rev, and 9.69 µg of pMD.G were mixed with
5 mL Opti-MEM with P3000 reagent. In parallel, 180.4 µL of Lipofectamine 3000 and 5 mL
Opti-MEM were mixed. The DNA mixture and the Lipofectamine mixture were mixed in
equal volumes and incubated for 15 min (min) at room temperature (RT) before being used
to transfect the 293T cells. After 4 h, the DNA and Lipofectamine mixture was removed
and 15 mL fresh DMEM supplemented with 2% FBS, 100 U/mL penicillin/streptomycin,
2 mM L-glutamine, and 1 mM sodium pyruvate was added. The culture medium from
the transfected 293T cells was collected and centrifuged (450× g for 15 min at 4 ◦C) 24 h
later. The supernatant containing the lentivirus was filtered through a polyvinylidene
difluoride (PVDF) membrane (0.45 µm pore size) and concentrated by ultracentrifugation
(20,000× g for 1.5 h at 4 ◦C). The supernatant was discarded and the pellet was resuspended
in PBS. The functional titer of the lentivirus was determined by transducing 293T cells
seeded in six-well plates (2× 105 cells per well) with serial dilutions of lentivirus in DMEM
supplemented with 10% FBS and 100 U/mL penicillin/streptomycin. Expression of CD19
CAR or tTRII was determined by flow cytometric analysis 72 h post-transfection, and
lentivirus stock titers were calculated in transducing units (TU) per mL based on the flow
cytometric analysis results.

4.6. Generation of CAR-T Cells

Human PBMCs were purchased from STEMCELL Technologies (Vancouver, BC,
Canada). Human CD3+ T cells were isolated from human PBMCs using the EasySep
Human CD3 Positive Selection Kit II (StemCell Technologies, Vancouver, BC, Canada).
CD3+ T cells were stimulated with anti-CD3/CD28 Dynabeads (Thermo Fisher Scientific)
at a ratio of 3:1 and cultured in IMSF100 (SOFCO, Billingham, UK) medium supplemented
with 30 ng/mL rhIL-21 (Peprotech, Rocky Hill, NJ, USA) and 200 IU/mL rhIL-2 (BMI Ko-
rea, Gyeonggi, Republic of Korea) for 48 h. Activated T cells were resuspended at 1 × 106

cells/mL in IMSF100 medium supplemented with 30 ng/mL rhIL-21 and 200 IU/mL rhIL-2.
Activated T cells were mixed with lentivirus (produced as described above) at a multiplicity
of infection (MOI) of 1.0 in the presence of 8 µg/mL polybrene (Sigma-Aldrich, Saint Louis,
MO, USA) and culture plates were centrifuged (12,000× g for 2 h at 32 ◦C). After incubation
for 24 h, the transduced cells were harvested, washed, and plated at 3 × 106 cells/mL
in IMSF100 medium containing 200 IU/mL rhIL-2. Transduced cells were expanded for
approximately 12 d, and the culture medium was exchanged with fresh medium every
2–3 d. To evaluate the activation of TGF-β1 downstream signaling, the production of
pro-inflammatory cytokines and the cytotoxicity of CAR-T cells, untransduced T cells and
CAR-T cells were incubated with 10 ng/mL rhTGF-β1 (Peprotech) for 24–72 h starting at
D9 post-transduction. Cultures were maintained at 37 ◦C/5% CO2.

4.7. Flow Cytometric Analysis

To determine the surface expression of CD19 CAR and tTRII, cells were stained with
a FITC-conjugated rhCD19 protein (AcroBiosystems, Newark, DE, USA) and an APC-
conjugated TRII Ab (Abcam, USA). Cells were incubated on ice for 20 min and then
washed with PBS containing 1% bovine serum albumin (BSA) and 0.05% NaN3. Stained
cells were acquired on a MACSQuant Analyzer 10 (Miltenyibiotec, Bergisch Gladbach,
North Rhine-Westphalia, Germany). Data were analyzed using FlowJo software (TreeStar,
San Carlos, CA, USA).

4.8. Western Blotting

To detect intracellular SMAD2 activation in response to TGF-β1 downstream signaling
in untransduced T cells and CAR-T cells, cells were incubated with 10 ng/mL rhTGF-β1
for 24 h starting at D9. Untransduced T cells and CAR-T cells were lysed using the Proprep
protein extraction kit (iNtRON Biotechnology, Gyeonggi, Korea) in the presence of a
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serine/threonine phosphatase inhibitor cocktail (Sigma-Aldrich). The protein concentration
was measured using a Bradford assay kit (Sigma-Aldrich). Equal amounts of protein were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to PVDF membranes (Thermo Fisher Scientific). The membranes were blocked
with 10% (w/v) skim milk in Tris-buffered saline with 0.1% Tween20 detergent (TBST)
and then incubated with primary antibodies specific for p-SMAD2 or SMAD2 (diluted
1:1000; Cell Signaling Technology, Danvers, MA, USA) or glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (diluted 1:1000; Bioss, Woburn, MA, USA) overnight at 4 ◦C.
The membranes were washed with TBST 5 times for 1 h at RT and then incubated with
horseradish peroxidase (HRP)-conjugated anti-mouse or rabbit immunoglobulin (Ig) G
(diluted 1:10,000; Santa Cruz Biotechnology, Dallas, TX, USA) for 2 h at RT. The membranes
were washed with TBST 5 times for 1 h at RT and exposed to enhanced chemiluminescence
(ECL) reagents (Thermo Fisher Scientific). Signals were detected using a luminescent image
analyzer (LAS-4000; Fujifilm, Tokyo, Japan).

4.9. qRT-PCR

To evaluate the production of pro-inflammatory cytokines in response to TGF-β1 in
untransduced T cells and CAR-T cells, cells were incubated with or without 10 ng/mL
rhTGF-β1 for 24 h starting on D9. Cells were then co-cultured with CD19+-K562 cells for an
additional 24 h and harvested. Total RNA was extracted using the PureLink RNA Mini Kit
(Thermo Fisher Scientific). The prepared RNA was subjected to DNase digestion and the
concentration was measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA, USA). Total RNA was reverse-transcribed using the SensiFAST cDNA Synthesis
kit (Bioline, London, UK), and cDNA samples were analyzed by real-time qRT-PCR using
specific primers and the SensiFAST SYBR Low-ROX kit (Bioline). PCR was conducted
using a QuantStudio3 Real-Time PCR detection system (Applied Biosystems, Foster City,
CA, USA). An 18s-rRNA was amplified as an endogenous control. The primers used
for real-time qRT-PCR were as follows: IFN-γ: forward—CCC ATG GGT TGT GTG TTT
ATT T, reverse—AAA CCG GCA GTA ACT GGA TAG; TNF-α: forward—AGA GGG
AGA GAA GCA ACT ACA, reverse—GGG TCA GTA TGT GAG AGG AAG A, 18s-rRNA:
forward—CTG AGA AAC GGC TAC CAC ATC, reverse—GCC TCG AAA GAG TCC TGT
ATT G. Relative expression was calculated using the ∆∆Ct method and expressed as the
fold change using the formula 2−∆∆Ct. All experiments were run in triplicate.

4.10. Cytotoxicity of CAR-T-19 Cells

At D12 post-transduction, the DELFIA cytotoxicity assay (PerkinElmer, Waltham,
MA, USA) was used as described previously to assess whether tTRII can block TGF-β1-
mediated inhibition of the Ag-specific cytotoxicity of CAR-T cells [45]. Briefly, CD19 CAR-T
cells, CD19 CAR-tTRII-T cells, and CD19 CAR-tTRII-I7R-T cells were incubated with or
without 10 ng/mL rhTGF-β1 for 72 h starting at D9 and used as effector cells (E) at day 12.
CD19+-K562 cells (CD19 CAR Ag-matched cell) and K562 cells (CD19 CAR Ag-mismatched
cell) were labeled with bis (acetoxymethyl) (BA) TDA for 30 min and used as target cells
(T). BATDA-labeled target cells (1 × 103 cells/well) were co-cultured with effector cells at
2.5–20 × 103 cells/well (E:T ratios of 2.5–20:1) in 96-well round-bottom plates. After 4 h,
20 µL supernatant was collected and mixed with 200 µL Eu solution, and the fluorescent
signal was detected using a Varioskan LUX multimode microplate reader (Thermo Fisher
Scientific). The maximum release of TDA was determined by treating BATDA-labeled
target cells with lysis buffer (PerkinElmer). Spontaneous release of TDA was measured by
sampling supernatant from wells containing only BATDA-labeled target cells growing in
culture medium. The percent specific cytolysis was calculated using the formula:

(Experimental release)− (Spontaneous release)
(Maximum release)− (Spotaneous release)

× 100
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4.11. Bioluminescence Imaging

The animals were included in the study if they underwent successful i.v. injection
of Daudi-Fluc cells and either CAR-T cells or PBS. We set the inclusion criteria when the
ROI was 1 × 105 or more, and the exclusion criteria otherwise. Cultured Daudi-Fluc
cells were detached from the culture plates using trypsin/ethylenediaminetetraacetic acid
(EDTA), washed with PBS twice, and resuspended at 1 × 107 cells/mL in PBS. NSGA mice
received 1 × 106 Daudi-Fluc cells via tail vein injection on D0, followed by an injection
of 3 × 106 CAR-T cells on D10. All mice met our inclusion criteria. A total number of
18 animals were therefore included in the analysis. A total number of 18 animals were
divided into four different groups (4–5 animals per group). On the basis of their position
on the rack, cages were given a numerical designation. For each group, a cage was selected
randomly from the pool of all cages. All animals were given their permanent numerical
designation in the cages. Then, the cages were randomized within the exposure group. For
each animal, two different investigator groups were involved as follows: one investigator
group administered the treatment based on the randomized condition. These investigators
were aware of the treatment group allocation. The other investigator group performed
the injection procedure and assessed in vivo bioluminescence imaging. Bioluminescence
imaging was performed using the IVIS-Lumina II imaging system (PerkinElmer). In brief,
mice were anesthetized and then given an intraperitoneal (i.p.) injection of D-luciferin
(150 mg/kg body weight). After 10 min, images were analyzed using Living Image software
(PerkinElmer), and data are presented as the total flux (photons/s). A time-point was
recorded as the time of tumor recurrence when the maximum bioluminescence was higher
or the bioluminescent area was larger than at previous time points for a given animal.

4.12. Statistical Analysis

Statistical analysis was performed using GraphPad software (GraphPad Prism v7.0;
GraphPad Software, San Diego, CA, USA). All statistical comparisons were performed
using paired t-tests or two-way analysis of variants (ANOVA) followed by Newman–Keuls
tests. The data are presented as the mean ± standard error of the mean (SEM). A value
of p < 0.05 was considered significant. Kaplan–Meier curves were created to illustrate the
cumulative survival and recurrence-free survival after tumor inoculation.
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Abbreviations

Ag Antigen
CAR Chimeric antigen receptor
CD19 CAR Human anti-CD19-specific scFv CAR
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CD19 CAR-expressing T cells CAR-T cells, CD19 CAR-tTRII-T cells, and CD19
CAR-tTRII-I7R-T cells

Ag Antigen
CAR Chimeric antigen receptor
CD19 CAR Human anti-CD19-specific scFv CAR
CD19 CAR-expressing T cells CAR-T cells, CD19 CAR-tTRII-T cells, and CD19

CAR-tTRII-I7R-T cells
CD19 CAR-tTRII-I7R-T cells Co-expressing both CD19 CAR and tTRII-I7R-T cells
CSR Chimeric switch receptor
Group CAR-19 Mice receiving CD19 CAR-T cells
Group I7R Mice receiving CD19 CAR-tTRII-I7R-T cells
Group tTRII Mice receiving CD19 CAR-tTRII-T cells
IL Interleukin
IU International unit
NHL Non-Hodgkin’s lymphoma
PBS Phosphate-buffered saline
qRT-PCR Quantitative reverse transcription-polymerase chain reaction
rh Recombinant human
SMAD Mothers against decapentaplegic homologs
TGF-β Transforming growth factor-beta CD19
TME Tumor microenvironment
TR TGF-β receptor
tTRII Dominant negative TRII
tTRII-expressing T cells CD19 CAR-tTRII-T cells and CD19 CAR-tTRII-I7R-T cells
tTRII-I7R TGF-β/IL-7 CSR

References
1. Soundara Rajan, T.; Gugliandolo, A.; Bramanti, P.; Mazzon, E. In vitro-transcribed mRNA chimeric antigen receptor t cell (IVT

mRNA CAR T) therapy in hematologic and solid tumor management: A preclinical update. Int. J. Mol. Sci. 2020, 21, 6514.
[CrossRef]

2. Sermer, D.; Brentjens, R. CAR T-cell therapy: Full speed ahead. Hematol. Oncol. 2019, 37, 95–100. [CrossRef] [PubMed]
3. Newick, K.; O’brien, S.; Moon, E.; Albelda, S.M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 2017, 68, 139–152.

[CrossRef] [PubMed]
4. Jindal, V.; Arora, E.; Gupta, S. Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Med. Oncol.

2018, 35, 87. [CrossRef]
5. Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al.

Chimeric antigen receptor t cells for sustained remissions in leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [CrossRef]
6. Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.;

Myers, G.D.; et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 2018, 378,
439–448. [CrossRef]

7. Porter, D.L.; Hwang, W.T.; Frey, N.V.; Lacey, S.F.; Shaw, P.A.; Loren, A.W.; Bagg, A.; Marcucci, K.T.; Shen, A.; Gonzalez, V.; et al.
Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia.
Sci. Transl. Med. 2015, 7, 303ra139. [CrossRef]

8. Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ø.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.;
Lanksburg, D.; et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554.
[CrossRef] [PubMed]

9. Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; Mcguirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.;
Westin, J.R.; et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 2019, 380, 45–56.
[CrossRef] [PubMed]

10. Gowrishankar, K.; Birtwistle, L.; Micklethwaite, K. Manipulating the tumor microenvironment by adoptive cell transfer of CAR
T-cells. Mamm. Genome 2018, 29, 739–756. [CrossRef]

11. Höpken, U.E.; Rehm, A. Targeting the tumor microenvironment of leukemia and lymphoma. Trends Cancer 2019, 5, 351–364.
[CrossRef]

12. Yu, Q.; Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor
invasion and angiogenesis. Genes Dev. 2000, 14, 163–176. [CrossRef]

13. Govinden, R.; Bhoola, K. Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacol. Ther. 2003, 98,
257–265. [CrossRef]

14. Rubtsov, Y.P.; Rudensky, A.Y. TGFβ signalling in control of T-cell-mediated self-reactivity. Nat. Rev. Immunol. 2007, 7, 443–453.
[CrossRef] [PubMed]

http://doi.org/10.3390/ijms21186514
http://doi.org/10.1002/hon.2591
http://www.ncbi.nlm.nih.gov/pubmed/31187533
http://doi.org/10.1146/annurev-med-062315-120245
http://www.ncbi.nlm.nih.gov/pubmed/27860544
http://doi.org/10.1007/s12032-018-1149-9
http://doi.org/10.1056/NEJMoa1407222
http://doi.org/10.1056/NEJMoa1709866
http://doi.org/10.1126/scitranslmed.aac5415
http://doi.org/10.1056/NEJMoa1708566
http://www.ncbi.nlm.nih.gov/pubmed/29226764
http://doi.org/10.1056/NEJMoa1804980
http://www.ncbi.nlm.nih.gov/pubmed/30501490
http://doi.org/10.1007/s00335-018-9756-5
http://doi.org/10.1016/j.trecan.2019.05.001
http://doi.org/10.1101/gad.14.2.163
http://doi.org/10.1016/S0163-7258(03)00035-4
http://doi.org/10.1038/nri2095
http://www.ncbi.nlm.nih.gov/pubmed/17525753


Int. J. Mol. Sci. 2021, 22, 8706 13 of 14

15. Leivonen, S.K.; Kähäri, V.M. Transforming growth factor-β signaling in cancer invasion and metastasis. Int. J. Cancer 2007, 121,
2119–2124. [CrossRef]

16. Chen, M.-L.; Pittet, M.J.; Gorelik, L.; Flavell, R.A.; Weissleder, R.; Von Boehmer, H.; Khazaie, K. Regulatory T cells suppress
tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 419–424. [CrossRef]

17. Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.-K.L.; Flavell, R.A. Transforming growth factor-β regulation of immune responses.
Annu. Rev. Immunol. 2006, 24, 99–146. [CrossRef] [PubMed]

18. Wieser, R.; Attisano, L.; Wrana, J.L.; Massagué, J. Signaling activity of transforming growth factor beta type II receptors lacking
specific domains in the cytoplasmic region. Mol. Cell. Biol. 1993, 13, 7239–7247. [CrossRef] [PubMed]

19. Lacuesta, K.; Buza, E.; Hauser, H.; Granville, L.; Pule, M.; Corboy, G.; Finegold, M.; Weiss, H.; Chen, S.Y.; Brenner, M.K.; et al.
Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-β receptor. J.
Immunother. 2006, 29, 250–260. [CrossRef]

20. Bollard, C.M.; Rossig, C.; Calonge, M.J.; Huls, M.H.; Wagner, H.-J.; Massague, J.; Brenner, M.K.; Heslop, H.E.; Rooney, C.M.
Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood 2002, 99,
3179–3187. [CrossRef] [PubMed]

21. Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-
negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication.
Mol. Ther. 2018, 26, 1855–1866. [CrossRef] [PubMed]

22. Bollard, C.M.; Tripic, T.; Cruz, C.R.; Dotti, G.; Gottschalk, S.; Torrano, V.; Dakhova, O.; Carrum, G.; Ramos, C.A.; Liu, H.; et al.
Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed
Hodgkin lymphoma. J. Clin. Oncol. 2018, 36, 1128. [CrossRef] [PubMed]

23. Lin, J.; Zhu, Z.; Xiao, H.; Wakefield, M.R.; Ding, V.A.; Bai, Q.; Fang, Y. The role of IL-7 in immunity and cancer. Anticancer Res.
2017, 37, 963–967. [CrossRef]

24. Ribeiro, D.; Melão, A.; Barata, J.T. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv. Biol. Regul. 2013, 53,
211–222. [CrossRef] [PubMed]

25. Li, W.Q.; Jiang, Q.; Khaled, A.R.; Keller, J.R.; Durum, S.K. Interleukin-7 inactivates the pro-apoptotic protein bad promoting T cell
survival. J. Biol. Chem. 2004, 279, 29160–29166. [CrossRef]

26. Hand, T.W.; Cui, W.; Jung, Y.W.; Sefik, E.; Joshi, N.S.; Chandele, A.; Liu, Y.; Kaech, S.M. Differential effects of STAT5 and
PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. USA 2010, 107, 16601–16606. [CrossRef]

27. Niu, N.; Qin, X. New insights into IL-7 signaling pathways during early and late T cell development. Cell. Mol. Immunol. 2013, 10,
187–189. [CrossRef]

28. Deiser, K.; Stoycheva, D.; Bank, U.; Blankenstein, T.; Schüler, T. Interleukin-7 modulates anti-tumor CD8+ T cell responses via its
action on host cells. PLoS ONE 2016, 11, e0159690. [CrossRef]

29. Tay, J.C.; Zha, S.; Wang, S. Chimeric switch receptor: Switching for improved adoptive T-cell therapy against cancers. Immunother-
apy 2017, 9, 1339–1349. [CrossRef]

30. Heldin, C.-H.; Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 2016, 8, a022053.
[CrossRef]

31. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

32. Coupland, S.E. The challenge of the microenvironment in B-cell lymphomas. Histopathology 2011, 58, 69–80. [CrossRef] [PubMed]
33. Li, Y.-S.; Wasserman, R.; Hayakawa, K.; Hardy, R.R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity

1996, 5, 527–535. [CrossRef]
34. Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.;

Lin, Y.; et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544.
[CrossRef] [PubMed]

35. Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.;
Timmerman, J.M. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A
single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [CrossRef]

36. Lee, J.-H.; Choi, S.-Y.; Jung, N.-C.; Song, J.-Y.; Seo, H.G.; Lee, H.S.; Lim, D.-S. The effect of the tumor microenvironment and
tumor-derived metabolites on dendritic cell function. J. Cancer 2020, 11, 769. [CrossRef]

37. Flavell, R.A.; Sanjabi, S.; Wrzesinski, S.H.; Licona-Limón, P. The polarization of immune cells in the tumour environment by
TGFβ. Nat. Rev. Immunol. 2010, 10, 554–567. [CrossRef] [PubMed]

38. Foster, A.E.; Dotti, G.; Lu, A.; Khalil, M.; Brenner, M.K.; Heslop, H.E.; Rooney, C.M.; Bollard, C.M. Antitumor activity of
EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 2008, 31, 500–505. [CrossRef]

39. Ankri, C.; Shamalov, K.; Horovitz-Fried, M.; Mauer, S.; Cohen, C.J. Human T cells engineered to express a programmed death
1/28 costimulatory retargeting molecule display enhanced antitumor activity. J. Immunol. 2013, 191, 4121–4129. [CrossRef]

40. Kobold, S.; Grassmann, S.; Chaloupka, M.; Lampert, C.; Wenk, S.; Kraus, F.; Rapp, M.; Düwel, L.P.; Zeng, Y.; Schmollinger, J.C.; et al.
Impact of a new fusion receptor on PD-1–mediated immunosuppression in adoptive T cell therapy. J. Natl. Cancer Inst. 2015,
107, djv146. [CrossRef] [PubMed]

http://doi.org/10.1002/ijc.23113
http://doi.org/10.1073/pnas.0408197102
http://doi.org/10.1146/annurev.immunol.24.021605.090737
http://www.ncbi.nlm.nih.gov/pubmed/16551245
http://doi.org/10.1128/MCB.13.12.7239
http://www.ncbi.nlm.nih.gov/pubmed/8246946
http://doi.org/10.1097/01.cji.0000192104.24583.ca
http://doi.org/10.1182/blood.V99.9.3179
http://www.ncbi.nlm.nih.gov/pubmed/11964281
http://doi.org/10.1016/j.ymthe.2018.05.003
http://www.ncbi.nlm.nih.gov/pubmed/29807781
http://doi.org/10.1200/JCO.2017.74.3179
http://www.ncbi.nlm.nih.gov/pubmed/29315015
http://doi.org/10.21873/anticanres.11405
http://doi.org/10.1016/j.jbior.2012.10.005
http://www.ncbi.nlm.nih.gov/pubmed/23234870
http://doi.org/10.1074/jbc.M401656200
http://doi.org/10.1073/pnas.1003457107
http://doi.org/10.1038/cmi.2013.11
http://doi.org/10.1371/journal.pone.0159690
http://doi.org/10.2217/imt-2017-0103
http://doi.org/10.1101/cshperspect.a022053
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1111/j.1365-2559.2010.03706.x
http://www.ncbi.nlm.nih.gov/pubmed/21261684
http://doi.org/10.1016/S1074-7613(00)80268-X
http://doi.org/10.1056/NEJMoa1707447
http://www.ncbi.nlm.nih.gov/pubmed/29226797
http://doi.org/10.1016/S1470-2045(18)30864-7
http://doi.org/10.7150/jca.38785
http://doi.org/10.1038/nri2808
http://www.ncbi.nlm.nih.gov/pubmed/20616810
http://doi.org/10.1097/CJI.0b013e318177092b
http://doi.org/10.4049/jimmunol.1203085
http://doi.org/10.1093/jnci/djv146
http://www.ncbi.nlm.nih.gov/pubmed/26105028


Int. J. Mol. Sci. 2021, 22, 8706 14 of 14

41. Shin, J.H.; Park, H.B.; Lim, D.P.; Lee, J.E.; Seo, H.H.; Lee, S.F.; Eom, H.S.; Kim, I.H.; Lee, S.H.; Choi, K. Positive conversion of
negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models. Blood 2012, 119,
5678–5687. [CrossRef] [PubMed]

42. Colombetti, S.; Lévy, F.; Chapatte, L. IL-7 adjuvant treatment enhances long-term tumor antigen-specific CD8+ T-cell responses
after immunization with recombinant lentivector. Blood 2009, 113, 6629–6637. [CrossRef]

43. Kneissl, S.; Zhou, Q.; Schwenkert, M.; Cosset, F.-L.; Verhoeyen, E.; Buchholz, C.J. CD19 and CD20 targeted vectors induce minimal
activation of resting B lymphocytes. PLoS ONE 2013, 8, e79047. [CrossRef] [PubMed]

44. Kneissl, S.; Abel, T.; Rasbach, A.; Brynza, J.; Schneider-Schaulies, J.; Buchholz, C.J. Measles virus glycoprotein-based lentiviral
targeting vectors that avoid neutralizing antibodies. PLoS ONE 2012, 7, e46667. [CrossRef]

45. Tsai, C.Y.; Liong, K.H.; Gunalan, M.G.; Li, N.; Lim, D.S.L.; Fisher, D.A.; Macary, P.A.; Leo, Y.S.; Wong, S.C.; Puan, K.J.; et al. Type I
IFNs and IL-18 regulate the antiviral response of primary human γδ T cells against dendritic cells infected with Dengue virus. J.
Immunol. 2015, 194, 3890–3900. [CrossRef] [PubMed]

http://doi.org/10.1182/blood-2011-09-380519
http://www.ncbi.nlm.nih.gov/pubmed/22538857
http://doi.org/10.1182/blood-2008-05-155309
http://doi.org/10.1371/journal.pone.0079047
http://www.ncbi.nlm.nih.gov/pubmed/24244415
http://doi.org/10.1371/journal.pone.0046667
http://doi.org/10.4049/jimmunol.1303343
http://www.ncbi.nlm.nih.gov/pubmed/25732728

	Introduction 
	Results 
	Characterization of CAR-T Cells 
	tTRII Improves TGF-1-Mediated Inhibition of Ag-Specific Tumor Killing by CAR-T Cells 
	CD19 CAR-tTRII-I7R-T Cells Show Increased Anti-Tumor Efficacy In Vivo 

	Discussion 
	Materials and Methods 
	Ethics Statement 
	Cell Lines 
	Mice 
	Construction of Lentivirus-Based Vectors and Vector Design 
	Lentiviral Vector Production and Titration 
	Generation of CAR-T Cells 
	Flow Cytometric Analysis 
	Western Blotting 
	qRT-PCR 
	Cytotoxicity of CAR-T-19 Cells 
	Bioluminescence Imaging 
	Statistical Analysis 

	References

