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Abstract

In this review we present current evidence on the
possibility of umbilical cord tissue cryopreservation
for subsequent clinical use. Protocols for obtaining
umbilical cord-derived vessels, Wharton’s jelly-based
grafts, multipotent stromal cells, and other biomedical
products from cryopreserved umbilical cords are
highlighted, and their prospective clinical applications
are discussed. Examination of recent literature indicates
we should expect high demand for cryopreservation of
umbilical cord tissues in the near future.
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Background
In 1974, umbilical cord blood (UCB) was reported to be a
source of hematopoietic stem and progenitor cells [1], and
in 1988, the first transplantation of cryopreserved UCB to
an infant with Fanconi anemia, an inherited bone marrow
disease, was performed in France [2]. Over the next
30 years, numerous studies were published demonstrating
the regenerative potential of particular UCB-derived cell
populations, and a global network of public and private
biobanks of UCB was established [3, 4].
For many years, the solid tissues of umbilical cord (UC)

were treated as a valueless medical waste. The past dec-
ade, however, has been notable for intensive development
of biomedical products on the basis of UC tissues—for ex-
ample, UC-derived mesenchymal stem cells (MSCs),
which can be obtained from total UC or its dissected com-
partments (perivascular, intervascular, subamniotic zones
of Wharton’s jelly, and subendothelial layer of blood ves-
sels). With their high proliferative potential, karyotype and

phenotype stability, differentiation plasticity, paracrine ac-
tivity, and immunomodulatory properties, UC-derived
MSCs can claim the title of the new “gold standard”, oust-
ing the renowned bone marrow-derived MSCs [5–7].
Other examples of UC-derived biomedical products are
decellularized UC vessels used as grafts for vascular sur-
gery [8–10] and Wharton’s jelly-derived extracellular
matrix for wound healing [11].
The main disadvantage of UC as a tissue source is its

transientness: it is only available during a short time
period immediately postpartum. An effective solution to
this problem may be provided by its careful cryopreser-
vation with all efforts made to protect the useful compo-
nents (cells, stromal matrices, specialized tissues) during
storage. This short review presents current evidence on
the possibilities of UC tissue cryopreservation, which
would allow the use of its particular components in cell
therapy and regenerative medicine.

Cryopreservation of UC-derived vessels
Surgical reconstruction of small vessels involves autolo-
gous transplantation as a gold standard, but this is not
always affordable [9]. Decellularized umbilical vessels of
appropriate diameter and considerable length without
branches represent a suitable material for vascular pros-
theses [8–10, 12–15]. This makes the effective cryo-
preservation of UC-derived vessels highly important for
vascular surgery. Experiments show that although cryo-
preservation of the UC vessels significantly affects the
subsequent decellularization efficacy (which may be at-
tributed to condensation of extracellular matrix during
freezing), it has no influence on their mechanical prop-
erties such as stiffness, burst pressure, and suture reten-
tion strength [12].
The protocols for cryopreservation of UC blood vessels

as a biomaterial for allogeneic transplantation do not
imply the preservation of the cellular component. For this
reason, the cryopreservation medium is composed of sa-
line with no cryoprotectants. It is used in > 20 volume ex-
cess to the volume of fresh material at a cooling rate of 1 °
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C/min, with subsequent storage at − 20°С [12]. In the case
of cryopreservation of UC blood vessels for autologous
transplantation, preservation of the living cells in the
blood vessel walls would make sense. However, no appro-
priate investigation of cell survival during UC vessel cryos-
torage with cryoprotectants has been done [15]. At the
same time, the possible utility of the UC blood
vessel-derived scaffolds is not confined to vascular surgery,
but may be extended to tissue engineering options for
nerve [16], periodontal tissue [17], and musculoskeletal
soft tissue [18] regeneration.

Cryopreservation of Wharton’s jelly
UC stroma contains a unique gelatinous substance
which is missing in the human body after birth. It is
called Wharton’s jelly (WJ) after Thomas Wharton
(1614–1673), an English physician and anatomist. WJ
protects the blood vessels (two umbilical arteries and
one umbilical vein) from clumping and also ensures cord
flexibility. It is a rich reservoir of growth factors and
contains significant amounts of extracellular matrix
components such as collagen (types I, III, IV, and V),
hyaluronic acid, and several sulfated glycosaminoglycans
[5]. Such an attractive combination of biomechanical
and biochemical features makes WJ an important candi-
date material for medical applications. For example, a
biomimetic spongy scaffold, which had been produced
from decellularized WJ by using a freeze-drying tech-
nique, was shown to improve the attachment, penetra-
tion, and growth of fibroblasts and speed up wound
healing processes [11].
Decellularized allografts are regularly used in clinical

practice, particularly in ophthalmology and wound treat-
ment [19]. One of the most common allografts is based
on the amniotic membrane, which consists of a mono-
layer of simple epithelium with a thick basement mem-
brane and the underlying avascular stromal region. This
graft is obtained by dehydration or, alternatively, by
freezing, which better protects the tissue architecture
and the biologically active molecules of the extracellular
matrix [19]. Allograft material of similar structure on
the basis of WJ from cryopreserved UCs was introduced
in 2014. The content of high molecular weight hyalur-
onic acid (which is suggested to be the key isoform of
hyaluronic acid responsible for the therapeutic properties)
after thawing is reportedly higher in WJ than in the amni-
otic membrane. Moreover, extracts of UC tissue, but not
amniotic membrane, promote anti-inflammatory cytokine
IL-10 expression and a decrease in pro-inflammatory
cytokine IL-12 expression in the macrophage cell line
RAW264.7. This result indicates that the UC allografts
have certain advantages [19].
Similar to the case of vascular tissue, cryopreservation

of UC for obtaining the WJ matrices does not imply the

preservation of the cellular component. For this reason,
the fresh tissue is simply cooled to − 80 °С without cryo-
protectants [19]. Grafts obtained on the basis of cryopre-
served WJ have already proven to be effective in the
treatment of spina bifida [20], complex lower extremity
ulcers with exposed bone, tendon, muscle, and/or joint
capsule, as well as multiple comorbidities including dia-
betes, ischemia, and underlying osteomyelitis [21–23].

Cryopreservation of the UC cellular component
Initiation of pregnancy with sperm that had been stored
on dry ice for a short while was first done in 1953. The
subsequent introduction of liquid nitrogen for the
long-term cryostorage of sperm in the early 1960s sub-
stantially contributed to the efficacy of the approach
[24]. Contemporary cryotechnologies allow the long-
term preservation of cells both in suspensions and
within whole tissue fragments (e.g., whole adipose tissue
[25, 26], dental follicle tissue [27], bone marrow frag-
ments [28], testicular [29] and ovarian [30] tissues), from
which cells can be successfully isolated after thawing.
Compared with the storage of isolated cells, the storage
of unprocessed tissues has a number of advantages:
minimization of time, labor, and material expenses; stor-
age of cells in their natural environments; future possi-
bilities of cell isolation and expansion in accordance
with as yet unknown future standards.
Full-scale experimental studies of UC tissue cryo-

preservation started about 10 years ago. Several types of
UC cells, including epithelial and endothelial cells, are
valuable for regenerative medicine and tissue engineer-
ing and can be cultured [31–33]. Quite recently, an ef-
fective method for human umbilical vein endothelial cell
(HUVEC) cryopreservation was reported [34]; import-
antly, the stage of cell culturing and expansion before
transfer of the samples to the biobank is omitted in this
procedure. Briefly, primary endothelium pellets, which
are isolated from UC by enzymatic digestion, are frozen
and placed in a liquid nitrogen freezer for long-term
storage followed by fast thawing at + 37 °C. With this
protocol, 14 viable HUVEC cultures have been success-
fully obtained from 17 primary endothelial pellets, which
is an 82% success rate. The authors consider this ap-
proach helpful in improving the efficiency and logistics
of biobanking, especially when processing large collec-
tions of endothelial samples [34].
However, the majority of such studies are predomin-

antly focused on the isolation of MSCs from cryopre-
served UC tissue. It is important to note that it is
hypothesized that the therapeutic potential of MSCs
substantially reduces during cryostorage (the so-called
“cryo stun effect”), which explains the multiple failures
of clinical trials utilizing cell transplants immediately
after thawing [35]. In this regard, cryopreservation of
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whole UC tissue for subsequent isolation and expansion
of MSCs for experimental or clinical purposes represents
a strategy of choice.
The pioneering studies in this field were unsuccessful

as no MSC cultures were obtained from WJ samples
cryopreserved for 1 week, 1 month, or 6 months in li-
quid nitrogen, despite cryoprotection with 10% dimethyl
sulfoxide (DMSO) and 5% glycerol [36]. Both DMSO
and glycerol are renowned cryoprotectants used to pre-
vent cell damage during freezing of cell culture stocks
by interrupting the intracellular formation of ice crystals.
Nevertheless, preservation of living cells in a WJ sample
prepared with 1.5 M DMSO and 0.1 М sucrose by slow
freezing (but not by vitrification) was demonstrated in
2012 [37]. Even more convincing data on obtaining
MSCs from UC tissues after storage in liquid nitrogen
were published in 2013; these MSCs were phenotypically
and functionally identical to those obtained from fresh
tissues [38]. Several scientific groups have reported their
success throughout 2014–2018, suggesting a variety of
protocols for the cryopreservation of UC tissue. The re-
sults are presented in Table 1.
As can be seen from Table 1, the majority of effective

protocols utilize DMSO as the main cryoprotectant. With
its small molecular weight of 78.13 g/mol, DMSO is cap-
able of penetrating into the cell via the plasma membrane,
preventing the formation of ice crystals by stable hydrogen
bonding with water molecules. DMSO has been success-
fully used for the cryopreservation of cell cultures since
1959; however, it is now being replaced with DMSO-free
standards for cryopreservation media. This is primarily be-
cause of the rather high toxicity of DMSO for both the
cells and their recipients. DMSO is toxic at temperatures
above 4 °С even at low concentrations (about 1% is
enough), and with an increase in temperature it quickly
decomposes into a mixture of toxic products with the dis-
tinctive odor of dimethyl sulfide. Moreover, it is impos-
sible to remove it by washing, even with the use of a
specialized system for washing cell transplants. The rea-
sonable alternative is a medium supplemented with a
cocktail of non-penetrating cryoprotectants (e.g., glucose,
sucrose, galactose, or trehalose) and intracellular cryopro-
tectants (e.g., ethylene glycol, propylene glycol (1,2-propa-
nediol), glycerol, formamide, methanol, and butanediol)
[39–41]. According to pilot studies, this cocktail provides
better tissue preservation than DMSO [41, 42]. Product
lines of the leading biotech companies are now comple-
mented with DMSO-free cryopreservation media, e.g.,
CryoSOfree™ DMSO-free Cryopreservation Medium by
Merck, STEM-CELLBANKER® DMSO Free - GMP grade
by AMSBIO, and ReproCryo DMSO Free Cryopreserva-
tion Medium by Stemgent.
Another problem which critically limits the clinical ap-

plicability of cryopreserved UC tissue-derived MSCs is

the presence of xeno proteins in the cryopreservation
medium, which usually contains up to 90% by volume of
fetal calf serum. The use of xeno-free media significantly
increases the efficacy of MCS isolation from cryopre-
served UC samples [43, 44], whereas subsequent grow-
ing of the cells in xeno-free conditions facilitates a
substantial all-round improvement in their properties
(reduced apoptosis and immunogenicity, enhanced prolif-
eration, increased secretion of hepatocyte growth factor
and prostaglandin Е2) [45, 46]. It is plausible that the pro-
posed replacement of calf serum with autologous serum
or suitable pharmacological substances (e.g., human
serum albumin) will eventually prevail. In our opinion, the
xeno-free standard for UC tissue cryopreservation should
be introduced as soon as possible.

Current prospects of UC tissue banking
Transplantation of UC-derived MSCs is a subject of in-
creasing interest. More than a hundred clinical trials
have been currently announced by the FDA (http://
www.clinicaltrials.gov/). UC-derived MSCs are intended
for the treatment of cardiovascular, liver, and skeletal
muscle failures, autoimmune and neurological disorders,
and many other diseases [5–7]. In addition, several clin-
ical trials of WJ-based allografts obtained from cryopre-
served material (e.g., NEOX®CORD 1 K by AMNIOX
Medical, Inc.), sponsored by biotech companies, are cur-
rently in progress. It is of no surprise, therefore, that nu-
merous cryobanks, previously engaged in UC blood
storage, now offer UC tissue cryopreservation and stor-
age services. The first ten search results on the query
umbilical cord tissue cryobanking include five banks lo-
cated in the USA (Cryo-Cell, ViaCord, CariCord, Alpha-
Cord, and New England Cord Blood Bank), two in the
UK (Cells4Life and Future Health Biobank), two in
Australia (CellCare and CryoSite), and one in South Af-
rica (Cryo-Save). Whole UC tissue preservation has such
important advantages as the total in situ preservation of
all cell types and the relatively low costs of the proced-
ure (about 2.5 times lower than the costs of UC blood
cryopreservation). In our opinion, the optimal solution
can be provided by banking of UC blood as a source of
hematopoietic stem cells simultaneously with UC tissues
as a source of autologous grafts or neonatal MSCs for
autologous transplantation.

Conclusions
Examination of recent literature indicates we should ex-
pect high demand for cryopreservation of human UC tis-
sues in the near future. The choice of a protocol for
cryopreservation depends on the task—preservation of
blood vessels, WJ, or the cellular component. The efficacy
of obtaining living cells from thawed UC tissues is largely
influenced by the composition of the cryoprotectant
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medium, freezing mode, and protocol used for cell
isolation. Although few data are available on the sur-
vival of endothelial or epithelial cells in cryopreserved
UC tissues, some current protocols allow MSCs to be
obtained from UC tissues after cryostorage that are
phenotypically and functionally identical to those ob-
tained from fresh tissues.

Abbreviations
DMSO: Dimethyl sulfoxide; MSC: Mesenchymal stem cell; UC: Umbilical cord;
UCB: Umbilical cord blood
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