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Background: Ras-related C3 botulinum toxin substrate 1 (RAC1) is an important member of the Rho 
GTPase family involved in tumorigenesis. However, its role and potential clinical utility across cancer 
entities in solid tumors is unknown.
Methods: We analyzed data from various databases, including The Cancer Genome Atlas (TCGA), 
Genotype-Tissue Expression Project, cBioPortal, Tumor Immune Estimation Resource 2 (TIMER2), 
and published articles. A prognostic nomogram for liver hepatocellular carcinoma (LIHC) patients was 
developed based on RAC1-guanosine triphosphate (GTP) gene expression levels, which were validated using 
immunohistochemistry (IHC).
Results: In this study, RAC1 was highly expressed in most cancers and correlated with prognosis and 
pathological stages. Furthermore, significant associations were observed between RAC1 and DNA 
methylation, immune cell infiltration, immune-related genes, tumor mutational burden, and microsatellite 
instability in most tumors. As a use case, we employed gene set enrichment analysis (GSEA) and gene 
set variation analysis (GSVA) to analyze the biologic importance of RAC1 expression and established a 
prognostic nomogram based on tumor stage and RAC1 expression, which can better predict the overall 
survival rate of patients with LIHC better than tumor stage alone. The gene expression results were 
validated with IHC, which confirmed a higher expression of the RAC1-GTP protein in LIHC compared to 
paracancerous tissues.
Conclusions: This extensive solid tumor analysis provides sound evidence that RAC1 can serve as both as 
an immunotherapy target and as a diagnostic and prognostic biomarker. 
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Introduction

Cancer has become a global health crisis, impacting 
millions of people worldwide, with increasing morbidity 
and mortality (1). Cancer not only causes suffering to 
individuals but also imposes a considerable economic 
burden on society (2). Over the past decade, even with 
improvements in the diagnosis and treatment of the disease, 
many cancer patients still have poor prognosis (3). Thus, 
it is necessary to find new ways to detect and treat cancer 
early and effectively. The Cancer Genome Atlas (TCGA) 
and other public databases are continually improving and 
developing. Whole genome sequencing provides insight 
into the similarities and differences among different types 
of cancer and will hopefully lead to the identification of 
new potential diagnostic, prognostic and therapeutic targets 
sometimes with agnostic characteristics. 

There is evidence suggesting that genetic and epigenetic 
alterations are involved in the occurrence and development 
of tumors. Genetic alterations confer selective growth 
advantages to cancer cells (4). As an epigenetic alteration, 
DNA methylation can control gene expression without 
altering the sequence of the DNA (5). Tumor-suppressor 
genes that are abnormally methylated have been associated 
with prognoses in esophageal cancer (6). Additionally, 
immune infiltrating cells in the tumor microenvironment 
can contribute both to immune escape of tumors and 

to long-term disease control (7). In recent years, tumor 
immunotherapy has shown significant efficacy, especially 
immune checkpoint inhibitors (ICIs) (8-10). However, 
most patients remain insensitive to immunotherapy. 
Thus, the identification of new targets that may better 
stratified cancer about prognosis and or are predictive for 
immunotherapy/targeted therapies efficacy constitutes an 
important challenge in this setting. 

Ras-related C3 botulinum toxin substrate 1 (RAC1) 
is a vital member of the Rho GTPase family. Proteins 
in this group can be transformed between the guanosine 
diphosphate (GDP)-bound state (inactive) and guanosine 
triphosphate (GTP)-bound state (active) (11). Many 
cellular processes are regulated by RAC1, including 
cell proliferation, apoptosis, invasion and metastasis, 
and angiogenesis, which promote tumorigenesis and 
development. RAC1 has also been implicated in cancer 
therapy resistance (12). Over the past few years, several 
studies have demonstrated the abnormal expression or 
activation of RAC1 in some cancers that contributes to 
poor prognosis (13-15). A relationship between RAC1 
and immunity has also been found. RAC1 P29S mutant 
melanoma cells have a higher level of programmed 
cell death ligand-1 expression than do RAC1 wild-type 
cells and can evade immune surveillance (16). In B-cell 
chronic lymphocytic leukemia, lenalidomide, as an 
immunomodulatory agent, restores normal levels of RAC1 
activity in T cells, thereby maintaining T-cell adhesion and 
motility (17). Based on these findings, it may be possible to 
analyse RAC1 expression/alteration for cancer diagnosis, 
prognosis, and predictive factor for immunotherapy. Thus 
far, most studies on the RAC1 gene have been limited 
to specific tumors, and systematic research on its role 
is lacking. Thus, our study aimed to explore the role of 
RAC1 in a wider range of solid tumors in order to reveal 
innovative ideas and methods for clinical studies and 
treatments in cancer.

In this study, database information was used to analyze 
RAC1 expression and investigate its prognostic value  
(Table 1). The level of RAC1 expression was notably 
associated with pathological stages, RAC1 promoter 
methylation, immune cell infiltration, immune-related 
genes, tumor mutational burden, and microsatellite 
instability. As a use case, we employed gene set enrichment 
analysis (GSEA) and gene set variation analysis (GSVA) to 
analyze the biological function and pathway of RAC1 in liver 
hepatocellular carcinoma (LIHC). Based on tumor stage 
and RAC1 expression, the existing prognostic nomogram 

Highlight box

Key findings
•	 Ras-related C3 botulinum toxin substrate (RAC1) can serve as a 

solid tumor biomarker.

What is known and what is new? 
•	 RAC1 is involved in tumor development and immunotherapy in 

specific tumors.
•	 Our results provided a new perspective on the role of RAC1 

in pan-cancer diagnosis, prognosis, and potential predictive 
factor regarding immune-check point inhibitors. Moreover, 
immunohistochemistry (IHC) results showed that l iver 
hepatocellular carcinoma (LIHC) tissues expressed more RAC1-
guanosine triphosphate (GTP) than did normal tissues.

What is the implication, and what should change now? 
•	 RAC1 may be both an immunotherapy target and diagnostic and 

prognostic biomarker. 
•	 Our study also provides a theoretical basis for studying RAC1 in 

vitro and in vivo, which can enhance our understanding of how 
RAC1 can be targeted therapeutically, thereby providing a superior 
immune-based anticancer strategy.
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Table 1 RAC1 gene expression, relationship between RAC1 gene expression and OS, TAM infiltration in 33 types of tumors 

Tumor RAC1 Expression Prognosis (OS) TAMs

ACC Higher Poor N

BLCA Higher Poor N

BRCA Higher Poor Positive

CESC Higher Poor Positive

CHOL Higher Better N

COAD Higher Poor N

DLBC Higher Better N

ESCA Higher N N

GBM Higher Poor N

HNSC Higher Poor N

KICH N Poor N

KIRC Higher Poor Positive

KIRP Higher N Negative

LAML Lower N N

LGG Higher Poor Positive

LIHC Higher Poor Positive

LUAD Higher Poor Positive

LUSC Higher N Positive

MESO N Poor N

OV Higher Poor N

PAAD Higher Poor Positive

PCPG N Better Positive

PRAD Higher N N

READ Higher N N

SARC Higher Poor Positive

STAD Higher N Positive

SKCM Higher Poor Positive

TGCT Higher N Negative

THCA Higher N Positive

THYM Higher N Positive

UCEC Higher N N

UCS Higher N N

UVM N Poor N

RAC1, Ras-related C3 botulinum toxin substrate 1; OS, overall survival; TAM, tumor-associated macrophage; ACC, adrenocortical 
carcinoma; BLCA, bladder cancer; BRCA, breast cancer; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal 
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney 
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, lower grade glioma; LIHC, 
liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian 
cancer; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, 
rectum adenocarcinoma; SARC, sarcoma; STAD, stomach adenocarcinoma; SKCM, skin cutaneous melanoma; TGCT, testicular germ cell 
tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, 
uveal melanoma; N, non-significant.
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was better able to predict patients’ overall survival (OS) 
rates. Finally, through immunohistochemistry (IHC), we 
further confirmed the expression of RAC1-GTP in LIHC. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-23-2016/rc).

Methods

RAC1 gene expression pattern 

Case information regarding messenger RNA (mRNA) 
expression and clinical features (18,086 samples from  
33 cancers) were obtained from TCGA and the Genotype-
Tissue Expression (GTEx) project and downloaded from 
the website(https://xenabrowser.net/datapages/). The 
TCGA database contained information on paracancerous 
tissues, however, due to the absence of corresponding 
paracancerous tissue data for certain tumors in TCGA, 
data from both TCGA and GTEx were utilized to analyze 
and compare the expression levels of RAC1 in cancerous 
and normal tissues. We transformed the RNA sequencing 
(RNA-seq) data to transcripts per million (TPM), and a 
log2 (1 + TPM) transformation was performed. Analysis 
of tumor and normal tissue expression was performed 
using t-tests. A clinical dataset from TCGA was analyzed 
to determine whether the expression of RAC1 affected 
pathological stages. The “ggplot2” R package (version 4.1.1, 
The R Foundation of Statistical Computing) was used to 
analyze and visualize the results.

Gene alteration, copy number alteration (CNA), and 
RAC1 DNA methylation analysis

cBioPortal database (https://www.cbioportal.org/) is a web 
platform for analyzing tumor genomic characteristics in the 
RAC1 gene. We used this database to analyze the types and 
frequency of RAC1. Pearson rank correlation coefficient 
was calculated to analyze the relationship between RAC1 
expression and CNA and DNA methylation. TCGA 
samples from the University of Alabama at Birmingham 
Cancer Data Analysis Portal (UALCAN; http://ualcan.path.
uab.edu/) were used to compare the promoter methylation 
level of RAC1 between tumors and normal tissues.

Prognostic value of RAC1 gene

TCGA provided us with survival data of tumor patients 

(n=9,784). Using routing algorithms, we divided samples 
into low and high groups based on the optimal cutoff point, 
OS, disease-specific survival (DSS), disease-free interval 
(DFI), and progression-free interval (PFI) were evaluated. 
The “surv-cutpoint” function within the survminer R 
package was utilized to identify the optimal split point 
through a comprehensive evaluation of all potential cut 
points. Forest plot analysis was conducted using the 
R package “forestplot”, and R packages “survival” and 
“survminer” were used to draw survival curves. Log-rank P 
values, hazard ratios (HRs), and 95% confidence intervals 
were examined.

Establishment and assessment of the nomogram

To determine the prognostic value of the RAC1 expression 
level in patients with LIHC, we used an online platform 
(https://www.home-for-researchers.com/static/index.
html#/) to conduct univariate and multivariate Cox 
regression analysis and develop a nomogram of tumor stage 
and RAC1 expression. Finally, a correction curve was used 
to determine whether the nomogram was predictive.

GSEA and GSVA of RAC1 gene in LIHC

Based on GSEA and GSVA, we examined the biological 
function and significance of RAC1 in LIHC. GSEA was 
implemented using the R package “clusterProfiler”. A set 
of gene signatures for the Hallmark pathway was obtained 
from the Molecular Signatures Database and by using the 
R package “GSVA”, and we obtained the hallmark pathway 
scores for LIHC.

Relationship between RAC1 gene expression, immune cell 
infiltration, and immune-related genes

The Tumor Immune Estimation Resource 2 (TIMER2; 
http://timer.comp-genomics.org/) offers three distinct 
modules, namely Immune Association, Cancer Exploration, 
and Immune Estimation, which facilitate the examination 
of relationships between immune infiltration and various 
genetic or clinical attributes. 

Analysis of the data revealed there to be a relationship 
between RAC1 levels and immune cells. Next, our study 
utilized data on pan-cancer immune cell infiltration 
obtained from a previous study (18). Furthermore, we 
examined the relationship between RAC1 and genes 
associated with immunity. To visualize the data, a heatmap 

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2016/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2016/rc
https://xenabrowser.net/datapages/
https://www.cbioportal.org/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
https://www.home-for-researchers.com/static/index.html#/
https://www.home-for-researchers.com/static/index.html#/
http://timer.comp-genomics.org/
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was produced using the “pheatmap” package in R.

Correlational research on RAC1 gene expression and 
tumor mutational burden, as well as microsatellite 
instability

Using data derived from TCGA, we examined tumor 
mutational burden in 33 cancer types. The microsatellite 
instability data were obtained from a published article (19), 
and the Pearson rank correlation coefficient was calculated 
to analyze the relationship between RAC1 expression and 
tumor mutational burden and microsatellite instability. In 
order to visualize data, a radar map was generated using the 
“ggradar” package in R. 

Immunohistochemical analysis

The Pathological Center of Ningbo City provided paraffin 
sections of five pairs of LIHC tissue specimens and adjacent 
tissue specimens from postoperative patients with LIHC 
from Department of Radiation Oncology, The Affiliated 
Lihuili Hospital, Ningbo University between January 2021 
to December 2021. RAC1-GTP antibody was purchased 
from NewEast Biosciences (cat no. 26903; RRID: 
AB_1961793; NewEast Biosciences, Wuhan, Zhejiang). The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The Ethics Committee of The 
Affiliated Lihuili Hospital, Ningbo University approved this 
study (No. KY2022SL322-01). Individual consent for this 
retrospective analysis was waived. Determine the proportion 
of positive cells based on sample color and staining intensity, 
and evaluate the expression intensity of cells. If 0–10% is 
negative, the score is 0; 11–30% are weakly positive, with a 
score of 1; 31–60% is positive, with a score of 2; 61–100% 
are strongly positive, with a score of 3.

Statistical analysis 

All statistical analyses were performed in R software (version 
4.1.1). Changes in RAC1 expression levels between cancer 
and normal tissues were assessed through t-tests. Univariate 
Cox regression analysis was employed to calculate the HR 
and P value for survival analysis. Kaplan-Meier analysis 
was utilized to examine the survival duration of patients 
categorized based on high or low RAC1 expression levels. 
The Pearson rank correlation coefficient was computed in 
order to examine the association between the variables. A 
value of P<0.05 (2-sided) was considered significant for the 

abovementioned statistical analyses.

Results

Tumor and normal tissue expression of RAC1 gene

We combined TCGA data with GTEx data to examine 
RAC1 expression between 33 common cancers and their 
corresponding normal tissues. A comparison of RAC1 
expression between corresponding normal tissues and 
tumor tissues revealed no significant difference in kidney 
chromophobe (KICH) or pheochromocytoma and 
paraganglioma (PCPG), and significant upregulation in other 
tumor tissues. However, the expression of RAC1 is elevated 
in normal tissues compared to tumor tissues in acute myeloid 
leukemia (LAML) (Figure 1A). In 33 tumor tissues from 
TCGA, esophageal carcinoma (ESCA) exhibited the highest 
levels of RAC1 and KICH exhibited the lowest levels of 
RAC1. According to the GTEx database, RAC1 was expressed 
at the highest level in the skin and the lowest in the pancreas 
(Figure 1B,1C). TCGA database was used to retrieve paired 
samples and evaluate RAC1 expression. In tumor tissues 
from patients with bladder urothelial carcinoma (BLCA), 
breast invasive carcinoma (BRCA), cholangiocarcinoma 
(CHOL), ESCA, head and neck squamous cell carcinoma 
(HNSC), kidney renal clear cell carcinoma (KIRC), 
kidney renal papillary cell carcinoma (KIRP), LIHC, lung 
adenocarcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), rectum adenocarcinoma (READ), and stomach 
adenocarcinoma (STAD), RAC1 expression was higher than 
in adjacent normal tissues. By contrast, its expression was 
downregulated in KICH (Figure 2). 

Relationship between RAC1 gene expression and 
pathological stages

The expression of RAC1 was analyzed in patients’ various 
tumors according to the cancer stage to determine if 
a relationship exists between RAC1 expression and 
pathological features. The results showed that RAC1 was 
differentially expressed in different stages of adrenocortical 
carcinoma (ACC), colon adenocarcinoma (COAD), 
HNSC, KICH, KIRC, LIHC, LUAD, mesothelioma 
(MESO), pancreatic adenocarcinoma (PAAD), uterine 
corpus endometrial carcinoma (UCEC), and ovarian 
serous cystadenocarcinoma (OV), with the expression level 
generally being even higher in the more advanced stages 
(Figure S1).

https://cdn.amegroups.cn/static/public/TCR-23-2016-Supplementary.pdf
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Gene alteration, CNA, and methylation levels of RAC1 
gene promoter

We used the cBioPortal database to study RAC1 gene 
alteration and CNA. The results showed that RAC1 
gene alteration was most common in patients with 

skin cutaneous melanoma (SKCM), at about an 8.7% 
incidence. The alteration of the RAC1 gene included 
mutation, amplification, deep deletion, and multiple 
alterations. The most common form of gene alteration was 
amplification. Amplification was also a major alteration 
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Figure 2 Expression of RAC1 in tumor and paired normal tissues based on TCGA. (A-L) RAC1 expression was high in 12 cancer types. 
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in uterine carcinosarcoma (UCS), BLCA, ESCA, sarcoma 
(SARC), LUAD, ACC, STAD, OV, testicular germ cell 
tumors (TGCT), brain lower grade glioma (LGG), 
KIRP, cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC), PCPG, BRCA, glioblastoma 

multiforme (GBM), LIHC, and thyroid carcinoma (THCA) 
(Figure 3A). Additionally, rather than KICH, pancreatic cancer 
(PANC), thymoma (THYM), and THCA, RAC1 expression 
correlated positively with CNA (Figure 3B). Furthermore, 
RAC1 promoter hypermethylation was accompanied by 
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Figure 3 Gene mutation, CNA, and methylation of RAC1 promoter. (A) The RAC1 mutation frequency in cancers from cBioPortal. (B) 
The relationship between RAC1 expression levels and CNA. (C) The association between DNA methylation and RAC1 expression. CNA, 
copy number alteration; TCGA, The Cancer Genome Atlas; SARC, sarcoma; TGCT, testicular germ cell tumors; SKCM, skin cutaneous 
melanoma; LGG, lower grade glioma; UCS, uterine carcinosarcoma; STAD, stomach adenocarcinoma; MESO, mesothelioma; LUSC, 
lung squamous cell carcinoma; LUAD, lung adenocarcinoma; ESCA, esophageal carcinoma; COAD, colon adenocarcinoma; BRCA, 
breast invasive carcinoma; HNSC, head and neck squamous cell carcinoma; KIRP, kidney renal papillary cell carcinoma; DLBC, lymphoid 
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down-regulation of RAC1 expression in LGG, LIHC, 
THCA, ESCA, prostate adenocarcinoma (PRAD), SKCM, 
UCEC, SARC, HNSC, COAD, TGCT, BLCA, KIRP, 
THYM, LUSC, STAD, LUAD, CESC, and PANC 
tumor tissues; conversely, RAC1 expression increased with 
hypermethylation of its promoter in OV tumor tissues 
(Figure 3C). 

Next, we investigated the association between RAC1 
promoter methylation level and cancers well as its 
prognostic value. Compared with those of normal tissue, 
RAC1 promoter methylation levels were significantly 
decreased in BLCA, BRCA, CESC, CHOL, ESCA, HNSC, 
UCEC, LIHC, LUAD, LUSC, PRAD, and TGCT 
tumor tissues. However, the methylation level exhibited 
a modest increase in KIRP tumor tissues (Figure S2). In 
order to determine whether RAC1 promoter methylation 
has prognostic significance, Kaplan-Meier analyses were 
conducted. The hypermethylation of RAC1 promoter in 
LIHC, LUAD, PANC, and THYM suggested increased 
OS but was associated with reduced OS in KIRP. The 
hypermethylation of RAC1 promoter was a good prognostic 
factor in patients with LUAD for DSS and in PANC for 
DFI. Regarding PFI, high RAC1 promoter methylation 
level in CHOL was significantly associated with better PFI, 
whereas RAC1 promoter hypermethylation level in KIRP 
was significantly associated with poor PFI (Figure S3).

Survival analysis of patients with altered RAC1 gene 
expression 

We sought to determine whether RAC1 expression is 
associated with survival outcomes. Indicators of survival 
prognosis included OS, DSS, DFI, and PFI. Univariate 
Cox regression analysis of 33 tumor outcomes indicated 
that RAC1 expression had a significant correlation with OS 
in 11 tumors. RAC1 was a risk factor in some tumor types, 
particularly in KICH. However, it was a protective factor in 
lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) 
(Figure 4A). The DSS analysis revealed that RAC1 was a risk 
factor for 11 tumor types, including LGG, MESO, ACC, 

LIHC, GBM, uveal melanoma (UVM), KICH, PANC, 
LUAD, CESC, and SKCM (Figure 4B). In the DFI analysis, 
RAC1 was found to be a risk prognostic factor for ACC and 
PANC (Figure 4C). In terms of PFI, high RAC1 expression 
was found to be associated with clinical outcomes of LGG, 
ACC, MESO, UVM, PANC, and KIRC (Figure 4D).

Kaplan-Meier curves were then generated to determine 
the prognostic value of RAC1  expression. Results 
indicated that high RAC1 expression was associated with 
poor OS in 18 cancer types, including ACC, BLCA, and 
BRCA, among others. In contrast, the high expression 
of RAC1 in CHOL, DLBC, and PCPG was associated 
with better survival (Figure 5). With regards to DSS, the 
analysis revealed that an increase in RAC1 expression 
was associated with shorter survival in most cancers, but 
increased expression of RAC1 in THCA and KIRP was 
associated with longer DSS (Figure S4). 

The upregulation of the RAC1 gene was found to be 
linked to unfavorable DFI in eight cancer types, including 
ACC, LGG, LIHC, and others, but linked to better DFI 
in HNSC (Figure S5). Furthermore, RAC1 expression was 
upregulated in the majority of cancers, which was related 
to a worse PFI. However, in the case of LUSC, TGCT, 
THCA, and KIRP, RAC1 upregulated was associated with a 
better PFI (Figure S6).

Nomogram of LIHC

Due to the former evidences seems to emerge that patients 
with LIHC who exhibit high expression of RAC1 are at risk 
of a poor prognosis. Univariate Cox regression analysis was 
conducted, and tumor size, metastasis sites, and RAC1 were 
associated with survival and prognosis in LIHC. According 
to multivariate Cox regression analysis, tumor size and 
RAC1 were independent risk factors in patients with LIHC 
(Figure 6A,6B). We then developed a nomogram based on 
tumor stage and RAC1 expression level to the predict 1-, 
3-, and 5-year survival (Figure 6C). In order to determine 
the accuracy of the prediction model, calibration plots were 
drawn. The results demonstrated that the nomogram had 

neoplasm diffuse large B-cell lymphoma; UCEC, uterine corpus endometrial carcinoma; READ, rectum adenocarcinoma; BLCA, bladder 
urothelial carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma; LAML, 
acute myeloid leukemia; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; LIHC, liver hepatocellular 
carcinoma; OV, ovarian serous cystadenocarcinoma; UVM, uveal melanoma; ACC, adrenocortical carcinoma; KIRC, kidney renal clear 
cell carcinoma; KICH, kidney chromophobe; PAAD, pancreatic adenocarcinoma; THYM, thymoma; THCA, thyroid carcinoma; GBM, 
glioblastoma multiforme.
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Figure 4 Association between RAC1 expression and prognosis. A forest plot of hazard ratios of RAC1 in cancers for OS (A), DSS (B), DFI (C), and PFI (D). 
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Figure 5 The association between the RAC1 expression and survival outcomes. (A-R) Kaplan-Meier analysis indicated that high RAC1 
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confidence interval; RAC1, Ras-related C3 botulinum toxin substrate 1; pT, pathology tumor; pN, pathology lymph node; pM, pathology 
metastasis; LIHC, liver hepatocellular carcinoma.

good predictive ability (Figure 6D).

Analysis of GSEA and GSVA in LIHC for RAC1 gene

To investigate the biological function of RAC1, we 
conducted GSEA on individuals with LIHC using the 
“clusterProfiler” package in R. The results showed major 
enrichment in immune regulation and cell cycle pathways, 
including the neutrophil, myeloid cell, and leukocyte 

activation involved in the immune response; neutrophil- 
and myeloid leukocyte-mediated immunity; adaptive 
and innate immune systems; neutrophil degranulation; 
cytokine signaling in the immune system, G2/M and G1/
S transition of mitotic cell cycle; and cell cycle checkpoint  
(Figure 7A-7C). Meanwhile, the GSVA results indicated 
that RAC1 is related to pathways that promote tumor 
development and immunity, including the mitotic spindle, 
G2/M checkpoint, DNA repair, PI3K-AKT-mTOR 

expression was related to poor OS in 18 tumor types. (S-U) Kaplan-Meier analysis indicated that high RAC1 expression was associated 
with better OS in some tumor types. ACC, adrenocortical carcinoma; RAC1, Ras-related C3 botulinum toxin substrate 1; BLCA, bladder 
urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, 
colon adenocarcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; 
KIRC, kidney renal clear cell carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; 
MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous 
melanoma; UVM, uveal melanoma; CHOL, cholangiocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; PCPG, 
pheochromocytoma and paraganglioma; OS, overall survival. 
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signaling, interleukin 2 (IL-2)-STAT5 signaling, the 
inflammatory response, and IL-6-JAK-STAT3 signaling 
(Figure 7D). According to the results of RAC1, this 
biomarker may serve as an indicator of Immunotherapy 
sensitivity in LIHC.

Correlation between RAC1 gene and tumor-associated 
macrophages (TAMs) infiltration level in tumor 
microenvironment

Tumor microenvironment immune cells are usually 
dysfunctional,  resulting in immune escape. TAMs 
are critically involved in tumorigenesis and tumor  
progression (20). A study has suggested a role for RAC1 
in some cancers, but it remains unclear whether abnormal 
expression of RAC1 has an effect on the infiltration of 
TAMs (12). To elucidate the role of RAC1 in tumors, we 
used the TIMER2 database and found a significant positive 
association between TAM infiltration and RAC1 for most 
tumors (Figure 8). A published study (18) on immune cell 
infiltration, also found that the TAM infiltration level was 
consistent with the RAC1 gene expression (Figure 9). 

Correlation between RAC1 gene and immune-related 
genes, tumor mutational burden, and microsatellite 
instability

We additionally investigated the association of immune-
related genes with RAC1. Notably, most genes related 
to immune stimulation and immunosuppression were 
positively correlated with RAC1 expression in OV, KICH, 
UVM, and PCPG. In contrast, in ESCA and LUSC, 
RAC1 expression showed a negative correlation with many 
immune stimulation (Figure 10A) and immunosuppression 
genes (Figure 10B). Among the immune-suppressing genes, 
IL10RB, TGFBR1, and TGFB1 expression correlated 
significantly with that of RAC1 in most tumors. Several 
studies have demonstrated that tumor mutational burden 
and microsatellite instability are useful biomarkers, 
which can be helpful in predicting the effectiveness of 
immunotherapy in cancers (21,22). We examined if RAC1 
expression correlated with tumor mutational burden or 
microsatellite instability. We found that RAC1 expression 
in MESO, LUAD, and LGG was positively correlated 
with tumor mutational burden, whereas RAC1 expression 
in THCA, OV, and COAD was significantly negatively 
correlated with tumor mutational burden (Figure 11A). 
Microsatellite instability and RAC1 expression were 

positively correlated in UVM, MESO, LIHC, and SARC, 
but negatively correlated in HNSC, LGG, PRAD, and 
COAD (Figure 11B). 

Expression of RAC1-GTP in LIHC and adjacent normal 
tissues

Further evidence for the role of RAC1 in LIHC was 
obtained using immunohistochemical analyses performed 
on postoperative pathological sections from patients with 
LIHC. The analyses revealed that the expression of RAC1-
GTP was higher in LIHC tissues than adjacent normal 
tissues (Figure 11C).

Discussion

RAC1 participates in a wide range of cellular events, which 
promote tumorigenesis and development. Abnormal 
expression or activation of RAC1 is related to inferior 
prognosis in patients with tumor (13-15), and RAC1 is also 
involved in tumor microenvironment-mediated immune 
escape (16,17). The aim of this study was to examine the 
role of RAC1 in immunotherapy and tumor diagnosis and 
prognosis. In our literature search, we were unable to find 
any studies analyzing a full relationship between RAC1 
expression in a wide range of cancers. By analyzing whole 
raw data, similarities and differences between different types 
of cancer can be identified, thus facilitating the development 
of personalized cancer prevention and suggest treatment 
options.

In the study, the expression of RAC1 was examined 
comprehensively across pan-cancer datasets. In the 
comparison of tumors with normal tissues, most tumors 
expressed higher levels of RAC1. Next, we investigated 
the association between RAC1 expression and pathological 
stages. For most tumors, RAC1 expression was higher in the 
advanced/metastatic stages. Furthermore, Cox proportional 
hazards model and Kaplan-Meier analysis indicated that 
upregulation of RAC1 expression was correlated with 
poorer OS, DSS, DFI, and PFI in several cancers, while 
in other cancers, this was associated with better prognosis. 
These results suggest that RAC1 could play a role in 
promoting tumors and could be a biomarker for diagnosis 
and prognosis.

The chemical modification of DNA, DNA methylation, 
alters the epigenetic state of a genome without changing 
its sequence, thus controlling gene expression. Aberrant 
methylation is a hallmark of cancer progression (5). 
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Figure 8 Relationship of RAC1 expression with immune infiltration level in tumors. Correlation analysis between RAC1 gene expression 
and immune infiltration cells from TIMER2. UVM, uveal melanoma; UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial 
carcinoma; THYM, thymoma; THCA, thyroid carcinoma; TGCT, testicular germ cell tumors; STAD, stomach adenocarcinoma; SKCM, 
skin cutaneous melanoma; SARC, sarcoma; READ, rectum adenocarcinoma; PRAD, prostate adenocarcinoma; PCPG, pheochromocytoma 
and paraganglioma; PAAD, pancreatic adenocarcinoma; OV, ovarian serous cystadenocarcinoma; MESO, mesothelioma; LUSC, lung 
squamous cell carcinoma; LUAD, lung adenocarcinoma; LIHC, liver hepatocellular carcinoma; LGG, lower grade glioma; KIRP, kidney 
renal papillary cell carcinoma; KIRC, kidney renal clear cell carcinoma; KICH, kidney chromophobe; HNSC, head and neck squamous cell 
carcinoma; GBM, glioblastoma multiforme; ESCA, esophageal carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; 
DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 
BRCA, breast invasive carcinoma; BLCA, bladder urothelial carcinoma; ACC, adrenocortical carcinoma; RAC1, Ras-related C3 botulinum 
toxin substrate 1; TIMER2, Tumor Immune Estimation Resource 2.
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Figure 9 Relationship of RAC1 expression with immune infiltration level in tumors. Correlation analysis between RAC1 gene expression and 
immune infiltration cells from a previous study. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. RAC1, Ras-related C3 botulinum toxin 
substrate 1; NK, natural killer; ACC, adrenocortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; 
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; ESCA, esophageal 
carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney 
renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, lower grade glioma; LIHC, liver hepatocellular carcinoma; 
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothelioma; OV, ovarian serous cystadenocarcinoma; 
PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum 
adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumors; 
THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal 
melanoma.

Currently, promoter methylation is thought to be more 
easily detectable than that in other locations in genes, which 
makes it useful for the early detection of cancer (23,24). 
Our study found that downregulation of RAC1 DNA 
promoter methylation was accompanied by the upregulation 
of RAC1 expression in most common cancers. In addition, 
hypermethylation in some cancers was associated with a 
good prognosis, but not in KIRP. Therefore, abnormal 
methylation of RAC1 promoter may affect the development 
of tumors and the prognosis of patients. These findings 
suggest that the status of RAC1 DNA promoter methylation 
could be an early diagnostic marker. 

There is evidence supporting the close association of 
tumor microenvironment with tumorigenesis and the 

development of tumor. The tumor microenvironment 
is primarily composed of tumor cells, immune cells, 
and supporting cells (25). TAMs are immune cells that 
participate in the immune escape of tumors (7). M2-
like TAMs, in particular, as anti-inflammatory cells, play 
a significant role in promoting various pro-tumorigenic 
effects in cancer, including regulation of angiogenesis 
and lymphangiogenesis, immune suppression, induction 
of hypoxia, promotion of tumor cell proliferation, and 
facilitation of metastasis (26,27). RAC1 expression levels 
and prognosis have been found to be closely related in 
several types of cancer, but the effect of RAC1 on immune 
cells is unknown. In our study, the association between 
RAC1 and TAM infiltration was found in a number of 
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Figure 10 Correlation analyses of RAC1 and immune-related genes. (A) Immune stimulation-associated genes. (B) Immunosuppressive-associated genes. 
*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. OV, ovarian serous cystadenocarcinoma; KICH, kidney chromophobe; UVM, uveal melanoma; PCPG, 
pheochromocytoma and paraganglioma; ACC, adrenocortical carcinoma; LIHC, liver hepatocellular carcinoma; PRAD, prostate adenocarcinoma; KIRC, 
kidney renal clear cell carcinoma; PAAD, pancreatic adenocarcinoma; THCA, thyroid carcinoma; KIRP, kidney renal papillary cell carcinoma; GBM, 
glioblastoma multiforme; LGG, lower grade glioma; UCEC, uterine corpus endometrial carcinoma; LAML, acute myeloid leukemia; SARC, sarcoma; BRCA, 
breast invasive carcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; UCS, uterine carcinosarcoma; MESO, 
mesothelioma; THYM, thymoma; LUAD, lung adenocarcinoma; BLCA, bladder urothelial carcinoma; SKCM, skin cutaneous melanoma; CESC, cervical 
squamous cell carcinoma and endocervical adenocarcinoma; STAD, stomach adenocarcinoma; HNSC, head and neck squamous cell carcinoma; READ, rectum 
adenocarcinoma; TGCT, testicular germ cell tumors; CHOL, cholangiocarcinoma; LUSC, lung squamous cell carcinoma; ESCA, esophageal carcinoma; 
RAC1, Ras-related C3 botulinum toxin substrate 1.
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Figure 11 The relationship between RAC1 expression and tumor mutational burden and microsatellite instability, and the expression of 
RAC1-GTP in LIHC and adjacent normal tissues. Expression of RAC1 correlated with tumor mutational burden (A) and microsatellite 
instability (B) in 33 cancers by Pearson’s correlation analysis. (C) Immunohistochemical analysis of RAC1-GTP expression in patients 
with LIHC (scale bar, 1,000:1; 500:1). The red color refers to Pearson correlation coefficient “r”. *, P<0.05; **, P<0.01; ****, P<0.0001. 
TMB, tumor mutational burden; MSI, microsatellite instability; CHOL, cholangiocarcinoma; MESO, mesothelioma; KICH, kidney 
chromophobe; ACC, adrenocortical carcinoma; SARC, sarcoma; LUAD, lung adenocarcinoma; LGG, lower grade glioma; KIRC, kidney 
renal clear cell carcinoma; PCPG, pheochromocytoma and paraganglioma; LIHC, liver hepatocellular carcinoma; LAML, acute myeloid 
leukemia; ESCA, esophageal carcinoma; UCEC, uterine corpus endometrial carcinoma; KIRP, kidney renal papillary cell carcinoma; 
UCS, uterine carcinosarcoma; SKCM, skin cutaneous melanoma; BLCA, bladder urothelial carcinoma; STAD, stomach adenocarcinoma; 
PAAD, pancreatic adenocarcinoma; BRCA, breast invasive carcinoma; THYM, thymoma; UVM, uveal melanoma; TGCT, testicular germ 
cell tumors; HNSC, head and neck squamous cell carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; 
PRAD, prostate adenocarcinoma; GBM, glioblastoma multiforme; LUSC, lung squamous cell carcinoma; THCA, thyroid carcinoma; OV, 
ovarian serous cystadenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell lymphoma; COAD, colon adenocarcinoma; READ, 
rectum adenocarcinoma; RAC1, Ras-related C3 botulinum toxin substrate 1; GTP, guanosine triphosphate; LIHC, liver hepatocellular 
carcinoma.
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tumors. Additionally, the expression of RAC1 was positively 
correlated with that of immunosuppressive genes including 
TGFB1 and IL-10. IL-10 promotes the conversion of TAM1 
to TAM2, and TAM2 is able to produce TGFB1, which 
suppresses the antitumor T response (20). The existence 
of a link between TGFB1, IL-10, and TAM2 further 
supports the significance of RAC1 in regulating tumor 
microenvironment. The results suggest a role of RAC1 in 
the tumor microenvironment, which indicates that it may 
be an ideal tumor immunotherapy target. 

R e c e n t l y,  a  b r e a k t h r o u g h  h a s  b e e n  m a d e  i n 
immunotherapy in treating some malignant tumors (8-10).  
However, as immunotherapy has poor efficacy and low 
response rates for some tumors, only a small portion 
of patients benefit, limiting its widespread use. Hence, 
new biomarkers are needed to identify sensitive patients 
and predict treatment response. Currently, a study 
has demonstrated that tumor mutational burden and 
microsatellite instability are useful biomarkers that are 
helpful in predicting the effectiveness of immunotherapy 
in cancers (21). High tumor mutational burden and 
microsatellite instability in patients may indicate a better 
therapeutic response to ICIs (22,28). In this study, by 
exploring the relationship between RAC1 expression, 
tumor mutational burden, and microsatellite instability, 
we found that RAC1 expression in MESO, LUAD, and 
LGG was positively correlated with tumor mutational 
burden. Moreover, an association was observed between 
microsatellite instability and RAC1 expression in UVM, 
MESO, LIHC, and SARC. These findings thus point to 
RAC1 as a potential candidate for predicting the efficacy of 
immunotherapy for tumors.

Our findings indicate that patients with LIHC who 
exhibit abnormal expression of RAC1 are at risk of a poor 
prognosis. To determine the prognostic value of RAC1 
among patients with LIHC, a prognostic nomogram was 
constructed to predict survival. This model had good 
predictive ability, and will assist clinicians in predicting the 
prognosis of LIHC so that suitable treatment measures can 
be administered. The high expression of a protein does not 
always indicate high activity, as activity level is also related 
to modification states such as phosphorylation, acetylation, 
and methylation, as well as the binding of the protein to 
GTP or GDP. Therefore, studying the activity of a protein 
by simply detecting the expression level of the total protein 
provides a limited assessment. At present, no studies exist 
on RAC1-GTP in LIHC tissues. As shown by IHC, LIHC 
tissues expressed more RAC1-GTP than did the adjacent 

normal tissues. The possibility to a relationship between 
RAC1 expression and immunotherapy sensitivity pave the 
way to prospective clinical trials in order to find a new 
predictive factor to atezolizumab activity in this hard-to-
treat cancer. But there are also some flaws of this study: (I) 
in order to understand the true prognostic role of RAC1 we 
should have had data from an untreated population versus 
a sample of patients treated with uniform first-line therapy. 
(II) The final results don’t permit to conclude that RAC1 
is an agnostic cancer biomarker due to the controversial 
results regarding the good or worse prognosis on different 
tumors. (III) The analysis conducted in this study are 
derived from raw data and some confounding variables may 
lead to different biases which may reduce the value of the 
prognostic and predictive aspect of RAC1. (IV) For these 
reasons our findings must be confirmed in prospective 
clinical trials and final conclusion could be considered as a 
proof of concept for future research.

Conclusions

Our pan-cancer analysis provides insights into the 
similarities and differences of cancers in relation to RAC1. 
The findings indicate that RAC1 is a promising biomarker 
in cancer diagnosis and prognosis and may prove valuable 
in personalized immunotherapy. However, we used public 
databases and bioinformatics data, which have limitations. 
It is necessary to further explore the specific mechanism 
of RAC1. Future in vivo and in vitro studies of RAC1 may 
enhance our understanding of how RAC1 can be targeted 
therapeutically, thereby providing a superior immune-based 
anticancer strategy. 
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