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Abstract: The main indications for right ventricular assist device (RVAD) support are right heart
failure after implantation of a left ventricular assist device (LVAD) or early graft failure following
heart transplantation. We sought to study the effects induced by different RVAD connections when
right ventricular elastance (EesRIGHT) was modified using numerical simulations based on atrial and
ventricular pressure–volume analysis. We considered the effects induced by continuous-flow RVAD
support on left/right ventricular/atrial loops when EesRIGHT changed from 0.3 to 0.8 mmHg/mL
during in-series or parallel pump connection. Pump rotational speed was also addressed. Parallel
RVAD support at 4000 rpm with EesRIGHT = 0.3 mmHg/mL generated percentage changes up to 60%
for left ventricular pressure–volume area and external work; up to 20% for left ventricular ESV and
up to 25% for left ventricular EDV; up to 50% change in left atrial pressure-volume area (PVLAL-A)
and only a 3% change in right atrial pressure–volume area (PVLAR-A). Percentage variation was
lower when EesRIGHT = 0.8 mmHg/mL. Early recognition of right ventricular failure followed by
aggressive treatment is desirable, so as to achieve a more favourable outcome. RVAD support remains
an option for advanced right ventricular failure, although the onset of major adverse events may
preclude its use.

Keywords: heart failure; RVAD; pressure-volume loop; lumped parameter model; software simula-
tion; cardiovascular modelling; rotational pump speed; right-left heart interaction

1. Introduction

Acute right ventricular (RV) failure may develop in the context of acute decompensated
heart failure, acute myocardial infarction, pulmonary embolism, fulminant myocarditis, de-
compensated pulmonary hypertension, post-cardiotomy shock, orthotopic heart transplant,
and often after the insertion of a left ventricular assist device (LVAD) [1]. This may also be
the case when a long-term right ventricular assist device (RVAD) is required for end-stage
RV failure from combined pre- and post-capillary pulmonary hypertension (PH) [2].

The main indications for RVAD support are right heart failure after LVAD implantation
or early graft failure following orthotopic heart transplantation. About 30–40% of patients
will need RVAD support after LVAD implantation [3–6]. Markers of illness severity includ-
ing evidence of end-organ dysfunction and haemodynamic profile are associated with the
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need for RVAD support within two weeks following LVAD insertion [7]. The prognostic role
of the right ventricle is now being acknowledged in the context of left-sided heart failure [8].
Failure of systolic function adaptation (homeometric adaptation described by Anrep’s law)
leads to increased dimensions (heterometric adaptation described by Starling’s law) with
a negative effect on diastolic ventricular interactions [9]. RV-PA coupling has significant
reserve in the context of elevated RV afterload, although the level of uncoupling that leads
to RV failure remains not completely defined [10]. Better understanding of the pathophysi-
ology of right ventricular (RV) failure may well help with its initial medical management
and timing of mechanical circulatory support. Prolonged survival by effective medical
treatment becomes the grounds for the development of right heart failure secondary to
chronic left ventricular dysfunction. Patients remain compensated as long as the right
ventricle is functional. The ability to track the RV based on better monitoring of afterload
and functional reserve may help change the course of the disease before the RV reaches the
threshold that may limit both medical and LVAD treatment [11].

However, the lack of data does not allow for an in-depth analysis of right ventricular
and atrial behaviour during RVAD support. An attempt in this direction can be made using
a numerical simulator of the cardiovascular system with a view to reproduce pathological
conditions requiring right ventricular assistance.

The aim of our study was the trend analysis in terms of percentage variation of
the haemodynamic and energetic variables of both ventricles and atria in different car-
diovascular conditions reproduced by changing right ventricular elastance from 0.3 to
0.8 mmHg/mL during RVAD support with different rotational speeds.

The first step of this work required the implementation of two new modules within
CARDIOSIM© software simulation platform, which would reproduce the characteristics
of the left circulatory network and a continuous flow centrifugal pump (RVAD) to be
connected either in series or parallel to the right ventricle. The new modules were based
on a 0-D (lumped-parameter) numerical model including input and output cannula of
the RVAD.

We simulated RVAD support following in series and parallel connection driven by
different rotational speeds in a heart failure setting. Subsequently, the right ventricular
elastance was increased from 0.3 to 0.8 mmHg/mL in a stepwise manner. During each
setting, we focused our attention on the following hemodynamic and energetic variables:

X Right and left ventricular end-systolic volume (ESVR-V and ESVL-V);
X Right and left ventricular end-diastolic volume (EDVR-V and EDVL-V);
X Stroke volume (SV);
X Right and left ventricular external work (EWR-V and EWL-V) and pressure-volume

area (PVAR-V and PVAL-V);
X Right and left atrial end-systolic volume (ESVR-A and ESVL-A);
X Right and left atrial end-diastolic volume (EDVR-A and EDVL-A);
X Right and left atrial pressure-volume loop area (PVLAR-A and PVLAL-A);
X Cardiac output (CO);
X Systolic, diastolic, and mean systemic aortic pressure (AoP);
X Systolic, diastolic, and mean pulmonary arterial pressure (PAP);
X Pulmonary capillary wedge pressure (PCWP);
X Right and left atrial pressure (RAP and LAP).

2. Materials and Methods
2.1. The Heart and Circulatory Numerical Network

CARDIOSIM© software (Rome, Italy) platform has been previously described [12–17]. The
modules of the software simulator are: systemic and pulmonary arterial section, systemic
and pulmonary venous section, and coronary circulation. Native left and right ventricles,
atria, and septum reproduce the entire cardiac activity; they are implemented in a single
module (Figure 1) using the time-varying elastance concept [13,14]. The ventricular, atrial,
and septal activity is synchronized with the electrocardiographic (ECG) signal [14]. Using
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the modified time-varying elastance theory, inter-ventricular septum (IVS) interaction and
instantaneous left and right ventricular pressure can be reproduced by [14,18]:

Plv(t) =
[

eVsp(t)·elv(t)
elv(t)+eVsp(t)

]
· [Vlv(t)− Vlv,0] +

[
elv(t)

elv(t)+eVsp(t)

]
· Prv(t) +

[
eVsp(t)

elv(t)+eVsp(t)

]
· Plv,0

Prv(t) =
[

eVsp(t)·erv(t)
eVsp(t)+erv(t)

]
· [Vrv(t)− Vrv,0] +

[
erv(t)

eVsp(t)+erv(t)

]
· Plv(t) +

[
eVsp(t)

eVsp(t)+erv(t)

]
· Prv,0

(1)

In the same way, the inter-atrial septum (IAS) interaction and the left and right
instantaneous atrial pressure can be reproduced by:

Pla(t) =
[ eAsp(t)·ela(t)

ela(t)+eAsp(t)

]
· [Vla(t)− Vla,0] +

[
ela(t)

ela(t)+eAsp(t)

]
· Pra(t) +

[ eAsp(t)
ela(t)+eAsp(t)

]
· Pla,0

Pra(t) =
[ eAsp(t)·era(t)

eAsp(t)+era(t)

]
· [Vra(t)− Vra,0] +

[
era(t)

eAsp(t)+era(t)

]
· Pla(t) +

[ eAsp(t)
eAsp(t)+era(t)

]
· Pra,0

(2)

The symbols used in Equations (1) and (2) have been listed in Table 1. These features
allow the simulation of inter-ventricular and intra-ventricular dyssynchrony [19].

Table 1. Symbols used in Equations (1) and (2).

Symbol Description Unit

Plv(t) [Prv(t)] Instantaneous left (right) ventricular pressure mmHg

Plv,0 [Prv,0] Resting left (right) ventricular pressure mmHg

Vlv(t) [Vrv(t)] Instantaneous left (right) ventricular volume mL

Vlv,0 [Vrv,0] Resting left (right) ventricular volume mL

elv(t) [erv(t)] Left (right) ventricular elastance mmHg·mL−1

eVsp(t) Inter-ventricular septum elastance mmHg·mL−1

Pla(t) [Pra(t)] Instantaneous left (right) atrial pressure mmHg

Pla,0 [Pra,0] Resting left (right) atrial pressure mmHg

Vla(t) [Vra(t)] Instantaneous left (right) atrial volume mL

Vla,0 [Vra,0] Resting left (right) atrial volume mL

ela(t) [era(t)] Left (right) atrial elastance mmHg·mL−1

eAsp(t) Inter-atrial septum elastance mmHg·mL−1

Specific modules of the coronary circulation (Figure 1) are also available on the CAR-
DIOSIM© platform [12].

For the purposes of our study, we assembled the cardiovascular network with the
new module of the systemic circulation, whilst the behaviour of the heart is modelled
as described in [12,13]. The systemic venous section [12,15] and the entire pulmonary
circulation [16,17,20,21] are modelled as described in the current literature. We have
selected the module presented in [22] for the coronary circulation. The tricuspid, mitral,
pulmonary, and aortic valves are modelled with an ideal diode: when the pressure across
the valve is positive, the valve opens and allows the flow of blood; when the pressure is
less than or equal to zero, the valve closes and the flow of blood is zero [12–14,23].
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Figure 1. (a) Electric analogue of the cardiovascular system. The network is assembled with septum, left and right heart, main and 
small pulmonary arterial sections, pulmonary arteriole and capillary sections, and the pulmonary venous section. The left circulation 
includes ascending and descending aorta compartments, peripheral arteries, and carotid artery sections, coronary circulation, 

Figure 1. (a) Electric analogue of the cardiovascular system. The network is assembled with septum,
left and right heart, main and small pulmonary arterial sections, pulmonary arteriole and capillary
sections, and the pulmonary venous section. The left circulation includes ascending and descending
aorta compartments, peripheral arteries, and carotid artery sections, coronary circulation, superior
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and inferior vena cava sections, and systemic veins compartment. RVAD is the right ventricular
assist device. Table 2 lists the symbols used. (b) The behaviour of the ascending aorta is simulated
with resistances RAA and RVaa, inertance LAA and compliance CAA. QRAA is the flow through the
resistance and inertance. The descending aorta is implemented with resistances RDA and RVda,
inertance LDA and compliance CDA. QRDA is the flow through the resistance (RDA) and inertance
(LDA). The carotid arteries section is reproduced with a simple resistance (RCA). The superior vena
cava module consists of resistances RSVC_I and RSVC_II, inertance LSCV, and compliance CSVC. The
inferior vena cava module is modelled with resistances RIVC, RIVC_I, and RIVC_II; inertance LIVC; and
compliance CIVC. The intrathoracic pressure (Pt) affects compliances CAA, CDA, CIVC, and CSVC.
Table 2 lists the symbols used. (c) The peripheral arteries module is modelled with resistances RA

and RVa and compliance CA. The resistor RVa accounts for viscous losses of the vessels wall. QRA

is the blood flow outside the compartment; it is a part of the blood that reaches the systemic veins
compartment. (d) Schematic representation of RVAD connection. When the right ventricular assist
device is connected in parallel, blood is removed from the right atrium (SW1 = ON and SW2 = OFF)
and ejected into the pulmonary artery. When RVAD is connected in series, blood is removed from
the right ventricle (SW1 = OFF and SW2 = ON) and ejected into the pulmonary artery. The input
(output) RVAD cannula is modelled with RLC elements. QoPUMP (QiPUMP) is the output (inlet) flow
rate from the pump. QoCANN (QiCANN) is the output (inlet) flow rate from the cannula. The electrical
analogue of the pulmonary circulation is described in [22] (Reprinted with permission from Ref. [22],
Copywright© 1991–2019 C. De Lazzari).

2.2. New Lumped-Parameter Model of the Systemic Circulation

The new module is described in Figure 1 using resistance, inertance, and compliance
(RLC) elements. The systemic network consists of the following compartments: ascending
and descending aorta, carotid artery, peripheral arteries, and superior and inferior vena
cava (Figure 1a).

The ascending (descending) aorta is modelled using two resistances RAA and RVaa
(RDA and RVda), inertance LAA (LDA), and compliance CAA (CDA). A single resistance (RCA)
reproduces the behaviour of the carotid district (Figure 1b). The peripheral arterial circula-
tion is reproduced with resistances RA and RVa and with compliance CA (Figure 1c). The
superior vena cava compartment consists of resistances RSVC_I and RSVC_II, inertance LSVC,
and compliance CSVC. The systemic venous network is implemented using compliance CVS
and resistances RVS and RVvs (Figure 1c). Finally, the inferior vena cava district is modelled
with resistances RIVC, RIVC_I, and RIVC_II; inertance LIVC; and compliance CIVC (Figure 1b).
The resistances RVaa, RVda, RVa, and RVvs account for viscous losses of the vessel wall. Pt is
the mean intrathoracic pressure. All the symbols of the cardiovascular network are listed
in Table 2.

Table 2. Symbols of the cardiovascular network.

Rpam (Rpas) Main (small) pulmonary arterial resistance [mmHg·cm−3·s]
Lpam (Lpas) Main (small) pulmonary arterial inertance [mmHg·cm−3·s2]
Cpam (Cpas) Main (small) pulmonary arterial compliance [mmHg−1·cm−3]

MPAP (SPAP) Main (small) pulmonary arterial pressure [mmHg]
Rpar (Rpc) Pulmonary arteriole (capillary) resistance [mmHg·cm−3·s]

Wedge Pulmonary capillary wedge pressure [mmHg]
Cvp Pulmonary venous compliance [mmHg−1·cm−3]
Rvp Pulmonary venous resistance [mmHg·cm−3·s]
PVP Pulmonary venous pressure [mmHg]

Rro (Rri) Pulmonary (tricuspid) valve resistance [mmHg·cm−3·s]
SVP Systemic veins pressure [mmHg]
CVS Systemic veins compliance [mmHg−1·cm−3]
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Table 2. Cont.

RVS Systemic veins resistance [mmHg·cm−3·s]

RVvs
Resistor accounting viscous losses of the

systemic veins wall [mmHg·cm−3·s]
RSVC_I First Superior vena cava resistance [mmHg·cm−3·s]
CSVC Superior vena cava compliance [mmHg−1·cm−3]
LSVC Superior vena cava inertance [mmHg·cm−3·s2]

RSVC_II Second superior vena cava resistance [mmHg·cm−3·s]
SVCP Superior vena cava pressure [mmHg]

LAP(RAP) Left (right) atrial pressure [mmHg]
LVP(RVP) Left (right) ventricular pressure [mmHg]

RAA Ascending aorta resistance [mmHg·cm−3·s]

RVaa
Resistor accounting viscous losses of the

ascending aorta wall [mmHg·cm−3·s]
LAA Ascending aorta inertance [mmHg·cm−3·s2]
CAA Ascending aorta compliance [mmHg−1·cm−3]
AoP Aortic Pressure [mmHg]
RDA Descending aorta resistance [mmHg·cm−3·s]

RVda
Resistor accounting viscous losses of the
descending aorta wall [mmHg·cm−3·s]

LDA Descending aorta inertance [mmHg·cm−3·s2]
CDA Descending aorta compliance [mmHg−1·cm−3]
DPA Descending aortic pressure [mmHg]
RCA Carotid arteries resistance [mmHg·cm−3·s]
RA Peripheral arteries resistance [mmHg·cm−3·s]

RVa
Resistor accounting viscous losses of the
peripheral arteries wall [mmHg·cm−3·s]

CA Peripheral arteries compliance [mmHg−1·cm−3]
PA Peripheral arteries pressure [mmHg]

RIVC, RIVC_I, RIVC_II Inferior vena cava resistances [mmHg·cm−3·s]
LIVC Inferior vena cava inertance [mmHg·cm−3·s2]
CIVC Inferior vena cava compliance [mmHg−1·cm−3]

Pt Mean intrathoracic pressure [mmHg]
ela (era) Left (right) atrial elastance [mmHg/mL]
elv (erv) Left (right) ventricular elastance [mmHg/mL]

eAspt (eVspt) Inter-atrial (-ventricular) septal elastance [mmHg/mL]
Qartery (Qvenous) Coronary arterial (venous) flow [mL/s]

RoCANN (RiCANN) RVAD output (input) cannula resistance [mmHg·cm−3·s]
LoCANN (LiCANN) RVAD output (input) cannula inertance [mmHg·cm−3·s2]
CoCANN (CiCANN) RVAD output (input) cannula compliance [mmHg−1·cm−3]

Qli (Qlo) Left ventricular input (output) flow [mL/s]
Qri (Qro) Right ventricular input (output) flow [mL/s]

Qlia (Qria) Left (right) atrial input flow [mL/s]

2.3. Right Ventricular Assist Device (RVAD)

A 0-D numerical model described in [16] was used to implement a centrifugal pump
that reproduced the behaviour of the right ventricular assist device. The pump can be
connected in series or parallel to the right ventricle with two cannulae modelled using
RLC elements (Figure 1d). When the RVAD removes blood from the right atrium (parallel
connection—SW1 = ON and SW2 = OFF in Figure 1d), the flow through the inlet cannula is:

(RAP − ∆P) = QiCANN · RiCANN +

(
d
dt

QiCANN

)
· LiCANN (3)

(
d
dt

∆P
)
· CiCANN = QPUMP − QiCANN (4)
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RAP is the right atrial pressure, LiCANN, RiCANN, and CiCANN are the inertance, resis-
tance, and compliance of the inlet cannula, respectively (Figure 1d). QiCANN (QPUMP) is the
flow through the inlet cannula (generated by the centrifugal pump). ∆P is the pressure on
the pump head.

When the RVAD removes blood from the right ventricle (in series connection—
SW1 = OFF and SW2 = ON in Figure 1d), Equation (3) becomes:

(RVP − ∆P) = QiCANN · RiCANN +

(
d
dt

QiCANN

)
· LiCANN (5)

RVP is the right ventricular pressure.
When the RVAD ejects blood, the flow through the outlet cannula is:

(∆P − MPAP) = QoCANN · RoCANN +

(
d
dt

QoCANN

)
· LoCANN (6)

(
d
dt

∆P
)
· CoCANN = QoPUMP − QoCANN (7)

MPAP is the mean pulmonary artery pressure (Figure 1d), RoCANN and CoCANN are
the inertance, resistance, and compliance of the outlet cannula, respectively. QoCANN is the
flow through the outlet cannula.

2.4. Simulation Protocol

For the purposes of our simulations, we considered the values for right and left ventric-
ular elastance that could reproduce a realistic diseased heart. According to the available lit-
erature, normal values for right ventricular elastance fluctuate around 1 mmHg/mL [24,25]
and range from 1.6 to 5 mmHg/mL for left ventricular elastance [17,26]. Therefore, we
considered EesLEFT = 0.7 mmHg/mL for the left ventricle and EesRIGHT = 0.3 mmHg/mL
for the right ventricle as reference values for a failing heart. Our simulation approach
consisted of three steps. In the first step after setting HR = 90 bpm, the slope of left ven-
tricular End-Systolic Pressure-Volume Relationship (ESPVR) EesLEFT = 0.7 mmHg/mL,
and the slope of right ESPVR EesRIGHT = 0.3 mmHg/mL [27], the simulator generated
the following values: cardiac output (CO) 4.51 L/min, aortic systolic (diastolic) pressure
82.1 (60.4) mmHg, mean right atrial pressure 23.3 mmHg, pulmonary systolic (diastolic)
pressure 51.2 (31.6) mmHg, and pulmonary capillary wedge pressure 20.7 mmHg. The
mean pressure (flow) value was calculated as the mean value of all blood pressure (flow)
measurements during a cardiac cycle.

In the second step, the slope of right ESPVR EesRIGHT = 0.3 mmHg/mL was set to 0.4,
0.5, 0.6, 0.7, and 0.8 mmHg/mL [10,28] and for each value the parameters described above
were measured.

In the third step, RVAD support was applied both in series and parallel mode with
rotational speed of 2000, 2500, 3000, 3500, and 4000 rpm. In the fourth step, the slope of the
right ESPVR was changed from 0.3 to 0.8 mmHg/mL (0.1 mmHg/mL stepwise increase)
during RVAD support connected in series and parallel mode. The measured parameters
were those described above.

Considering that we did not measure data in patients undergoing RVAD support
to allow us to reproduce their haemodynamic conditions with our numerical simulator,
and given that literature data are largely incomplete, we decided against a direct data
comparison. Therefore, we considered percentage variation to evaluate the trend of the
effects induced by RVAD support on the haemodynamic and energetic variables in line
with other available simulation work.
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3. Results

Figure 2 shows the effects induced by different values for ESPVR slope (EesRIGHT) on
left and right atrial pressure–volume loop area (left upper panel). The percentage changes
calculated with respect to the reference value for EesRIGHT = 0.3 mmHg/mL have been
listed. The red bars show the percentage change with respect to the reference value for
PVLAL-A increase at high EesRIGHT values. On the contrary, the PVLAR-A (yellow bars)
decreases when the percentage change is referred to high EesRIGHT values. These results
show that when EesRIGHT increases from 0.3 to 08 mmHg/mL, the area of the pressure–
volume loop of the right atrium decreases, whilst the area of the pressure–volume loop
of the left atrium increases (Figure 3). The left and right lower panel shows the left and
right atrial pressure–volume loop obtained with different EesRIGHT values. The black
pressure–volume loop was obtained by setting EesRIGHT = 0.3 mmHg/mL, while the blue
pressure–volume loop was obtained by setting EesRIGHT = 0.6 mmHg/mL. The left (left
side) and the right (right side) ventricular pressure–volume loops are placed in the upper
panels. When EesRIGHT increases, EWL_V and PVAL-V (left upper panel) increase leading to
right-sided shift with increased left ESV and EDV. The effect induced by different EesRIGHT
values on left and right ventricular EW (EWL-V and EWR-V) are reported in Figure 2 (left
lower panel). The effect induced on EDV and ESV of the left (right) atrium is reported in
the upper (lower) right panel (Figure 2). The effect induced on the right atrial ESV is more
evident than the one produced on right atrial EDV. Figure 3 (right upper panel) shows
that an increase in EesRIGHT leads to an increase in right ventricular external work and
PVAR-V with left-sided shift and a decrease of both right ESV and EDV. Figure 4 shows
the effect induced by RVAD support driven in parallel connection (left panels) on left
ventricular PVAL-V (left upper panel) and EWL-V (left lower panel). The effect induced on
PVAL-V and EWL-V when the RVAD is driven in series is available in the right panels. The
data were measured for different values of EesRIGHT (0.3, 0.5, and 0.8 mmHg/mL) and
with increasing RVAD rotational speed (2000, 2500, 3000, 3500, and 4000 rpm). For each
rotational speed and EesRIGHT values, the percentage changes calculated with respect to the
reference value measured in pathological conditions have been listed (Figure 4). The highest
percentage changes in PVAL-V and EWL-V (50% or more for both variables) were recorded
in a diseased condition with right ventricular elastance set to EesRIGHT = 0.3 mmHg/mL
during in-parallel RVAD assistance with pump rotational speed at 4000 rpm. Figure 5
shows the effect induced by in-parallel RVAD support on left ventricular ESVL-V (left
upper panel) and EDVL-V (left lower panel). The effect induced on ESVL-V (right upper
panel) and EDVL-V (right lower panel) by in-series RVAD support is also available for
comparison purposes. When the rotational speed of the pump was set to 2000 rpm, the
percentage changes for each value of right ventricular ESPVR slope were no more than
3%. The effects induced by a different rotational speed of the RVAD on left and right
atrial pressure–volume loop area are available in Figure 6 for three different values of
right ESPVR slope. In addition, for each value of the slope, the effect induced by the
pump has been calculated in percentage terms with respect to the value obtained without
assistance. In the case of the right atrium, we observed a higher percentage reduction of
the loop area (from 2 to 9%) during in-series assistance (left lower panel). In the case of
parallel connection (left upper panel), the percentage reduction of the pressure–volume
loop area of the right atrium becomes more evident at high values for both the slope and
the pump rotational speed. Right heart assistance produces significant effects on the left
atrium loop area (right panels). Percentage variations between 20 and 50% are observed
when the RVAD is connected in parallel to the right ventricle (right upper panel). Whether
in-series or in-parallel assistance is considered, the most significant percentage variations
are observed when the right ventricular ESPVR slope is set to EesRIGHT = 0.3 mmHg/mL.
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pressure–volume loop area when the RVAD was connected in series to the right ventricle.

The effects induced by RVAD support on the right ventricular flow output and on the
total cardiac output are shown in Figure 7. RVAD parallel assistance generated a lower
reduction in right ventricular output compared to in-series assistance for each EesRIGHT
value and each pump’s rotational speed. More specifically, when the pump speed was set
to 4000 rpm, parallel assistance induced a reduction between 20 and 45% compared to the
baseline value, while the in-series assistance induced a reduction between 38 and 78%. The
upper panels in Figure 7 show that parallel RVAD assistance generates a higher increase in
total cardiac output compared to in-series assistance at pump speeds higher than 3500 rpm
(for each EesRIGHT value).

The left upper (lower) panel in Figure 8 shows the effects induced on the left ventric-
ular (atrial) loop when different types of RVAD assistance were applied to pathological
conditions (black loops) reproduced by setting EesRIGHT to 0.3 mmHg/mL. The assistance
was applied in parallel (red loops) and in series (blue loops) mode with a rotational speed
of 3000 rpm.

The right upper (lower) panel shows the effects induced on right ventricular (atrial)
loops. When in-parallel assistance was applied, a right-sided shift in the left and right
ventricular loop (red lines) was observed. Although in-series RVAD assistance did not cause
changes in right end-systolic ventricular volume, it led to a reduction in right end-diastolic
ventricular loop. The type of assistance did not cause relevant changes in the right atrial
loop (right lower panel).
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Figure 7. Relative changes calculated in comparison to pathological conditions (EesR ≡
EesRIGHT = 0.3, 0.5, and 0.8 mmHg/mL) for different types of RVAD connection and different
rotational speeds. For each value of EesRIGHT, the relative change was calculated when the RVAD
was connected in parallel and in-series mode. The left (right) upper panel shows the relative changes
in the total cardiac output (right ventricular flow output plus RVAD flow output) when the RVAD
was connected in series (parallel) to the right ventricle. The left (right) lower panel shows the relative
changes in the right ventricular flow output when the RVAD was connected in series (parallel) to the
right ventricle.
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the left (right) ventricular pressure–volume loops when pathological conditions
(EesRIGHT = 0.3 mmHg/mL) (black line), in-parallel RVAD (pump rotational speed at 3000 rpm)
(red line), and in-series RVAD assistance (pump rotational speed at 3000 rpm) (blue line) were
reproduced by the simulator, respectively. The left (right) lower panel shows the left (right) atrial
pressure–volume loops reproduced by CARDIOSIM©.

4. Discussion

The left ventricle (LV) was coupled to the low-compliance, high-resistance peripheral
arterial circulation and was more adaptable to changes in pressure than volume. In contrast,
the right ventricle (RV) was coupled to the high-compliance, low-resistance pulmonary
circulation and was more adaptable to changes in volume than pressure. The right ventricle
consisted of a free wall containing a wrap-around circumferential muscle at its base and a
septum made of oblique helical fibres crossing each other at 60◦ angles. This was consistent
with the helical ventricular myocardial band concept, which defines two interconnected
muscle bands: a basal loop with transverse fibres surrounding the left and right ventricles
and an apical loop made of a right- and left-handed helix forming an apical vortex [29,30].
The wrap-around transverse fibres constricted or compressed it from leading to a bellows
motion responsible for 20% of right ventricular output, whilst the oblique fibres were
responsible for shortening and lengthening, which contributed to 80% of right ventricular
systolic function [31]. The crista supra-ventricularis shared muscle fibres with the inter-
ventricular septum and the free wall played a key anatomical and functional role [32].
A reduction in longitudinal contraction and an increase in transverse shortening were
observed following cardiopulmonary bypass and pericardiotomy [33]. This was quite
an important aspect to bear in mind and may be addressed initially with pulmonary
vasodilators [34]. The relationship between structure and function plays a key role in clinical
decision-making, which must be based on detailed knowledge of normality and recognise
how a disease can be addressed to restore normality [31]. The important contribution of
right ventricular function has been neglected for a long time due to previous observations
and assumptions. The onset of right ventricular dysfunction should trigger the search for
the main underlying cause in relation to pressure overload, volume overload, or primary
myocardial disease [35]. Right heart failure (RHF) is difficult to manage because of its
complex geometry and a lack of specific treatments aimed at stabilisation and recovery of
right ventricular function. Nevertheless, right ventricular dysfunction remains associated
with poor clinical outcome regardless of the underlying disease mechanism [36].

A simulation approach overcomes ethical issues and the risk of offering an ineffective
or potentially dangerous therapeutic option. At the same time, it may help focus on the
specific problem to address. Our starting point was to develop a failing right heart, which
would require support at a subsequent stage. The easier way to do it was to act on the
ESPVR slope of both ventricles. A range between 0.35 and 0.74 mmHg/mL was observed
in patients with pulmonary hypertension [10] with a cut-off of 0.8 for Ees/Ea ratio as the
onset of right ventricular maladaptation. Our initial aim was to observe the effects of RVAD
support with either in-series or parallel connection following stepwise variation of right
ventricular end-systolic elastance in patients with increased right ventricular afterload.
Therefore, the right ventricular end-systolic elastance considered in the present study
ranged between 0.3 and 0.8 mmHg/mL as per previously reported values observed in
clinical practice [10,37,38]. According to [28], increased native cardiac output was observed
in the presence of left ventricular systolic impairment when right ventricular end-systolic
elastance increased from 0.1 to 1.0 mmHg/mL. An increased native cardiac output was
still observed during VA ECMO support following a stepwise increase in right ventricular
end-systolic elastance, but to a lesser degree. A left-to-right ventricular septal shift was
observed during diastole following a stepwise increase in right ventricular end-systolic
elastance both with and without VA ECMO support. Our considerations were based on the
context of pure RVAD support with either in series or parallel connection.
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PVA and EW of the left ventricle gain benefit when the pump speed of the RVAD is
at least 3500 rpm. The highest effect is obtained when EesRIGHT is 0.3 mmHg/mL, which
is consistent with significant RV dysfunction (left panels in Figure 4). The pathological
range considered would suggest that early recognition and aggressive RVAD support is
advisable where a lower degree of assistance is required generating enough benefit for a
less compromised right ventricle with more potential for recovery. This is an important
point to consider in the context of LVAD support when the right heart shows signs of failure
requiring attention.

The highest beneficial effect was obtained when the RVAD was connected in parallel
to the right ventricle, with up to a nearly 35% increase in total cardiac output (right upper
panel in Figure 7) and a lower reduction of right ventricular output compared to in-series
RVAD connection. No significant effects were observed on the right atrium regardless of
the type of RVAD connection to the right ventricle. Instead, in-parallel RVAD connection
had a more beneficial effect on the left atrium. Again, RVAD support has a more beneficial
effect on ESV and EDV of the left ventricle when connected in parallel to the right ventricle
(left panels in Figure 5). The role of the inter-ventricular septum is critical in this context.

Our aim was to observe the effect of pure RVAD assistance at different stages of
right ventricular dysfunction to determine the appropriate timing for intervention. Our
target was early graft failure secondary to right heart dysfunction following orthotopic
heart transplant and right ventricular failure following LVAD insertion in an apparently
preserved right heart function preoperatively. We have focused our attention mainly on
EesRIGHT neglecting Vo. We have not considered the progressive increase in afterload.
Despite this limitation, our preliminary findings support the concept of early intervention
in the presence of a failing right heart regardless of its aetiology. This simulation study
confirms what had been previously advocated, but not always put into practice [39]. A
more liberal right ventricular support may be the way forward [40] when considering
different support strategies for a failing right ventricle [41]. Late onset of right ventricular
failure remains associated with worse survival and higher cumulative incidence of major
adverse events [42].

5. Conclusions

Despite the limitations of a simulation setting and the limited and not homogeneous
availability of haemodynamic data measured in patients during RVAD support, this work
allowed a trend analysis of haemodynamic and energetic parameters during pure RVAD
support with different connection and at different stages of right ventricular dysfunction.
Although RVAD support may be effective in advanced right heart failure, early recognition
and aggressive treatment is desirable to achieve a more favourable outcome. RVAD support
remains an option for advanced right ventricular failure, although the onset of major
adverse events may preclude its use. Our simulation work showed that in-parallel RVAD
connection to the right ventricle seems a more suitable option.
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