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Abstract

Trypanosoma brucei.

basis may yield discrepancies with global approaches.

Background: Trypanosomatid parasites possess a single mitochondrion which is classically involved in the
energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA
(termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the
cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of

Results: A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases.
These data are overall in agreement with those previously obtained by a case-by-case approach performed on
chromosome 1 genes, and quantitatively with those obtained by "high-throughput phenotyping using parallel
sequencing of RNA interference targets” (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative
discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe
growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased
proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2
nuclei (N), and modified proportions of the normal phenotypes (INTK, TN2K and 2N2K).

Conclusions: These data, together with the observation of other abnormal phenotypes, show that all the
corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the
regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case
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Background

Trypanosomatids are flagellated protozoan parasites that
belong to the Order of Kinetoplastida. Three of them are
human pathogens: Trypanosoma brucei, responsible for
the African human trypanosomiasis also known as sleep-
ing sickness, Trypanosoma cruzi, the agent of Chagas’ dis-
ease in Latin America, and Leishmania sp., responsible for
leishmaniases in many countries throughout the world. In

* Correspondence: gpp@univ-montp1.fr

'Université Montpellier 1, UFR Médecine, Laboratoire de
Parasitologie-Mycologie, CHRU de Montpellier, 39, Avenue Charles Flahault,
34295 Montpellier, Cedex 5, France

2CNRS 5290 - IRD 224 - Université Montpellier (UMR “MIVEGEC"), Montpellier,
France

Full list of author information is available at the end of the article

( BioMed Central

addition to their importance in public health, the cell and
molecular biology of these divergent eukaryotes is of great
interest, and their study has revealed many original fea-
tures. For example, the gene organization as large
polycistronic-like clusters reminding that of prokaryotes is
unique among Eukaryotes [1,2], and is thought to be re-
lated with the near-absence of RNA Polll promoters and
transcriptional regulation [3]. The 26 Mb genome of T.
brucei contains 9302-11100 predicted genes [4,5]. Ac-
cording to GeneDB [6], 4539 and 575 CDSs (Coding DNA
Sequences) are annotated as encoding ‘hypothetical pro-
teins, conserved’ and ‘hypothetical proteins, unlikely’, re-
spectively. Several large studies using different approaches
based on RNA interference (RNAi) have been reported
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with the aim of (i) giving clues on the function of the dif-
ferent CDSs in this parasite, (ii) finding regulators of the
cell cycle progress, (iii) opening new avenues for drug de-
sign [7-10]. Two studies are of particular interest for the
present study: (i) a case-by-case approach, in which almost
all the CDSs of chromosome 1 were individually targeted
by RNAI [7]; and (ii) a global approach with an 11x —
coverage RNAIi plasmid library [11] made of randomly
sheared genomic DNA and cloned in a vector for the Tet-
inducible expression of dsRNA [8].

Among many singularities, trypanosomatids possess a
single mitochondrion containing a complex mitochon-
drial DNA organized in a dense network and termed
kinetoplast. The kinetoplast is an essential organelle, not
only because it contains a highly specialized form of
mitochondrial DNA but also because its duplication and
segregation are tightly associated to correct cell cycle
progress, in particular cytokinesis [12-14]. The molecu-
lar mechanisms governing this link between cytokinesis
and the segregation of the kinetoplast and the basal body
of the single flagellum are slowly being elucidated, but
much remains to be done [15,16]. The T. brucei mito-
chondrial proteome has been extensively and rigorously
analyzed [17], which allowed the development of high
quality multiparametric analyses in bio-informatics [18].
Our starting hypothesis was that, by inhibiting the ex-
pression of mitochondrial proteins, we should be able to
identify essential proteins associated with this part of the
cell cycle in trypanosomatids, defined from cell cycle-
specific phenotypes and/or growth reduction. Here, we
propose a methodical analysis of the effects of 101 RNAi
knockdowns targeting mitochondrial proteins, with the
primary aim of determining their potential involvement
into cell growth and cell division.

Results and discussion

Characteristics of the mitochondrial CDS cohort

This study reports the results of 101 individual RNAi
knockdowns performed in procyclic forms (PCF) of T.
brucei and targeting proteins for which the mitochon-
drial localization was predicted “with high confidence”
in a previous study [17], and for (most of) which the an-
notation in the 7. brucei genome database GeneDB [6]
was “Hypothetical protein, conserved” at the start of the
study. At the time of writing, new annotations have been
proposed for a number of these CDSs (See Additional
file 1). All the targeted proteins belong to the mitochon-
drial protein inventory ‘MitoCarta’ [18]). Moreover, all
101 CDSs but two (Tb10.61.1810 and Tb927.7.2990,
code name in our study: T217 and T320) were also in-
cluded in a global approach of “high-throughput pheno-
typing using parallel sequencing of RNA interference
targets” (RIT-seq) developed after the start of our study
[8]. Finally, five of the analyzed CDSs were included in a
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‘semi-systematic’ RNAi study focused on chromosome 1
of T. brucei but utilizing bloodstream forms (BSF) [7].

Effect of RNAi knockdowns on cell growth

We used the effect on cell growth at the procyclic stage
as a first screen to categorize the results of the 101 RNAi
knockdowns. Growth curves were constructed until day
8 post-induction. Growth reductions of at least 50% and
25%, as compared with the uninduced cell line, during
the first four days, were defined as severe and moderate
effects, respectively. Figure 1 shows three typical cell
growth curves for null (B), moderate (C) and severe (D)
growth reduction. These criteria, similar to those used
in a previous study [7], may appear arbitrary, in particu-
lar because the half-life of the targeted proteins is un-
known; yvet, they allowed us comparing our results with
previously published data. In total, 10/101 RNAi experi-
ments yielded a severe reduction of cell growth rates,
29/101 a moderate reduction and 62/101 no reduction.
Details of all raw data are presented in Additional file 1.
Representative Northern blots of RNAi experiments in
each cell growth category are shown in Additional file 2.

Although Subramaniam et al. used BSFs when they
knocked down 197 CDSs on chromosome 1 [7], they
noted that “30% of the chromosome I genes generated a
phenotype when targeted by RNAi; most commonly, this
affected cell growth, viability, and/or cell cycle progres-
sion”. Therefore, the frequencies they observed were not
greatly different from the ones reported here. Yet, a de-
tailed comparison of our results with theirs [7] revealed
one difference: one RNAi knock-down, out of five exam-
ined here, showed a severe growth retardation in BSFs
which was not found in our hands in PCFs (T181,
Tb927.1.730). The four other ones were concordant in
both studies, showing either no effect (n = 3) or a growth
defect in the remaining case (Table 1, Additional file 1
and Additional file 2B for Northern blot analysis).

We then compared our data with those obtained in
PCFs using the global approach of RIT-seq [8]: 70 out of
our 99 CDSs included in that study were considered not
to be associated with growth defects, while 29/99 lead to
a growth reduction. These figures appear to be in the
same order of magnitude as ours; but this apparent con-
cordance hides significant differences which appear
when comparing the results in details (Additional file 1).
Indeed, the RIT-seq study reported a cell growth reduc-
tion for 19/62 RNAi knockdowns which we classified as
having no effect. Conversely, no effect was noted in the
RIT-seq study for 22/29 RNAi knockdowns which we
classified as having a moderate effect, and for 3/10
which, in our hands, yielded a severe growth reduction.
Therefore, a high degree of discrepancy actually exists
between both data sets, concerning 44/99 compared
proteins. One possible source of these discrepancies is
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Figure 1 Effect on cell growth rates of RNA interference-based knockdown of mitochondrial proteins in procyclic forms of Trypanosoma brucei.
Four typical growth curves are shown: A: reference cell line (transfected with an ‘empty’ RNAIi vector and tetracycline-induced); B: no effect;

C: moderate effect; D: severe effect. Procyclic forms were grown in the presence of tetracycline to induce RNAi (+Tet, closed squares), and cell
growth was monitored daily for 8 days. Growth curves for uninduced cell lines (~Tet, closed lozenges) are shown for comparison. Insets: silencing
was confirmed by Northern blot, using the gene GPI8, constitutively expressed in procyclic trypanosomes, as a loading control; at day2, total RNA
was purified and Northern blots were performed to assess levels of mMRNA. See definition criteria of the effects on cell growth in Methods.

Days post-induction

that our PCFs were cultivated in vitro for a long time
whereas in the RIT-seq study, Alsford et al used
induced PCFs directly deriving from BSFs. Discrepan-
cies were significantly lower when we compared our
data to those obtained from individual RNAi knock-
downs in the literature [9,19-26]. Indeed, this compari-
son showed a concordance between both datasets in 8/
11 cases (see Additional file 1); whereas for three genes
(T223/ Tb927.4.1660, mitochondrial carrier protein;
T171/ Tb927.1.1160 and T179/ Tb927.1.2990), conflict-
ing results were obtained. As regard Tb927.4.1660, in
spite of several attempts, Colasante et al. [22] could not
obtain a viable null mutant by double knock-out, nor
could they obtain it using RNAi knockdown, even in
non-induced condition. By generating cell mutants in
which the inducible expression of a single c-Myc-fused
version of the gene was possible, they could evaluate
the effect of the knockdown of this gene, and therefore
inferred that it was essential for the parasite. By con-
trast, in our hands, mutant parasites for this gene were
readily obtained (T223); and no growth reduction was
observed after tetracycline induction, despite the effi-
cient silencing of the gene (see Northern blots in
Additional file 2B).

Detailed analysis of the major phenotypes associated to a
moderate/severe cell growth defect

Cell cycle phenotypes

We wished to determine if the cell growth phenotypes
could be related with defects in the cell cycle progress.
For this, since, in T. brucei, cell cycle phases can be rec-
ognized by the number and position of DNA-containing
organelles, a simple and often used method is the search
for abnormal distributions of the numbers of nuclei (N)
and kinetoplasts (K) in cells, such as cells containing >2 K
and/or >2 N; this disturbs the ‘normal’ distribution pat-
tern, defined by the proportions of 1IN1K, 1N2K, and
2N2K cells in the population. For this, cells were stained
with DAPI at day 5 post-induction and a detailed examin-
ation was performed for all the mutants (39/101) for
which a moderate or severe growth reduction was noted
(Additional file 1). Surprisingly, all these RNAi knock-
down experiments but two (T291 and T325), i.e. 37%
(37/101) of the CDSs examined in total, yielded abnor-
mal patterns as compared to that of the reference cell
line. This is in striking contrast with the data obtained
in BSFs by Subramaniam et al. [7] when they knocked
down all the CDSs of chromosome 1: there, only 6% of
the genes were associated to both a growth and a cell
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Table 1 Summary of the concordance observed in the
frequencies of cell growth phenotypes between our
study and previous studies
Alsford et al. (2011) [8]

No growth reduction (N = 68)

Present study

Severe growth reduction (N = 3)°
Moderate growth reduction (N =22)
Normal growth (N = 43)

Growth defect (N =19)
Subramaniam et al. (2006) [7]

Severe growth retardation® (N = 2)

No growth reduction (N=19)

Present study

No growth reduction? (N = 1)°
Severe growth reduction® (N=1)
No growth reduction® (N = 3) No growth reduction? (N =3)

“Cell lines T177 (Th927.9.3640), T194 (Tb927.2.3800), and T271 (Tb927.5.2930);
Beell line T181 (Th927.1.730); Sin bloodstream forms; %in procyclic forms.

cycle defect. The data for these 39 experiments are sum-
marized in Figure 2 and Additional files 1 and 3.

The percentage of 1N1K cells was increased in only
two mutant cell lines (T275 and T305), and similar to
the reference cell line in three mutants (T273, T291,
T325), but lowered in the 34 others. In the mutant line
T245 (gene annotated as Mitochondrial processing pep-
tidase, beta subunit, putative metallo-peptidase, Clan
ME, Family M16 in GeneDB, but actually characterized by
Acestor et al. as a component of the respiratome [27]),
the reduction in 1N1K cells was particularly drastic, by a
3.6-fold factor as compared with the reference line (i.e.
19% vs. 68.5% of the cells) (Additional file 1); in this line,
we also observed a severe reduction of parasite growth
and a large excess of multinucleated cells (37.6% of the
cells) and multikinetoplastic cells (22.7%, essentially in
multinucleated cells), together with zoids (5.4%) and
akinetoplastic cells (4.5%), indicating a complete cyto-
kinesis block in spite of continuing nucleus duplication.
2NI1K cells, a rare phenotype in the reference cell line
(1.1%), were found in increased proportions in 77% of
the RNAi mutants (30/39) (Additional file 1). One of
the correlations that might be done is the concomitant
increase of zoids (ON1K) and of 2N1K cells that may
originate from an abnormal division of normal 2N2K
cells. Indeed, in the majority of mutants, the increase of
both ON1K and 2N1K were of the same order of magni-
tude (see for example T178 and T211). However, in
eight cases (T195, T271, T272, T278, T287, T288, T316
and T331), the proportions of 2N1K cells were in-
creased without a corresponding increase in zoids, ra-
ther suggesting a kinetoplast replication block.

Morphological phenotypes

Cell growth reduction was often associated with signifi-
cant cell morphological changes. These morphological
phenotypes were most often multinucleated cells
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(Figure 3A-C) which were significantly increased in 24
cell lines. These cells could have one or two or, more
frequently, several kinetoplasts, indicating a cytokinesis
block, sometimes leading to a complete disorganization
of the cell morphology (Figure 3B-C). Cytokinesis de-
fects (Figure 3D-F) could also be associated with other
cell cycle phenotypes, such as abnormally segregating
kinetoplasts (Figure 3C-D), and/or mis-positioning of
segregated kinetoplasts between the two divided nuclei
(Figure 3F). To date, only a single protein, ALBA3, an
RNA-binding protein, has been involved in the migra-
tion of the nucleus towards the posterior end of the cell
in T. brucei during cell division [28]. The kinetoplast
was found anterior to the nucleus in a very high propor-
tion of cells (22% and 18% of all cells, respectively) in
two cell lines, T273 (targeting Tb927.5.3040, the MIX
protein [26]), and T325 (targeting Tb927.8.3300, anno-
tated in TriTrypDB as ‘hypothetical conserved’ but puri-
fied as a putative mitochondrial LSU ribosomal protein
by Zikova et al. [29]): this aberrant positioning (as com-
pared to the expected posterior position) of the kineto-
plast was reported after the MIX-RNAI in a previous
study [26]. By contrast, the involvement of a putative
ribosomal protein in this process is surprising: as men-
tioned by the authors, this might be explained by the
fact that the complexes purified by Zikova et al. [29] are
part of a larger supercomplex with additional functions.
In 25/39 cell lines, abnormally segregating kinetoplasts
(either grossly enlarged or “thread-like”) were seen, most
often in proportions varying from 0.6 to 6.5%. Even
when they were in higher proportions, they could not be
associated to any specific ‘cell cycle pattern’. The T245
mutant, which was described here above with a gross
cytokinesis block, exhibited as much as 20.3% and 19.8%
of cells with enlarged and abnormally segregating kinet-
oplasts, respectively. The whole of these results strongly
suggest a blockage of kinetoplast segregation. The cor-
responding predicted protein was annotated as a the
beta subunit of the Mitochondrial processing peptidase
(putative metallo-peptidase, Clan ME, Family M16) in
GeneDB, but actually characterized by Acestor et al. as
a component of the respiratome, encoding subunits of
the cytochrome bcl complex [27]. This suggests a
largely indirect effect, i.e. that the RNAi target is not ac-
tually a direct effector of kinetoplast segregation.
Another interesting phenotype affecting the kineto-
plast was that of T195, encoding the bona fide alpha
subunit of the Mitochondrial processing peptidase [21].
T195 displayed a relatively ‘common’ disruption of the
‘N/K’ pattern but an exceptionally high (6.5%) propor-
tion of 0 K cells. A closer examination showed that 74%
of the cells had a kinetoplast greatly reduced in size. The
RNAi of several proteins closely associated with the
kDNA has been previously shown to cause kDNA loss
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Figure 2 Schematic representation of the different cell cycle phenotypes observed in 39 RNAi mutant cell lines showing a reduction in cell
growth. The bars represent the proportions of TN1K (blue), TN2K (yellow), 2N2K (green) and “abnormal ‘N/K' phenotypes” (red), the latter

corresponding to phenotypes absent or rare in the reference strain (T280, right-hand side bar). More details about these abnormal phenotypes
are given in the additional table and figure (see Figure 2 and Additional file 1). Abscissa : mutant RNAI cell lines code names (see correspondence
with CDSs in Additional file 1); ordinate: proportions of the normal N/K phenotypes in %; the cell lines were arbitrarily ordered from left to right

according to their proportions of “abnormal ‘N/K' phenotypes”.

[30-35]. Yet, what appears here as a defect of the kineto-
plast maintenance is again likely one indirect effect sec-
ondary to the mis-processing of one mitochondrial
imported protein among many. Such an indirect role
may be illustrated by a protein named TbLOK1 for loss
of kDNA: the authors found that the disappearance of
the kDNA occurred well after cell division ceased, argu-
ing that the requirement of ThLOKI1 for kDNA main-
tenance is indirect [10].

Cytokinesis was also specifically impaired in two mutant
lines (T178 and T310), where long dividing (2N2K) cells
were seen still joined at their posterior end in significantly
high numbers (Figure 3L); it is noteworthy that, to our
knowledge, only one protein, spastin, a microtubule-
severing enzyme, has been shown to be functionally in-
volved in this final step of cytokinesis in 7. brucei, and
specifically in bloodstream forms [36].

A number of abnormal morphological phenotypes
could not be specifically related to the cell cycle (see
Additional file 1). One of these was the presence, in five
mutant lines, of particularly long cells (Figure 3H-I), some-
times twice as long as the non-induced cells (i.e. ~30 pum;
Figure 3K-L), in proportions as high as ~26% in lines
T291 and T292, ~20% in two other mutants (T177,
T178,) and ~8% in one (T293). In mutant T317, these
elongated cells were multinucleated (Figure 31, T317);
but in general these phenotypes could not be correlated
with any specific ‘N/K’ phenotype: this suggests that,
although a tight association between morphogenesis
and the cell cycle in T. brucei is well documented [37],
the proteins knocked down here are not necessarily in-
volved in a particular step of the cell cycle.

Finally, in T221, the high increase of 2N1K and zoids
was associated to the presence of numerous fragmented
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Figure 3 Pleiotropic morphological changes associated with growth defects following RNAi knockdown in T. brucei. A: Example of a multinucleated
cell (observed in the mutant cell line T286). B: a multinucleated cells showing aborted cell division and over-replication of the kinetoplasts
(1286). C: a multinucleated cell showing a complete disorganization of the cell morphology (T286). D: a cell with an abnormally segregating kinetoplast
(T194). E: a dividing cell showing mis-positioning of the kinetoplasts between the dividing nuclei, with impaired cytokinesis (T290). F: a dividing cell
showing mis-positioning of the kinetoplasts, together with over-replication of the kinetoplasts and impaired cytokinesis (T287). G: elongated
cells observed in the mutant line T293. H: a dividing elongated procyclic form showing abnormal positions of the kinetoplasts (both anterior)
and nuclei (both posterior) (T293); a ‘zoid" might originate from this abnormal division process. I: large and elongated multinucleated cells
(T317). J: fragmented (‘apoptotic-like’) nuclei (T221). K: elongated cells observed in the mutant lines T177. L: elongated dinucleated cell with
impaired cytokinesis (absence of cleavage furrow) with daughter cells still joined at their posterior end (T178). Bar: 5 um.

(‘apoptotic-like’) nuclei (defined in [38]) in 16% of the
cells (Figure 3]), as well as a distinctive phenotype con-
sisting in half (44%) of the cells being ‘globular’ with
pyknotic nuclei (Additional file 1, Additional file 2A for
Northern blot), suggesting a profound disruption of un-
known essential functions. The abnormal cell division
observed here may then well be an indirect consequence
of this more global disorder. Morphologically apoptotic
nuclei [38] were seen at a high frequency in only four
other lines (T177, T178, T195, and T265; see Additional

file 1) but without the ‘globular’ phenotype. However,
flow cytometry analysis of the five corresponding cell
lines confirmed apoptosis in only two out of five of
these (T177 and T178; see Additional file 4).

Conclusion

Among the 101 mitochondrial protein genes knocked
down here by RNA], 39 could be related to a growth de-
fect of the parasite. This number may seem low, but is
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in agreement with previous reports [7-9]. Several hy-
potheses may explain the apparent absence of effect
seen in the 62 remaining RNAi knockdowns: (i) there
may be a functional complementation by another
protein, (ii) they may play a role in another differenti-
ation stage of the parasite, (iii) they may simply be
non-essential, at least in the experimental conditions
used here.

It came as a surprise to us that almost all 39 proteins
for which the expression inhibition yielded a growth re-
duction appeared to be somehow involved in the cell
cycle progress. Clearly, the proportion of such proteins
is much higher among mitochondrial proteins (here 37/
101, ie. 37%) than among ‘unsorted’ chromosome 1
proteins (6.6%) [7]. Moreover, there are numerous mito-
chondrial genes on chromosomes 9-11 of which the
knock-down may also induce cell cycle perturbation,
but these were not included in this study. However, we
believe that a proportion of these proteins is pleiotropic
and only indirectly involved in the cell cycle progress:
the correct progression of this part of the cell cycle may
directly or indirectly depend upon a variety of cell activ-
ities, e.g. metabolism, signaling cascades, chaperones,
etc. The large variety of morphological changes ob-
served here in the mutants indeed suggests that the dis-
ruption of the cell cycle might take place upstream,
without the corresponding proteins being directly re-
lated to it. Also, although the gene targets were analyzed
using Trypanofan, we cannot rule out the possibility
that off-target effects occurred, particularly for those
genes which can be classified as ‘pleiotropic’.

In total, the ‘semi-systematic’ study presented here
opens avenues for the characterization of novel proteins
involved in the correct cell cycle progress in T. brucei.
Our data also show how post-genomics analyses per-
formed on a case-by-case basis may yield discrepancies
with global approaches. Finally, they add to the com-
plexity of the picture of cell biology, particularly the cell
cycle, of T. brucei, characterized by a tight interdepend-
ency of multiple biological processes.

Methods

Parasites

Procyclic forms of the 29-13 line of T. brucei were
grown as described [39] at 27°C in SDM-79 (PAA) sup-
plemented with 10% fetal calf serum, 7 pug.mL™" hemin,
30 pug.mL™" hygromycin and 10 pg.mL™" geneticin.

Selection of targets for RNAi knockdown experiments

We based our work on the results of a proteomic study
[17], which are available online [40]. Our selection cri-
teria were: high confidence assignment of the protein to
the mitochondrion [17], unknown function at the begin-
ning of the study and sufficient length in order to
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minimize the risk of off-target effects [41]. Progressing
chromosome by chromosome in ascending order, all the
genes corresponding to these criteria were systematically
targeted, until a total of about 100 genes was attained,
giving us sufficient confidence in the proportion of genes
associated to a cell cycle phenotype: the genes analyzed
were present on chromosome 1 to 8.

RNAi knockdown in T. brucei

To design the primers for the production of RNAi con-
structs, we used the RNAit—target selection script on
the T. brucei functional genomics website (TrypanoFAN)
[7,42]. Considering oligonucleotide melting temperature
and PCR product size, the program is also intended to
prevent cross-talk between related gene products in the
design of RNAIi experiments [43]. The oligonucleotide
primers used are all listed in Additional file 5. The dif-
ferent PCR products were cloned into pGEM-Teasy
(Promega®) and then into the RNAi vector p2T7tiB/GFP
[44]. Transfection and RNAi induction in procyclic
forms were performed as described elsewhere [45].
Briefly, 10 pg of linearized plasmid DNA were trans-
fected into 3x10” T. brucei 29—13 procyclic cells. An ex-
ponential transfection protocol was used with 1500 V
and 25 uF as parameters with a Bio-Rad® Gene pulser 2
electroporator. Transfectants were grown under selective
pressure with 5 pg.mL™' of phleomycin during 8-15
days prior to induction by addition of 1 ug.mL™" of tet-
racyclin. Growth curves were compared between the in-
duced and non-induced cell lines.

Definition of the reference line (T280)

For the study of morphological phenotypes, a reference
cell line (T280, p2T7-empty) was used for comparison
with the mutant cell lines: T280 was transfected with
the same RNAI vector containing no insert and then in-
duced in the same manner as the mutant lines. This in-
duced control was considered as the reference cell line;
we believe it makes a better control than the uninduced
or the wild-type (29-13) cell line of T. brucei.

Northern blots

Total RNAs were extracted with the RNeasy extraction
kit (Qiagen) and denatured in a solution of 2.5x MOPS,
9.25% formaldehyde and 50% deionized formamide.
RNAs were then incubated 10 min at 65°C and 10 min
on ice, before being separated on an agarose gel (1.4%
agarose, 6% formaldehyde and MOPS 1x). RNAs
were transferred to a nylon membrane and hybridized
with a specific probe labeled by random priming with
o*?-dCTP.
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Protocol and criteria for growth reduction definition

The criteria chosen to assess cell growth dynamics used
here were as described previously [7]. Briefly, growth of
the induced and uninduced culture was followed for up
to 8 days after induction, with cell number determined
daily using a Z2 Coulter counter (Beckman Coulter®).
The numerical data obtained for growth were analyzed
according to the following criteria: a defect was recorded
if, during the 4 days following induction, cell number in
the induced culture was <75% (mild) or <50% (severe) of
the uninduced culture for two consecutive days.

Protocol and criteria for definition of cell cycle defects

At day 5 post-induction, cells were fixed in 4% parafor-
maldehyde and stained with 4’,6-diamidino2-phenylindole
(DAPI), air-dried on microscope immunofluorescence
slides, and then analysed on a Zeiss Axioplan 2 micro-
scope with a 100x objective equipped with a Photomet-
rics CoolSNAP charge-coupled device camera (Roper
Scientific®) driven by Metamorph Software (Molecular
Devices®). The numbers of nuclei (N) and kinetoplasts
(K) per cell were then counted in 200 cells, allowing de-
termining the position of these cells in the cell cycle
progress. Morphological abnormalities of the nuclei
and/or kinetoplasts, as well as of the whole cell, were
also recorded. All primary phenotypic data were collected
blind. These data were then compared to those obtained
for the reference cell line described above (T280), where
DAPI analysis indicated ~68% cells with one nucleus (N)
and one kinetoplast (K) (IN1K cells), ~20% 1N2K cells,
and ~7% 2N2K cells, ie. 95% normal phenotypes.
‘Abnormal’ phenotypes were rare in the reference line:
2.5% 2NI1K, 2% zoids (ON1K), <1% multinucleated cells
and none for the rest of them. Phenotypes were consid-
ered as abnormal in the mutants when they were
increased/reduced by a proportion of+2.5 SDs, as
compared to the induced control (T280). These limits
were defined in order to ensure statistical significance
to the differences observed. Therefore, an abnormal
phenotype was recorded if the following conditions were
met: 1IN1K <66.1% or >70.9%; 1N2K <13.4% or >29.4%;
2N2K <4.7% or >10.9%; 2N1K >3.8%; multinucleated cells
(>2N) >2%; >2N > 2K >0.6%; >2K, 0K and ONOK >0; and
‘zoids’ (ON) >3.2%.

DNA content

To determinate the DNA content, a PI staining method
was used. For this purpose, cells were washed with PBS,
resuspended in 500 pl of iced 70% ethanol, vortexed 1
min and incubated at 4°C. After centrifugation, cells
were resuspended in PBS and 10 mg/ml RNAse, placed
20 min at 37°C, centrifuged, incubated 10 — 30 min on
ice with 2.5% PI and immediately analysed with a
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FACSCalibur flow cytometer (Becton Dickinson, San
Jose, CA, USA) with the BD CellQuest™ Pro software.

Phosphatidylserine exposure

Exposed PS was detected on the outer membrane of
cells using the Annexin-V-FLUOS staining kit (Roche®).
Cells were washed in PBS and incubated for 10—15 min
at 4°C with the incubation buffer of the kit. Fluorescence
was measured using an FACS analysis.
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Additional files

Additional file 1: Raw data from 101 RNAi-based knockdown
experiments in procyclic forms of Trypanosoma brucei.

Additional file 2: Verification of mRNA level reduction by Northern
blots. Representative examples of Northern blots following RNAi
experiments leading to a remarkable phenotype (A), contrasting data
with the literature (B) and no cell growth reduction (C). GPI8: gene
constitutively expressed in procyclic trypanosomes used as a loading
control.

Additional file 3: Proportions of the different abnormal cell cycle
‘N/K’ phenotypes observed in 39 RNAi mutant cell lines showing a
reduction in cell growth. Histograms represent the proportions of the
different abnormal cell cycle stages identified by their numbers of nuclei
(N) and kinetoplasts (K) (2N1K, >2K, >2N, >2N > 2K, ON, and OK) in 39
RNAi mutant cell lines (data from Table 1). The cell lines were arbitrarily
ordered from left to right according to their proportions of ‘abnormal
N/K phenotypes’ (see Figure 2). Black bar: proportions observed for the
reference cell line T280 (in red, left). For the mutant lines, bars are shown
in grey when the observed proportions are similar to that of T280
(defined as mean £ 2.5 SDs), and red when they are above these limits.
Other: percentage of cells with apoptotic-like nuclei.

Additional file 4: Flow cytometry analysis of different RNAi mutants
displaying ‘N/K’ or ‘apoptotic-like’ phenotypes. (A). Propidium iodide
staining confirmed the 'N/K’ phenotypes (see Additional file 1) in the four
mutants shown here; DNA contents left to the 1C peaks likely correspond
to relatively high proportions of zoids; those to the right of the 2C peaks
indicate multinucleated (>2N) cells. NI: non-induced; I: induced; D: day.
(B). One example of measure of phosphatidylserine exposure through the
Annexin V assay in a cell line (T178) displaying an ‘apoptotic-like’
morphological phenotype (fragmented nuclei). The increase of cells in
the lower right quadrant classically represents early apoptosis. (C).
Summary of the DAPI-staining and flow cytometry data for the five cell
lines displaying the most pronounced ‘apoptotic-like” morphological
phenotype. D: day. UR: upper right quadrant; LR: lower right quadrant.
Flow cytometry confirmed apoptosis in only two lines: T177 and T178.

Additional file 5: List of primers used for the production of RNAi
constructs. Restriction site sequences in lower cases, gene specific
sequences in upper cases.
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