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Abstract

There aremany problems in biology and related disciplines involving stochasticity, where a signal can only be detectedwhen it
lies above a threshold level, while signals lying below threshold are simply not detected. A consequence is that the detected
signal is conditioned to lie above threshold, and is not representative of the actual signal. In thiswork,wepresent somegeneral
results for the conditioning that occurs due to the existence of such an observational threshold. We show that this condition-
ing is relevant, for example, to gene-frequency trajectories, where many loci in the genome are simultaneously measured in a
given generation. Such a threshold can lead to severe biases of allele frequency estimates under purifying selection. In the
analysis presented, within the context of Markov chains such as the Wright–Fisher model, we address two key questions:
(1) “What is a natural measure of the strength of the conditioning associated with an observation threshold?” (2) “What
is a principled way to correct for the effects of the conditioning?”. We answer the first question in terms of a proportion.
Starting with a large number of trajectories, the relevant quantity is the proportion of these trajectories that are above thresh-
old at a later time andhence are detected. The smaller the value of this proportion, the stronger the effects of conditioning.We
provide an approximate analytical answer to the secondquestion, that corrects the bias producedby anobservation threshold,
and performs to reasonable accuracy in the Wright–Fisher model for biologically plausible parameter values.

Key words: conditioned observations, missing values, random genetic drift, Wright–Fisher model, population genetics
theory, stochastic population dynamics.

Introduction
There are many problems in biology and related disciplines
involving stochasticity, that is, randomness that unfolds
over time, where the detection of a non-negative signal
(such as a number) can be made only when the signal lies

above a threshold level. When there is such an observation
threshold, we assume that a signal with a value below
threshold, at the time of observation, is not detected.
Alternatively, if the signal has a value above threshold
then it can be detected and recorded and used in analysis.

Significance
The occurrence of signals with undetectable values is common in biological data. A possible consequence of this is a
severe bias in the observed data. Here we focus on the implications, primarily for allele frequencies, of the situation
where a biological signal, such as the count of a number, can only be detected when it lies above a threshold level.
When there is such an observation threshold, the signal detected is not representative of the actual signal, but corre-
sponds to a signal that is conditioned to lie above threshold. This conditioning is explicitly shown to have an appreciable
effect on measurable quantities and needs to be fully taken into account in the analysis of biological data. In a math-
ematical analysis of this problem, we (1) determine a natural measure of the strength of the conditioning associated
with an observation threshold, and (2) determine an approximate way to correct for the effects of the conditioning.
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Importantly, the values of a signal that are detected, when
there is an observation threshold, are not representative of
the actual signal, but correspond to a signal that is condi-
tioned to lie above the threshold level.

Detecting and quantifying signals with an implicit
threshold, that lead to missing (or non-observed) values
are widespread in biological data, such as label-free mass
spectrometry (Karpievitch et al. 2009, 2012). A possible
consequence of missing values are severe biases, although
their systematic impact is often unclear (Välikangas et al.
2018). Generally missing values in biological measurements
can be roughly divided into two types: (1) abundance-
dependent missing values (e.g., due to a detection limit
of an instrument), and (2) values missing at random (e.g.,
erroneous non-identification). However, distinguishing be-
tween these two types of missing values is far from trivial.
To address the missing value problem in biological data
various methods of data imputation have been proposed
(Webb-Robertson et al. 2015), but these methods them-
selves may introduce additional biases (Välikangas et al.
2018).

Missing values, as a result of observation thresholds, are
not only common to proteomics, but also apply to next-
generation sequencing data. For example, observation
thresholds become relevant when the amount of a bio-
logical sample or the sequencing depth is low, as occurs
in metagenomics (Hildebrand et al. 2019), single-cell tran-
scriptomics (Yang et al. 2018), genome re-sequencing ap-
proaches (Kim et al. 2011; Nielsen et al. 2011; Chan et al.
2016; Barghi et al. 2019) and ancient DNA (Loog et al.
2017). If not taken into account, missing values may lead
to severe biases in subsequent population genetic analyses,
as occurs, for example, when a large number of data points
are excluded (Hughes et al. 2008; Stoletzki and Eyre-Walker
2011). Correcting for missing values and the resulting
biases may, however, be possible, but has typically been
dealt with using methods tailored to the particular problem
at hand (Rimmer et al. 2014; Han et al. 2015).

Due to advances in DNA sequencing, the availability of
time-series data has become increasingly common
(Malaspinas et al. 2012). Extensive time-series data presents
the opportunity for more efficient methods of detecting se-
lection, due to the link between allele frequency trajectories
and the strength of selection (Bollback et al. 2008). As a re-
sult of this, likelihood-based methods have been developed
to co-estimate selection coefficients and the effective
population size (Bollback et al. 2008; Foll et al. 2015;
Shim et al. 2016). Additionally, Bayesian approaches have
been developed to detect targets of selection from
evolve-and-resequence experiments (Schraiber et al.
2016; Barata et al. 2020).

Gene frequency trajectories may be used to trace the
fate of an individual mutation, or a set of mutations, in a
time-dependent manner, in order to identify the underlying

selective regime (Gossmann et al. 2014; Shafiey et al.
2017). The behavior of gene frequency trajectories is deter-
mined by the interplay of deterministic and random evolu-
tionary “forces” and various conclusions can be drawn
from knowledge of such trajectories. However, suppose
we have limited knowledge of a gene frequency trajectory.
As an example, supposewe know the initial frequency of an
allele (in, say ancient DNA, Dehasque et al. 2020), and we
know the frequency of the allele in extant organisms, which
is the final frequency of the trajectory. This knowledge, lim-
ited as it is to initial and final frequencies, amounts to a
form of conditioning of the trajectory (also described as
“ascertainment” in the literature, Marth et al. 2004) that
may strongly influence our estimates of the trajectory at
intermediate times and its overall shape. Indeed, condition-
ing trajectories, by restricting considerations to only trajec-
tories with known initial and final frequencies, has been
previously shown to be indistinguishable from the action
of an additional evolutionary force, which may be inter-
preted as a contribution to the selection that is acting
(Zhao et al. 2013). Furthermore, this “conditioning induced
additional selection” can easily be comparable with the ac-
tual selection that is acting (Zhao et al. 2013; Shafiey et al.
2017). Closely related to this, is the conditioning that arises
from an observation threshold, where the only frequency
trajectories that contribute to any analysis are those whose
final frequency lies above a threshold. The trajectories
whose final frequency lies below threshold are not ob-
served, and are effectively discarded. This “threshold condi-
tioning,” if not taken into account, may lead to appreciable
distortions of the inferred behavior of such trajectories, and
may confound estimates of biologically relevant parameters
that characterize the dynamics. Generally, threshold condi-
tioning needs to be fully taken into account in the analysis
of biological data.

In this work, we focus on the implications, for allele fre-
quencies, of the conditioning associated with an observa-
tion threshold. We restrict our considerations to systems
that can be described as Markov chains. These are “mem-
oryless” systems in which only knowledge of the present
state of the system (and not that of past states), influences
future behavior. Standard models of genetics, such as the
Wright–Fisher model (Fisher 1930; Wright 1931), are
Markov chains.

In this work, we address the following two key
questions.

1. What is a natural measure of the bias of estimates that
results due to an observation threshold?

2. What is a principled way to correct for the bias of results
arising from an observation threshold?

The overall structure of this paper, that leads to the an-
swers to these questions, is as follows.
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The main text begins with a presentation of the theory
associated with an observation threshold, which we give
in a somewhat general setting, due to the possible applic-
ability of this work in different areas. A crucial role is shown
to be played by Pdet, the probability that a detectable (i.e.,
above threshold) result will be obtained at the time of ob-
servation. An alternative interpretation of Pdet is that it is
the proportion of a large number of trajectories of the sys-
tem (for example frequency trajectories) which exceed the
threshold value at the time of observation. We discuss
Pdet in a section that deals with its importance as a natural
measure of the bias that results, due to the existence of a
threshold. We then show how Pdet can be used to approxi-
mately correct results that have become biased in value, be-
cause of the threshold.

Next, we illustrate the usage of the theory in the context
of amodel of population genetics.We carry out simulations
of a population that is subject to a threshold such that tra-
jectories associated with focal alleles are unobservable if
they lie below a threshold frequency. This is then followed
by a section where the Wright–Fisher model is analysed, to
show in some detail the effects of a threshold and we pre-
sent a statistical analysis that illustrates the use of Pdet to
correct frequency observations made in the presence of a
threshold. The main text concludes with a discussion,
where application of this work to real data is illustrated.
Three appendices contain mathematical details of the the-
ory presented in this work.

Theory
While there may be other interpretations of this work, we
shall discuss the conditioning associated with an observa-
tion threshold using language and notation appropriate
to trajectories of a system. Thus we assume the system is
described by a discrete numerical value of a measurable
quantity, which randomly changes over time (thereby con-
stituting a stochastic process). With t denoting the time,
and M(t) denoting value of the measurable quantity at
time t, a trajectory is simply the set of values thatM(t) takes
over a range of times. For example, if M(t) corresponds to
the number of copies of an allele in a population at time
t, then a trajectory in this case corresponds to the set of va-
lues that this number sequentially achieves over a range of
times.

The conditioning we consider in this work represents
limitations, at a given observation time, on what can be ob-
served about aMarkov chain (i.e., a “memoryless” stochas-
tic process Tuckwell 1995). In terms of trajectories of the
system, conditioning can be viewed as there being a subset
of trajectories that are not observable because they fail to
satisfy a particular condition. Generally, statistical effects
and implications of conditioning emerge by computing sta-
tistics of interest from only the subset of trajectories that

satisfy the particular condition and hence are observable
(thereby yielding conditioned statistics).

We shall next give results for a class of conditioned pro-
blems for discrete state/discrete time Markov chains.
Related results (not presented) apply to continuous state/
continuous-time diffusion processes, since there are very
close mathematical relations between the discrete and con-
tinuous problems. Indeed, a diffusion process is a well-
known continuous state/continuous-time process that is a
very natural and reasonable approximation of a standard
discrete state Markov chain of population genetics, namely
the Wright–Fisher model (Kimura 1964).

Markov Chain Model
Consider a discrete state, discrete time Markov chain, where
times are given by t = 0, 1, 2, . . . , and state labels are inte-
gers that can take the finite range of values 0, 1, 2, . . . , N.
We shall often use the letters n and m for state labels.

Let M(t) denote a random variable that represents the
state of the system at time t. Thus M(t) takes one of the
values 0, 1, . . . , N.

We assume that the label used to describe the state of the
Markov chain is proportional to ameasurable quantity such as
a frequency, a number or a position, and in what follows, we
shall not distinguish between the label of the state (state for
short), and the value of the associated measurable quantity.
Then states that lie below threshold (sub-threshold states)
are associated with a small value of the measurable quantity.
We consider the situation where, at an observation, only va-
lues of the measurable quantity/state of the system that ex-
ceed the value z can be detected. If the state of the system
is z or smaller than the measurable quantity will not be de-
tected. We term z the threshold value.

Wework under the assumptions that: (i) at an initial time
of 0 the system is described by a known distribution (or is in
a known state), and (ii) at a later time, termed the observa-
tion time and denoted by tobs, the state of the system is
measured/observed.

Let us describe the random variable representing the
state of the system at time t, namely M(t), in probabilistic
terms. For u ≤ t let Km,n(t |u) denote the probability that
M(t) takes the value m (i.e., that M(t) = m), given that at
earlier time, u, it took the value n (i.e., M(u) = n). Thus
Km,n(t |u) = Prob[M(t) = m |M(u) = n]. It is convenient to
write this probability as the (n, m) element of an (N+ 1)×
(N+ 1) matrix K(t | u) and we use the notation Km,n(t |u)
or [K(t |u)]m,n to denote the matrix element. The matrix
K(t |u) changes according to the rule

K(t + 1 |u) = W(t)K(t |u) (1)

where W(t) is the transition matrix of the Markov chain at
time t. The transition matrix governs changes of state
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between the times t and t + 1, and the (m, n) element of
this matrix is given by Wm,n(t) ; [W(t)]m,n = Prob[M(t +
1) = m |M(t) = n] (Tuckwell 1995).

Probability of an above Threshold Result
For the form of conditioning considered here, a basic quan-
tity of interest is the probability that a detectable result will
be obtained at time tobs. We write this probability as Pdet. It
is the probability of the system achieving a state that lies
above threshold at time tobs and we can write

Pdet = Prob[M(tobs) . z]. (2)

Another interpretation is that Pdet is the proportion of a
large number of trajectories of the system whose value,
at time tobs, exceeds the threshold value, z.

Throughout this work, we shall make the assumption
that Pdet lies in the range

0 , Pdet , 1 (3)

which corresponds to some, but not all, of a large number of
trajectories, being above threshold at the observation time.

Proceeding, let the initial distribution of states of the sys-
tembe given by the column vectorF(0), whosemth element,
written Fm(0), is the probability thatM(0) = m. In Appendix
A we show that in terms of the quantity Qm defined by

Qm =
∑
b.z

Kb,m(tobs |0) (4)

we have

Pdet =
∑N
m=0

QmFm(0) general case

= Qa special case
(5)

where the general case applies when a set of states, as de-
scribed by F(0), have a non-zero probability to occur at
time 0, while the special case applies when only state a occurs
at time 0.

We note that Pdet, by its definition (eqs. 4 and 5), de-
pends on tobs, z, and F(0). In addition Pdet depends on
the parameters that characterize the Markov chain and
hence characterize the behavior of M(t).

We shall provide numerical examples of Pdet later, when
we consider a specific Markov chain model of interest in
population genetics.

Conditional Distribution
An unconditioned system has a probability distribution that
at time t is given by F(t) = K(t |0)F(0) or more explicitly

Fm(t) =
∑N
n=0

Km,n(t |0)Fn(0) general case

= Km,a(t |0) special case. (6)

As before, the general case applies when the sets of states
described byF(0) can occur at time 0, while the special case
applies when only state a occurs at time 0.

We show in Appendix B that when only states exceeding z
can be detected at the observation time, tobs, the correspond-
ing conditional distribution of the state of the system [equiva-
lently the conditional distribution ofM(tobs)], is given by

Fcond
m (tobs) =

0, m ≤ z,

Fm(tobs)
Pdet

, m . z.

⎧⎪⎨
⎪⎩ (7)

Importance of Pdet and Retrieving
Unconditioned Results
Given the unconditioned distribution of M(t) at the obser-
vation time t = tobs, the effect of conditioning on the distri-
bution seems fairly innocuous, namely (i) eliminate the
contribution of sub-threshold states and (ii) renormalize
the resulting distribution, so it is normalized to unity [this re-
normalization results in the presence of Pdet in equation (7)].
The conditioning, however, generally causes an increase in
the expected value of M(tobs) relative to the unconditioned
value (see Appendix C), and the level of this increase can be
substantial. The numerical results we give below, in figure 1
and table 1, show that when the observation threshold is
5% of the maximum possible value of M, there can be
more than a 50% increase in the expected value of M
due to conditioning. Yet larger increases, due to condition-
ing, can easily arise. For example, just changing the obser-
vation time used in figure 1 and table 1, from 150
generations to 300 generations, leads, approximately, to
a 280% increase in the expected value of M due to condi-
tioning. There can thus be large discrepancies between sta-
tistics of M(tobs), which are determined from observations
which incorporate effects of the threshold into their values,
and the “true” statistics of M(tobs), which would be ob-
tained if no such threshold existed.

We use basic probabilistic reasoning to determine a gen-
eral relation between the unconditional expected value of
M(tobs), written as E[M(tobs)], and the corresponding condi-
tional expected value of M(tobs), which we write as
Ez[M(tobs)], with the z subscript indicating that the expected
value is conditioned to lie above the threshold, z. More ex-
plicitly, the conditional expected value is defined by
Ez[M(tobs)] ; E[M(tobs) |M(tobs) . z]. We find a general re-
lation between unconditional and conditional expected va-
lues given by
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E[M(tobs)] ≥ Ez[M(tobs)]× Pdet. (8)

(see Appendix C) with the initial distribution,F(0), implicitly
present in E[M(tobs)], Ez[M(tobs)] and Pdet in equation (8).

The quantities on the right-hand side of equation (8) are
both, in principle, obtainable from observations. That is, if
we have a large number of trajectories ofM(t), and at an ini-
tial time (taken to be t = 0), the number of these trajectories
is known, then (i) the proportion of these trajectories with
M(tobs) . z, and hence are detected at time tobs, leads dir-
ectly to an estimate of Pdet, and (ii) the set of values of
M(tobs) that are detected allows an estimate of the condi-
tional expected value, Ez[M(tobs)] (along with other condi-
tioned statistics). Thus the unconditional expected value of
M(tobs) (the “true” mean value of M(tobs)—calculated
from all trajectories), which occurs on the left-hand side of
equation (8), must equal or exceed the product of measur-
able quantities on the right-hand side of equation (8). (We
note that the quantity Ez[M(tobs)]× Pdet that appears on
the right-hand side of equation (8) is equivalent to the result
we would obtain from a large number of trajectories, when
trajectories that lie at or below the threshold, at time tobs,
have their value set to 0. However, as assumed in this
work, such “below threshold” trajectories are not detect-
able, so this equivalence cannot be exploited.)

Equation (8) can be extended to apply to other positive
moments, using the same reasoning. Thus

E{[M(tobs)]
k} ≥ Ez{[M(tobs)]

k}× Pdet for k . 0. (9)

It is convenient to give a name to the quantity on the right-
hand side of equation (9), and the numerical evidence
we present in the next section (for population genetic
models) suggests that equation (9) may hold, approximate-
ly, as an equality. (Equation (9) will approximately hold as
an equality if, for example, there is an appreciable
probability that M(tobs) is small (≪z), so that

E{[M(tobs)]
k |M(tobs) ≤ z} ≪ zk.) Hence Ez{[M(tobs)]

k}× Pdet
may play the role of an estimate of the unconditioned va-

lue, E{[M(tobs)]
k}. Accordingly, we define

Eest{[M(tobs)]
k} = Ez{[M(tobs)]

k}× Pdet. (10)

Then equation (9) can be written as E{[M(tobs)]
k} ≥

Eest{[M(tobs)]
k}.

When equation (8) approximately holds as an equality,
so that E[M(tobs)] ≃ Eest[M(tobs)] ; Ez[M(tobs)]× Pdet, it
gives us a means of directly addressing the two questions
raised at the beginning of this paper.

FIG. 1.—Simulated replicate trajectories of aWright–Fishermodel for an asexual haploid population of sizeN = 500. In themodel, a single biallelic locus,
with alleles A and B, is under selection. With X(t) denoting the frequency of the A allele in generation t, all trajectories started from an initial frequency of
X(0) = a/N = 200/500 = 0.4. The selection coefficient of the A allele, relative to that of the B allele is s = −0.01, and there are equal forward and back-
ward mutation rates of the A allele of m = n = 10−5. The figure shows only 20 of the stochastic trajectories but 10,000 replicate trajectories were used to
calculate statistics at an observation time of tobs = 150 generations. The 10,000 replicate trajectories represent 10,000 independent loci in the hybridization
scenario described in the text. A threshold, acting at a frequency of z/N = 25/500 = 5%, renders undetectable any of the focal loci with an A allele fre-
quency of 5% or less. For a particular simulation run, a proportion Pdet ≃ 0.6467 of all 10,000 trajectories were above threshold at tobs, and hence were
detectable. For this simulation run the unconditioned mean value of the frequency at the observation time (i.e., calculated from all 10,000 trajectories)
was E[X(tobs)] ≃ 0.1498, but the corresponding mean value, when conditioned to lie above threshold, was found to be Ez[X(tobs)] ≃ 0.2249. Using
Eest[X(tobs)] = Ez[X(tobs)]× Pdet, as an estimate of the unconditionedmean frequency, leads to Eest[X(tobs)] ≃ 0.1455. Thus for this simulation run, the con-
ditioned expected value, Ez[X(tobs)], is approximately 50% larger than the unconditioned result E[X(tobs)], while the estimated result, following from
Eest[X(tobs)], differs from the unconditioned result by approximately 3%. More statistics, based on this simulation run, are given in table 1.
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First, we see the ratio of conditioned to unconditioned
expected values is given by Ez[M(tobs)]/E[M(tobs)] ≃ 1/Pdet
and hence small values of Pdet correspond to large
enhancements of the conditioned expected value,
Ez[M(tobs)], over that of the unconditional value,
E[M(tobs)]. Thus a natural measure of the strength of con-
ditioning associated with an observation threshold is the
value of 1/Pdet. Conditioning, which results in an appre-
ciable fraction of trajectories being undetectable at the
observation time, will have a large effect on the condi-
tional expected value of M(tobs).

Second, direct application of equation (8), when
approximated as an equality, allows us to retrieve the
unconditioned expected value, E[M(tobs)], and similarly
higher moments, from measured data associated with
many trajectories.

Application to Population Genetics
For simplicity, we shall consider a finite population of asex-
ual haploid individuals that have a single locus with two al-
leles, written A and B. The effects of a threshold, in such a

population, can be straightforwardly extended to a one-
locus diploid sexual population.

We treat the behavior of the asexual haploid population
within the framework of a Wright–Fisher model (Fisher
1930;Wright 1931).Wewrite the frequency of theA allele as

X(t) = M(t)
N

(11)

whereM(t) is the number of copies of the A allele in adults in
the population in generation t, and N is the total number of
adults in every generation. The possible values that M(t) can
take are 0, 1, 2, . . . , N, while t takes the values
0, 1, . . . , tobs.

We take the locus to be subject to selection and muta-
tion, with the A allele having a fitness of 1+ s relative to
that of the B allele, along with a forward mutation rate of
m and a backward mutation rate of n, that is, A �

m

n
B (a

Wright–Fisher model that includes selection and two way
mutation is given, e.g., on page 65 of the text book by
Hoppensteadt 1982).

Prior to giving a formal analysis of the Wright–Fisher
model, we shall illustrate the effects of an observation
threshold on simulated data. The simulated results will ap-
ply to a finite population with multiple loci, but will be gen-
erated from a one locus asexual haploid model, directly
illustrating a broader application of this model.

Illustrative Simulation
We consider the occurrence of a one-off hybridization
event between two distinct randomly mating hermaphro-
ditic populations. In their life-cycle, the individuals in these
populations are assumed to have a very brief diploid sexual
phase, where gamete production with crossover occurs,
while selection occurs in the haploid phase.

At a set of assumed statistically independent focal loci in
the haploid phase, one of the populations has what we de-
scribe as A alleles. At the same set of loci, the other popu-
lation has different alleles that we shall describe as B alleles.
Immediately after hybridization, the hybrid population has
a frequency of the A allele, at all focal loci, of a/N. At a
time of tobs generations later, observations are made of
the allele frequencies at the focal loci in the hybrid popula-
tion. We assume an observation threshold renders un-
detectable any of the focal loci with A allele frequencies
that are z/N or smaller. For simplicity, we treat all focal
loci as being identical as far as selection and mutation are
concerned. We thus take the A allele at each focal locus
to have a fitness of 1+ s relative to that of the B allele,
along with a forward mutation rate of m and a backward
mutation rate of n, that is, A �

m

n
B. Because of the assumed

statistical independence of the focal loci, the frequency tra-
jectories at the different loci can be viewed as replicate

Table 1.
This Table Contains Results from a Simulation of a Wright–Fisher
Population with Parameters and Description as Given in the Caption
of Figure 1

Quantity Description Value % Error

E[X(tobs)] Unconditioned mean frequency 0.15 —

Ez[X(tobs)] Conditioned mean frequency 0.22 50.2
Eest[X(tobs)] Estimated mean frequency 0.15 −2.9
E[(X(tobs))

2] Unconditioned mean square
frequency

0.05 —

Ez[(X(tobs))
2] Conditioned mean square frequency 0.07 54.2

Eest[(X(tobs))
2] Estimated mean square frequency 0.05 −0.3

Var(X(tobs)) Unconditioned variance 0.03 —

Varz(X(tobs)) Conditioned variance 0.02 −9.3
Varest(X(tobs)) Estimated variance 0.03 4.5

NOTE.—The statistics reported in the table are as follows.
(1) Mean frequency of the A allele when:

(i) unconditioned (calculated from all 10,000 trajectories) and written
E[X(tobs)],

(ii) conditioned to lie above threshold (calculated from 6,467 above
threshold trajectories, corresponding to Pdet ≃ 0.6467) and written
Ez[X(tobs)],

(iii) estimated from Eest[X(tobs)] which is defined as Ez[X(tobs)]× Pdet.
(2) Mean square frequency of the A allele when:

(i) unconditioned, written E{[X(tobs)]
2},

(ii) conditioned to lie above threshold, written Ez{[X(tobs)]
2},

(iii) estimated, from Eest{[X(tobs)]
2} which is defined as

Ez{[X(tobs)]
2}× Pdet.

(3) Variance of X(tobs) when:
(i) unconditioned, writing Var[X(tobs)] = E{[X(tobs)]

2}− E[X(tobs)]
2,

(ii) conditioned to lie above threshold, writing
Varz[X(tobs)] = Ez{[X(tobs)]

2}− Ez[X(tobs)]
2,

(iii) estimated, writing Varest[X(tobs)] which is defined as
Eest{[X(tobs)]

2}− {Eest[X(tobs)]}
2.

In addition, percentage errors of the conditioned and estimated results are
given, relative to the unconditioned results.
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trajectories associated with a single haploid locus in an
asexual population. Figure 1 illustrates some of these repli-
cate trajectories, along with some statistics of the
trajectories.

It may be seen from table 1 that the conditioning asso-
ciated with a threshold, can strongly affect the mean and
the mean square frequency, and that correcting the condi-
tioned values, by multiplying by the proportion of trajector-
ies that are detected, can significantly improve the results.
However, the variance is not strongly affected by the
threshold, and using the estimated forms of the mean
and mean square frequency has little effect on this. We sys-
tematically investigate these phenomena, below, using the
numerically exact results of a Wright–Fisher model.

Wright–Fisher Model
Let us now proceed with a formal analysis of a Wright–
Fisher model for an asexual haploid population with one lo-
cus and two alleles, written A and B.

In a finite population of size N the possible values of the
A allele frequency are

xm = m
N

with m = 0, 1, . . . , N. (12)

With no time dependence of the parameters of theWright–
Fisher model, the transition matrix is independent of time
and we write it as W. The (m, n) element of the transition
matrix is given by

[W]m,n ; Wm,n

= N!
(N−m)!m!

[xn + F(xn)]
m[1− xn

− F(xn)]
N−m (13)

where F(x) is given by

F(x) ≃ sx(1− x)− mx + n(1− x) (14)

which follows when the fitness of the A allele is 1+ s times

that of the B allele, and the mutation scheme is A �
m

n
B. The

form of F(x) in equation (14) assumes |s|, m and n are all
small (≪1) and keeps only terms to linear order in these
quantities. [Equation (14) applies for an arbitrarily large
population size. For a finite population, mutation should
plausibly be treated as being stochastic. However, by using
m and nwithin F(x) we have used expected numbers of mu-
tations. This amounts to neglecting deviations of mutant
numbers from their expected values. We assume these de-
viations are very small compared to the number fluctua-
tions associated with random genetic drift. This is a
standard but implicit assumption, when mutation is incor-
porated into the Wright–Fisher model. For an illustration

of its usage, see page 65 of the text book by
Hoppensteadt (1982).]

For this model, the probability distribution K(t |u) can be
explicitly expressed as a power of the transition matrix:

K(t |u) = Wt−u. (15)

Thus the probability that M(t) = m, given that M(u) = n, is
Km,n(t |u) = [K(t |u)]m,n = [Wt−u]m,n.

With this result, we can apply the results that were de-
rived above in the sections “Probability of an above thresh-
old result” and “Importance of Pdet and retrieving
unconditioned results.” The probability of a detectable result
at time tobs, when the initial state is a at time 0, is given by the
“special case” in equations (4) and (5) and can be written as

Pdet =
∑N

b=z+1

[Wtobs ]b,a. (16)

We plot Pdet against the initial frequency, a/N, for different
observation thresholds, z, and different selection coeffi-
cients, s (fig. 2).

From figure 2, it can be seen that increasing the value of
the threshold, z, causes a decrease in the value of Pdet, as is
understandable since then a decreased proportion of tra-
jectories lie above threshold at the observation time.
Furthermore, parameter values which tend to increase the
value of M(tobs) also tend to increase the value of Pdet,
thus Pdet is plausibly an increasing function of both the ini-
tial frequency, a/N, and the selection coefficient, s.

We can also derive expressions, in terms of the transition
matrix, W, for the expected values of powers of
X(tobs) = M(tobs)/N. To simplify the notation, we write the
unconditional expected value E{[M(tobs)/N]

k |M(0) = a}
simply as E{[X(tobs)]

k}, and the conditional expected value
E{[M(tobs)/N]

k |M(0) = a, M(tobs) . z} simply as
Ez{[X(tobs)]

k}. We then have, for k = 1 and k = 2:

E[X(tobs)] =
∑N
m=0

m
N
[Wtobs ]m,a

Ez[X(tobs)] =

∑N
m=z+1

m
N
[Wtobs ]m,a

Pdet

E{[X(tobs)]
2} =

∑N
m=0

m
N

( )2
[Wtobs ]m,a

Ez{[X(tobs)]
2} =

∑N
m=z+1

m
N

( )2
[Wtobs ]m,a

Pdet

(17)

with Pdet given in equation (16).
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In figure 3, we plot the unconditioned and conditioned
expected values of X(tobs), [X(tobs)]

2 and the associated var-
iances, against the initial frequency, a/N, for a single obser-
vation threshold, z, and different selection coefficients, s.

Figures 3A and 3B illustrate the significant differences
that can occur between unconditional and conditional ex-
pected values of X(tobs) and [X(tobs)]

2. As an illustrative ex-
ample, for the neutral case (s = 0), an initial frequency of
a/N = 0.05 leads to the conditioned expected value of
X(tobs) being approximately four times the unconditioned
value. By contrast the variance of X(tobs), when calculated
using unconditioned and conditioned expected values
and plotted in figure 3C, are much closer (note that the ver-
tical scale of Panel C is much smaller than that of Panels A
and B), indicating that the moments of X(tobs) are more
strongly affected by a threshold than the variance.

In figure 4 we illustrate the working of the equality/in-
equality of equations (8) and (9), the latter for the special
case k = 2. In the notation of the present section, these
equations take the form E[X(tobs)] ≥ Eest[X(tobs)] =
Ez[X(tobs)]× Pdet and E{[X(tobs)]

2} ≥ Eest{[X(tobs)]
2} =

Ez{[X(tobs)]
2}× Pdet, respectively.

In Panel B we give the corresponding plots for
E{[X(tobs)]

2} and Eest{[X(tobs)]
2} = Ez{[X(tobs)]

2}× Pdet,
against the initial frequency, a/N, for the same parameter
values.

Figure 4 contains the quantities Eest[X(tobs)] and
Eest{[X(tobs)]

2}, whose values follow from Ez[X(tobs)],
Ez{[X(tobs)]

2}, and Pdet, and hence can be estimated fromob-
servationswith a threshold operating. The results of figure 4
suggest that Eest[X(tobs)] and Eest{[X(tobs)]

2} can be used as
estimates of the corresponding unconditioned expected
values. To explore this over a range of parameters, we
have defined four additional statistics, which provide a

measure of the mismatch between the “estimates” and
the exact unconditioned expected values, as follows.

The first of these new statistics is R(1)max which is the
maximum percentage error between the estimated mean
frequency, Eest[X(tobs)], and the exact mean frequency,
E[X(tobs)]. This statistic is determined by considering all
possible initial frequencies, a/N, and then reporting the
largest percentage error between the estimated and
exact mean values of the frequency, that is,
R(1)max = maxa {1− Eest[X(tobs)]/E[X(tobs)]}× 100. Closely
related to R(1)max is the statistic R(2)max, which determines the
largest percentage error between the estimated and exact
values of the mean square frequency.

Another statistic we introduce is R(1)avg which gives the
percentage error between the estimated and exact mean
values of the frequency, when the error in the mean fre-
quency, when averaged over all possible initial frequencies,
that is, R(1)avg = meana(1− Eest[X(tobs)]/E[X(tobs)])× 100.
Closely related to this is R(2)avg, which is the error in the
mean square frequency, when averaged over all possible
initial frequencies. These new statistics are given in equa-
tion (18) and in table 2 we give the values of these statistics
for various parameter values.

R(1)max = maxa 1− Eest[X(tobs)]
E[X(tobs)]

( )
× 100

R(1)avg = meana 1− Eest[X(tobs)]
E[X(tobs)]

( )
× 100

R(2)max = maxa 1− Eest{[X(tobs)]
2}

E{[X(tobs)]
2}

( )
× 100

R(2)avg = meana 1− Eest{[X(tobs)]
2}

E{[X(tobs)]
2}

( )
× 100.

(18)

In table 2 we have explored how the error statistics we
have introduced (namely R(1)max, R

(1)
avg, R

(2)
max and R(2)avg) behave

FIG. 2.—The probability of a detectable result, Pdet, is plotted against the initial frequency, a/N, for the Wright–Fisher model described in the text. The
values of Pdet were calculated from equation (16). For the figure the following parameter values were adopted: population size N = 500, equal forward and
backward mutation rates of m = n = 10−5, observation time tobs = 200. The two values of the observation threshold used were z = 5 and 25, and these
were listed in the Figure Legend as z/N = 1% and 5%, respectively.
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FIG. 3.—In PanelA the unconditional and conditional expected values of the frequency, namely E[X(tobs)] and Ez[X(tobs)], respectively, are plotted against
the initial frequency, a/N, for the Wright–Fisher model described in this work. The expected values were calculated from equation (17). The following par-
ameter values were adopted: population size N = 500, equal forward and backward mutation rates: m = n = 10−5, observation time tobs = 200, and ob-
servation threshold z = 5 (hence z/N = 1%). In Panel B the corresponding unconditional and conditional expected squared values of the frequency, namely
E{[X(tobs)]

2} and Ez{[X(tobs)]
2}, respectively, are plotted against the initial frequency, a/N. In Panel C the corresponding variances, namely Var[X(tobs)] =

E{[X(tobs)]
2}− E[X(tobs)]

2 and Varz[X(tobs)] = Ez{[X(tobs)]
2}− Ez[X(tobs)]

2, are plotted against the initial frequency, a/N.
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for different values of the parametersN, tobs, s, andm (= n).
Generally, table 2 indicates that the errors between
the actual and estimated values of: (i) E[X(tobs)], and
(ii) E{[X(tobs)]

2}, are very reasonable. The single parameter
that has the largest effect on the quality of the approxima-
tions is the observation time tobs. Small values of tobs appear
to yield the largest errors in the estimated. For example, in
table 2A, a value of tobs of 20 generations can lead to an
error of approximately 17% in the approximation of
E[X(tobs)], while larger values of tobs lead to smaller (often
substantially smaller) errors. There appears to be no great
sensitivity of the error statistics on N, s, and m.

Discussion
In this work, we have shown that observation thresholds
may severely bias estimates of allele frequencies. The results

presented can be directly applied to a set ofmutationswhich
are present or which are de-novo mutations at initial fre-
quency 1/N or 1/(2N), for haploid or diploid populations, re-
spectively. Most importantly, our approach would also apply
to scenarios where we assume a large number of sites in the
genome that, at t = 0, have different frequencies of for ex-
ample, aminor allele, and thenwe inspect the allele frequen-
cies some time later. This arises because if we follow
trajectories whose initial frequencies are distributed accord-
ing to an arbitrary initial distribution, then some will not be
detected at the time-point tobs—due to being below thresh-
old. However, the expected value of for example, X(tobs),
that would follow from all trajectories, if no threshold at
tobs existed, can be retrieved from the expected value that
is calculated only from the detected trajectories, whenmulti-
plied with Pdet. An example of the values of Pdet, based on
data from six differentDrosophila melanogaster populations

FIG. 4.—In Panel A, we plot the unconditional expected value E[X(tobs)] and the quantity Eest[X(tobs)] = Ez[X(tobs)]× Pdet against the initial frequency,
a/N. In the Figure Legend, we refer to E[X(tobs)] as “unconditioned” and Eest[X(tobs)] as “estimated.” The probability of a detectable result, Pdet, was calcu-
lated from equation (16), while the unconditional and conditional expected values of X(tobs), namely E[X(tobs)] and Ez[X(tobs)], respectively, were calculated
from equation (17). For the figure the following parameter values were adopted: population size N = 500, forwardmutation ratem = 10−5, backwardmu-
tation rate n = 10−5, observation time tobs = 200, observation threshold z = 5 (hence z/N = 1%).
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Table 2.
Four Sub-tables, Containing Values of the Values of the Quantities R(1)max,
R(1)avg, R

(2)
max, and R(2)avg Defined in equation (18)

(A) m = 10−8

tobs s % Error R(1)
max % Error R(1)

avg

20 −0.01 2.2 0.1
0.00 1.8 0.1
0.01 1.5 0.1

50 −0.01 0.6 0.1
0.00 0.4 ,0.1
0.01 0.2 ,0.1

200 −0.01 0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

20 −0.01 8.0 0.2
0.00 6.5 0.2
0.01 5.3 0.1

50 −0.01 2.6 0.2
0.00 1.6 0.1
0.01 1.0 ,0.1

200 −0.01 0.6 0.2
0.00 0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 1.0 0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

20 −0.01 17.1 0.3
0.00 13.7 0.2
0.01 10.8 0.1

50 −0.01 7.4 0.3
0.00 4.6 0.1
0.01 2.7 0.1

200 −0.01 2.2 0.5
0.00 0.5 ,0.1
0.01 0.1 ,0.1

1,000 −0.01 8.9 1.2
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

(B) m = 10−5

N tobs s % Error R(1)
max % Error R(1)

avg

200 20 −0.01 2.5 0.1
0.00 2.1 0.1
0.01 1.7 0.1

50 −0.01 1.1 0.1
0.00 0.7 0.1
0.01 0.4 ,0.1

200 −0.01 1.2 0.1
0.00 0.4 ,0.1
0.01 0.1 ,0.1

1,000 −0.01 1.6 0.1
0.00 0.2 ,0.1
0.01 0.1 ,0.1

(continued)

Table 2. Continued

(B) m = 10−5

N tobs s % Error R(1)
max % Error R(1)

avg

500 20 −0.01 8.3 0.2
0.00 6.8 0.2
0.01 5.5 0.1

50 −0.01 3.5 0.2
0.00 2.2 0.1
0.01 1.3 ,0.1

200 −0.01 3.9 0.3
0.00 0.9 ,0.1
0.01 0.2 ,0.1

1,000 −0.01 8.3 2.6
0.00 0.5 ,0.1
0.01 0.1 ,0.1

1,000 20 −0.01 17.3 0.3
0.00 13.9 0.2
0.01 10.9 0.1

50 −0.01 8.6 0.3
0.00 5.3 0.1
0.01 3.1 0.1

200 −0.01 8.3 0.7
0.00 1.7 0.1
0.01 0.3 ,0.1

1,000 −0.01 16.7 10.3
0.00 0.9 0.1
0.01 ,0.1 ,0.1

(C) m = 10−8

tobs s % Error R(2)
max % Error R(2)

avg

20 −0.01 0.2 ,0.1
0.00 0.1 ,0.1
0.01 0.1 ,0.1

50 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

200 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

20 −0.01 1.3 ,0.1
0.00 1.0 ,0.1
0.01 0.7 ,0.1

50 −0.01 0.2 ,0.1
0.00 0.1 ,0.1
0.01 0.1 ,0.1

200 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

20 −0.01 4.4 0.1
0.00 3.1 ,0.1

(continued)
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(Kapun et al. 2021) is given in table 3. Note, that we do not
consider varying levels of the threshold here, but determine
the extent of it, assuming a constant threshold for each sam-
ple. For this we neglect mutations that arise de-novo or that
get truly fixed between the two timepoints, as these will be
extremely rare. Also, ideally wewould expect that there is no
threshold at timepoint 1, which is however unrealistic for this
dataset. Hence, we also neglect those mutations that segre-
gate below threshold at timepoint 1 (as these cannot be
measured). We would expect that those mutations below
threshold at timepoint 1 are more likely to segregate below
threshold at timepoint 2 relative to the observed trajectories
at time point 1. Hence our derived Pdet can be considered an
overestimate of the true Pdet. Under these assumptions the
values of Pdet, that are estimated from the data, range
from 0.58 to 0.84 suggesting that an observation bias is op-
erating, with non-negligible effect, that is particularly signifi-
cant for variants segregating at low frequencies.

We note, that in the example given in table 3 we do not
estimate the threshold z, but Pdet, as this can be used as a
correction factor. While we use z as a parameter to derive
the mathematical underpinnings, we cannot estimate z
from relative allele frequency data used here. When there
is a correlation between read depth and particular sites,
the parameter Pdet will likely be different for different sites.
In this case, an overall Pdet could be interpreted as a sum-
mary statistic capturing properties of an effective (implicit)
threshold z across sites.

Our model is also directly relevant to other population
genetic scenarios, for example cases where there is the
same allele frequency at many (potentially neutral) loci, as
a consequence (mass) migration events or secondary con-
tacts of separated populations. We emphasize that while
the observation threshold is described as a measurement
of a single quantity, for example, the frequency of a
“new” mutational type, which is of biological relevance
when reference-based mapping is applied (e.g., read map-
ping a reference genome), our model can be extended to
more complex scenarios of observational thresholds.

We have posed two basic questions in this work. First, we
asked when conditioning, associated with an observation
threshold, has a large effect on the observed results.
Equation (8), when approximated as an inequality, gives a
clear indication of this: the smaller the probability of detect-
ing a result when the population is observed (Pdet), the larger
the discrepancy between the unconditioned mean allele fre-
quency (where there is no observation threshold and the
measurement is ideal) and the conditioned mean allele fre-
quency (fig. 3). The way Pdet changes with parameters in
the model allows us to give a more nuanced answer to the
question. Thus the discrepancy between unconditioned
and conditioned mean allele frequencies is most severe
when the initial frequency at which the mutation was
present or arose in the population is small, but this effect

Table 2. Continued

(C) m = 10−8

tobs s % Error R(2)
max % Error R(2)

avg

0.01 2.2 ,0.1
50 −0.01 1.1 ,0.1

0.00 0.5 ,0.1
0.01 0.2 ,0.1

200 −0.01 0.2 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 0.6 0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

(D) m = 10−5

N tobs s % Error R(2)
max % Error R(2)

avg

200 20 −0.01 0.2 ,0.1
0.00 0.2 ,0.1
0.01 0.1 ,0.1

50 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

200 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 ,0.1 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

500 20 −0.01 1.3 ,0.1
0.00 1.0 ,0.1
0.01 0.7 ,0.1

50 −0.01 0.3 ,0.1
0.00 0.1 ,0.1
0.01 0.1 ,0.1

200 −0.01 0.2 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 0.4 ,0.1
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 20 −0.01 4.4 0.1
0.00 3.1 ,0.1
0.01 2.2 ,0.1

50 −0.01 1.3 ,0.1
0.00 0.6 ,0.1
0.01 0.3 ,0.1

200 −0.01 0.6 ,0.1
0.00 0.1 ,0.1
0.01 ,0.1 ,0.1

1,000 −0.01 1.6 0.8
0.00 ,0.1 ,0.1
0.01 ,0.1 ,0.1

NOTE:—The quantity R(1)
max is the maximum percentage difference between

E[X(tobs)] and Eest[X(tobs)] = Ez[X(tobs)]× Pdet, while R(1)
avg is the mean

percentage difference of these quantities, with corresponding interpretations of
R(2)
max and R(2)

avg, for the squared frequencies. In all sub-tables, an observation
threshold corresponding to z/N = 1% was adopted. In all sub-tables, equal
forward and backward mutation rates were adopted; in sub-tables 2A and 2C
we took m = n = 10−8, while in sub-tables 2B and 2D we took m = n = 10−5.
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appears more pronounced for larger selection coefficients.
For mutations under purifying selection (i.e., with s , 0)
the discrepancy between unconditioned and conditioned
expected values of the frequency appears to be relatively
substantial even for larger initial frequencies (fig. 3).
Generally, we infer that a key measure of the effect of
the strength of conditioning is the value of Pdet. Most intri-
guingly, we can show that for low initial frequencies a
conditioned measurement may have the same expected
frequency as an unconditioned case with a larger selection
coefficient (fig. 5). This illustrates that conditioned mea-
surements may lead to a misinference of the underlying
selection coefficient.

A second question we asked, which is of practical sig-
nificance, concerned the principled way to correct for
the effects of the conditioning due to an observational

threshold. To address this question, we again used equa-
tion (8), which takes the form of an inequality that can
be applied to unconditioned and conditioned mean allele
frequencies. The inequality provides a lower bound on the
value of the unconditioned mean allele frequency.
Approximating the inequality by an equality leads to an
analytical estimate of the unconditioned mean allele fre-
quency that corrects for bias arising from an observational
threshold. Our estimate could, for the scenarios consid-
ered in this work, reasonably correct biased estimates of
the mean allele frequency, when the mean conditioned
allele frequency is known (estimated frommeasurements),
and is combined with knowledge of the probability of
detecting a result (also estimated from measurements)
(fig. 3). Our numerical results suggest that this correction
is reasonably accurate (see table 1) , suggesting that

Table 3.
Magnitude of Pdet Estimated for Six Different Drosophila melanogaster Populations Obtained from Pooled Genome Sequencing at Two Different Time
Points (Kapun et al. 2021)

Sample Timepoint
1

Sample
Timepoint 2

Minor SNP Frequency at
Timepoint 1

Number of Observed SNPs
at Timepoint 1

Number of SNPs Observed at
Timepoint 1 and Timepoint 2

P_det

AT_See_14_44 AT_See_16_1 Any 527,942 420,466 79.64%
,10% 240,580 152,708 63.47%

ES_Gim_14_35 ES_Gim_14_34 Any 500,999 389,344 77.71%
,10% 212,550 123,828 58.26%

MA_la_14_spring MA_la_14_fall Any 566,427 493,377 87.10%
,10% 285,214 224,694 78.78%

FI_Aka_14_36 FI_Aka_14_37 Any 480,143 394,569 82.18%
,10% 193,899 126,987 65.49%

AT_Mau_14_01 AT_Mau_14_02 Any 501,657 403,311 80.40%
,10% 239,259 152,665 63.81%

DE_Mun_14_31 DE_Mun_14_32 Any 495,287 414,226 83.63%
,10% 194,432 131,869 67.82%

NOTE.—Thenumberof singlenucleotidepolymophisms (SNPs) at timepoint 1, and thenumber of SNPs at timepoint 2 that are alsoobservedat timepoint 1are shown. For
simplicity, only biallelic SNPs on chromosome arm 2L are considered.

FIG. 5.—The unconditioned and conditioned expected values of X(tobs) (E[X(tobs)] and Ez[X(tobs)], respectively), are plotted against the initial frequency,
a/N, for theWright–Fisher model described in this work. The expected values were calculated from equation (17), when different selection coefficientswere
used in the unconditioned and conditioned expected values. The following parameter values were adopted: population size N = 500, equal forward and
backward mutation rates: m = n = 10−5, observation time tobs = 200, observation threshold z = 5 (hence z/N = 1%).
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quantifying and incorporating observational thresholds
into measurements appears feasible.

Guidelines for Allele Trajectory Data

Our method can be applied to time-series data to deter-
mine the possible extent of an observation threshold. As
causes of an observation thresholdmay originate frommul-
tiple factors which may not be obvious or cannot be elimi-
nated during measurements, we can apply our method to
account for observation bias:

Guideline 1: Assuming that a correction can be applied
to the test statistic, that there is some possibility to alter the
applied threshold (e.g., through a bioinformatic pipeline)
and that there is reasonable concern about false positives
at low thresholds, it might be advisable to increase the
threshold level and then apply the correction.

Guideline 2: In case a correction cannot be (trivially) ap-
plied to the test statistic, but there is still some influence on
the threshold, the user may explore different parameter
combination on the extent of threshold by determining
Pdet as shown for Kapun et al. (2021) in table 3. It may be
advisable to reduce the threshold impact on Pdet or to hom-
ogenize its impact across samples.

Wider Applicability

Lastly, we note that the results we obtain in this work for
allele trajectories have wider generality, and apply to
many otherMarkov chains.What they need to have in com-
mon, for the results to apply, is that they may be viewed as
consisting of either: (i) many statistically equivalent repli-
cates, where observations are made on all replicates at a gi-
ven time (the observation time), or (ii) many measurements
of a stationary system, which are all made at the end of
non-overlapping time-intervals of fixed length.
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Appendix A: Probability of a Detectable
Result and Conditional Distribution
In this appendix, we give details of the determination of the
probability of a detectable result.

We work in the context of a discrete state, discrete time
Markov chainwhereM(t) is the state of the system at time t,
with t = 0, 1, 2, . . . , tobs and M(t) can take the values
0, 1, 2, . . . , N.

To determine the probability of a detectable result,
Pdet = Prob[M(tobs) . z] we first determine the uncondi-
tioned probability distribution of M(tobs). The distribution
of M(0) is assumed known and given by the column vector
F(0), where the m’th element of F(0), written Fm(0)
(m = 0, 1, . . . , N), is the probability that M(0) = m, that
is, Fm(0) = Prob[M(0) = m]. The distribution at any time
t . 0 is given by F(t) = K(t |0)F(0) where K(t |0) is a
special case of the matrix K(t |u) introduced in the
main text. The (m, n) element of K(t |0) is the probability
that M(t) = m, given that M(0) = n, that is,
Km,n(t |0) = Prob[M(t) = m |M(0) = n]. The probability of
an above threshold state at time tobs is given by
Pdet =

∑N
b=z+1Fb(tobs)=

∑N
b=z+1

∑N
m=0 Kb,m(tobs |0)Fm(0).

We write this last result as Pdet =
∑N

m=0 QmFm(0) where
Qm = ∑N

b=z+1 Kb,m(tobs |0) ;
∑

b.z Kb,m(tobs |0). In the
special case where only state a occurs at time 0 we have
Fm(0) = dm,a where dm,a is a Kronecker delta (dm,a is 1
when m = a and is zero otherwise). This leads to
Pdet =

∑N
m=0 Qmdm,a = Qa.

Appendix B: Conditional Distribution
In this appendix, we give details of the conditional probabil-
ity distribution, corresponding to the system lying above
threshold (.z) at time tobs.

To determine the probability distribution of M(tobs) that
is conditional on M(tobs) . z, we set the conditional distri-
bution to zero if M(tobs) ≤ z, while if M(tobs) . z then the
conditional distribution is proportional to the unconditional
distribution. Using the Heaviside step function

Q(m) = 1, m . 0
0, m ≤ 0

{
(B1)

we thus have, for the conditional distribution,

Fcond
m (tobs)/Q(m− z)Fm(tobs). On normalizing this to

unity, and using the definition of Pdet (see Appendix A) gives

Fcond
m (tobs) =

Q(m− z)Fm(tobs)∑N
b=0 Q(b− z)Fb(tobs)

= Q(m− z)Fm(tobs)
Pdet

.

(B2)

Appendix C: Relation between
Conditional and Unconditional Values
of M(tobs)
In this appendix, we establish a relation between the ex-
pected value of M(tobs), when conditioned to lie above
the threshold value z, and the unconditional expected value
of M(tobs).
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For the purposes of this appendix, we shall use the nota-
tion M for M(tobs) and E[M] for E[M(tobs)], which is the un-
conditioned expected value ofM(tobs) for an arbitrary initial
distribution. The expected value ofM(tobs) when it is condi-
tioned to be .z or ≤z is then written as E[M |M . z] or
E[M |M ≤ z], respectively. We can then write

E[M] =E[M |M . z]× Prob(M . z)

+ E[M |M ≤ z]× Prob(M ≤ z).
(C1)

Throughout the paper, we assume that Prob(M . z) , 1 so
that Prob(M ≤ z) = 1− Prob(M . z) . 0, and there is a
non-zero probability that some states of the system lie be-
low threshold at time tobs. This means that if we start with a
very large number of trajectories of the system at time 0,
the observation threshold will cause a non-zero reduction
in the number detected at time tobs.

It is instructive to show that conditioning on a threshold
generally increases the expected value ofM, and the factors
which govern this increase. We note the difference be-
tween E[M |M . z] and E[M] is, using equation (C1),

E[M |M . z]− E[M]

= E[M |M . z]× [1− Prob(M . z)]

− E[M |M ≤ z]× Prob(M ≤ z)

= (E[M |M . z]− E[M |M ≤ z])× [1− Prob(M . z)].

(C2)

Because E[M |M . z]− E[M |M ≤ z] . 0 and by assump-
tion Prob(M . z) , 1, equation (C2) yields E[M |M .

z]− E[M] . 0 and says conditioning always increases the
expected value of M(tobs) relative to the unconditioned va-
lue. Small values of both E[M |M ≤ z] and Prob(M . z) lead
to the largest changes due to conditioning.

Next, we shall establish a relation that we use in themain
text. Noting thatM(t) takes non-negative values, we gener-
ally have that E[M |M ≤ z] ≥ 0 and using this in equation
(C1) yields E[M] ≥ E[M |M . z]× Prob(M . z), that is,
E[M] ≥ E[M |M . z]× Pdet. In full, this reads

E[M(tobs)] ≥ E[M(tobs) |M(tobs) . z]× Pdet (C3)

and this is a relation between unconditioned and condi-
tioned expected values.

To derive equation (C3), we have omitted the term
E[M |M ≤ z]× Prob(M ≤ z) from equation (C1). This term
will be much smaller than z if E[M |M ≤ z] is much smaller
than the maximum possible value it can take, which is z.

Literature Cited
Barata C, Borges R, Kosiol C. 2020. Bait-ER: a Bayesian method to de-

tect targets of selection in evolve-and-resequence experiments.
bioRxiv. doi:10.1101/2020.12.15.422880.

Barghi N, et al. 2019. Genetic redundancy fuels polygenic adaptation
in drosophila. PLOS Biol. 17(2):e3000128.

Bollback JP, York TL, Nielsen R. 2008. Estimation of 2Nes from tem-
poral allele frequency data. Genetics. 179:497–502.

Chan AW, Hamblin MT, Jannink J -L. 2016. Evaluating imputation al-
gorithms for low-depth genotyping-by-sequencing (GBS) data.
PLoS ONE. 11:e0160733.

Dehasque M, et al. 2020. Inference of natural selection from ancient
DNA. Evol Lett. 4(2):94–108.

Fisher RA. 1930. The genetical theory of natural selection. Oxford:
Oxford University Press.

Foll M, Shim H, Jensen JD. 2015. WFABC: a Wright-Fisher ABC-based
approach for inferring effective population sizes and selection
coefficients from time-sampled data. Mol Ecol Resour. 15:87–98.

Gossmann TI, Waxman D, Eyre-Walker A. 2014. Fluctuating selection
models and McDonald-Kreitman type analyses. PLoS ONE. 9:
e84540.

Han E, Sinsheimer JS, Novembre J. 2015. Fast and accurate site fre-
quency spectrum estimation from low coverage sequence data.
Bioinformatics. 31:720–727.

Hildebrand F, et al. 2019. Antibiotics-induced monodominance of a
novel gut bacterial order. Gut. 68(10):1781–1790.

Hoppensteadt FC. 1982. Mathematical methods of population biol-
ogy. Vol. 4. Cambridge: Cambridge University Press.

Hughes AL, Friedman R, Rivailler P, French JO. 2008. Synonymous and
nonsynonymous polymorphisms versus divergences in bacterial
genomes. Mol Biol Evol. 25:2199–2209.

Kapun M, et al. 2021. Drosophila evolution over space and time
(DEST): a new population genomics resource. Mol Biol Evol. 38-
(12):5782–5805.

Karpievitch YV, Dabney AR, Smith RD. 2012. Normalization and miss-
ing value imputation for label-free LC-MS analysis. BMC Bioinform.
13(Suppl 16):S5.

Karpievitch YV, et al. 2009. Normalization of peak intensities in
bottom-up ms-based proteomics using singular value decompos-
ition. Bioinformatics. 25:2573–2580.

Kim SY, et al. 2011. Estimation of allele frequency and association
mapping using next-generation sequencing data. BMC
Bioinform. 12:231.

Kimura M. 1964. Diffusion models in population genetics. J Appl
Probab. 1(2):177–232.

Loog L, et al. 2017. Inferring allele frequency trajectories from ancient
dna indicates that selection on a chicken gene coincided with
changes in medieval husbandry practices. Mol Biol Evol. 34:
1981–1990.

Malaspinas A-S, Malaspinas O, Evans SN, Slatkin M. 2012. Estimating
allele age and selection coefficient from time-serial data. Genetics.
192:599–607.

Marth GT, Czabarka E, Murvai J, Sherry ST. 2004. The allele frequency
spectrum in genome-wide human variation data reveals signals of
differential demographic history in three large world populations.
Genetics. 166(1):351–372.

Nielsen R, Paul JS, Albrechtsen A, Song YS. 2011. Genotype and SNP
calling from next-generation sequencing data. Nat Rev Genet.
12:443–451.

Rimmer A, et al. 2014. Integrating mapping-, assembly- and
haplotype-based approaches for calling variants in clinical sequen-
cing applications. Nat Genet. 46:912–918.

Schraiber JG, Evans SN, Slatkin M. 2016. Bayesian inference of natural
selection from allele frequency time series. Genetics. 203(1):
493–511.

Shafiey H, Gossmann TI, Waxman D. 2017. Evolutionary control: tar-
geted change of allele frequencies in natural populations using ex-
ternally directed evolution. J Theor Biol. 419:362–374.

Correcting Bias Due to an Observation Threshold GBE

Genome Biol. Evol. 14(4) https://doi.org/10.1093/gbe/evac047 Advance Access publication 29 March 2022 15

https://doi.org/10.1101/2020.12.15.422880
https://doi.org/10.1093/gbe/evac047


Shim H, Laurent S, Matuszewski S, Foll M, Jensen JD. 2016. Detecting
and quantifying changing selection intensities from time-sampled
polymorphism data. G3 (Bethesda, Md.). 6:893–904.

Stoletzki N, Eyre-Walker A. 2011. Estimation of the neutrality index.
Mol Biol Evol. 28:63–70.

Tuckwell HC. 1995. Elementary applications of probability theory. Vol.
32. New York: CRC Press.

Välikangas T, Suomi T, Elo LL. 2018. A comprehensive evaluation of
popular proteomics software workflows for label-free proteome
quantification and imputation. Brief Bioinform. 19:1344–1355.

Webb-Robertson B-JM, et al. 2015. Review, evaluation, and discussion
of the challenges of missing value imputation for mass

spectrometry-based label-free global proteomics. J Proteome
Res. 14:1993–2001.

Wright S. 1931. Evolution in mendelian populations. Genetics. 16:
97–159.

Yang MQ, et al. 2018. Misc: missing imputation for single-cell rna se-
quencing data. BMC Syst Biol. 12:114.

Zhao L, Lascoux M, Overall ADJ, Waxman D. 2013. The characteris-
tic trajectory of a fixing allele: a consequence of fictitious
selection that arises from conditioning. Genetics. 195:
993–1006.

Associate editor: Emilia Huerta-Sanchez

Gossmann et al. GBE

16 Genome Biol. Evol. 14(4) https://doi.org/10.1093/gbe/evac047 Advance Access publication 29 March 2022

https://doi.org/10.1093/gbe/evac047

	Correcting Bias in Allele Frequency Estimates Due to an Observation Threshold: A Markov Chain Analysis
	Introduction
	Theory
	Markov Chain Model
	Probability of an above Threshold Result
	Conditional Distribution

	Importance of &inline-formula;&tex-math notation=
	Application to Population Genetics
	Illustrative Simulation
	Wright–Fisher Model
	Discussion
	Guidelines for Allele Trajectory Data
	Wider Applicability

	Acknowledgments
	Data Availability

	Relation between Conditional and Unconditional Values of &inline-formula;&tex-math notation=
	Literature Cited


