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If genetic constraints are important, then rates and direction of evolution

should be related to trait evolvability. Here we use recently developed

measures of evolvability to test the genetic constraint hypothesis with

quantitative genetic data on floral morphology from the Neotropical vine

Dalechampia scandens (Euphorbiaceae). These measures were compared

against rates of evolution and patterns of divergence among 24 populations

in two species in the D. scandens species complex. We found clear evidence

for genetic constraints, particularly among traits that were tightly phenotypi-

cally integrated. This relationship between evolvability and evolutionary

divergence is puzzling, because the estimated evolvabilities seem too large

to constitute real constraints. We suggest that this paradox can be explained

by a combination of weak stabilizing selection around moving adaptive

optima and small realized evolvabilities relative to the observed additive

genetic variance.
1. Introduction
Linking macro- to microevolution is one of the fundamental challenges in

evolutionary theory. Population and quantitative genetics provide precise predic-

tions for the short-term dynamics of allele frequencies and phenotypes, but how

far can these predictions be extrapolated? It is customary to distinguish two

extreme positions. The first is the extrapolationist view that macroevolution is

microevolution writ large, or simply that macroevolution can be fully understood

by use of concepts and parameters from quantitative genetic theory (e.g. [1–6]).

The alternative extreme is that macroevolution is decoupled from microevolution

in such a way that microevolutionary theory is largely irrelevant, and different

conceptual tools must be used when studying the two levels (e.g. [7–10]). Most

biologists, including those cited above, would probably agree that the truth is

somewhere in between these extremes, but exactly how far microevolutionary

models can be extended remains an open question [11].

The research paradigm in evolutionary quantitative genetics initiated by

Lande and Arnold (e.g. [12,13]) is a good illustration of the extrapolationist

view. The fundamental assumptions of this approach include the view that quan-

titative genetic parameters such as the additive genetic, or at least the mutational,

variance parameters remain stable over long stretches of time, allowing rather

simple extrapolations of single-generation responses to selection. On this basis,

predictions have been derived for patterns of among-species variation based on

a variety of models from life-history theory, sexual selection, behavioural ecology

or neutral theory (e.g. [14–16]).

A key test of the macroevolutionary relevance of evolutionary quantitative

genetics is to see whether macroevolutionary divergence is influenced by patterns
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of genetic variation as measured in contemporary populations.

If there is no such relationship, then either genetic constraints

are not important or they are not captured by the observed

patterns of genetic variation. Many studies have asked this

question, most concluding qualitatively in support of constraint

(see Discussion). However, such studies face substantial

conceptual and methodological challenges [17–20].

The most important determinant of phenotypic diver-

gence among populations is likely to be the dynamics of

local peaks in the adaptive landscape [3,6,21–23]. Low evol-

vability will affect the degree of divergence by creating a lag

or even precluding populations from tracking moving peaks

in a changing environment. Only if evolvabilities are small

relative to the rate of change in the adaptive landscape do

we expect a real constraint on divergence. Thus, looking for

a relationship between evolvability and divergence constitu-

tes a test of the importance of constraints in evolution. In

particular, it may help clarify the relevant timescales at

which genetic constraints are important and thereby the

generality of microevolutionary models.

Here, we use recently developed theory on the measure-

ment of evolutionary potential in a multivariate context

[17], and connect this with patterns of divergence by explicit

evolutionary models. Our approach enables us to investigate

how empirical data fit a range of evolutionary scenarios. We

also investigate the effect of integration on divergence by

comparing independent trait evolution within two sets of

traits differing in their degree of evolutionary integration.

To do this, we have estimated G-matrices of floral traits in

two distinct, albeit unrecognized, species in the Neotropical

Dalechampia scandens species complex, which we then com-

pare with among-population divergence in 24 populations

(12 each from the two species).
2. Theory
(a) Measuring evolvability
Trait evolvability can be measured as the expected pro-

portional response per generation to linear directional

selection of unit strength [17,24,25]. Unit strength of selection

is the strength of selection on relative fitness as a trait and is

given by a (mean-scaled) selection gradient of unity. We

denote this measure as e, and from the standard equations

of quantitative genetics, we get e ; Dz/b ¼ IA, where Dz is

the mean-scaled selection response, b is the mean-scaled

selection gradient and IA is the mean-standardized additive

genetic variance [25]. A value of e of, say, 0.01 means that

the expected response per generation per unit directional

selection is 1% of the trait mean. In the following, we will

drop the conceptual distinction between e and IA, and just

use the symbol e.

While e is a straightforward measure of evolvability for a

univariate trait, the measurement of multivariate evolvability

is more complicated, because the response to selection may

then deviate from the direction of the selection gradient

and the evolvability may be different in different directions

in phenotype space. Hansen & Houle [17] proposed three

measures of multivariate evolvability that we will consider

here. These are all computed as functions of a given selection

gradient, b (a column vector of partial regression coeffi-

cients), standardized to unit length and the additive genetic

variance matrix, G. The ‘respondability’, r(b) ¼
p

(b‘G2b) is
defined as the expected length of the response vector; the

‘evolvability’, e(b) ¼ b‘Gb, is defined as the expected

length of the projection of the response vector on the selection

gradient; and the conditional evolvability, c(b) ¼ (b‘G21b)21,

is defined as the expected length of the response vector when

the directional selection along b has come to a balance with

assumed stabilizing selection orthogonal to b (c(b) depends

only on the existence and not on the strength of the stabiliz-

ing selection [26]). The respondability may be interpreted as

the ability to change in response to selection, the evolvability

as the ability to change in the direction of selection, and the

conditional evolvability as the ability to change in the direc-

tion of selection when there is stabilizing selection on the

perpendicular directions. All these measures reduce to e
when only a single trait is concerned.
(b) Relating evolvability to evolutionary divergence
How standing genetic variation relates to macroevolutionary

divergence is an open question. Simple models based on

extrapolating constant selection and evolvability show that

very large changes can be produced from typical estimates

of selection strength and evolvability. For example, the

mean trait value expected after t generations of constant evol-

vability, e, and selection gradient, b, is

z ¼ (1þ eb)tza

and ln
z
za

� �
� ebt,

9=
; (2:1)

where za is the ancestral trait value. If we combine the

median estimate of univariate evolvability for morphological

traits from Hansen et al. [25] of e ¼ 0.1% with the median

mean-scaled selection gradient from Hereford et al. [27]

of b ¼ 0.9, we get a doubling of the trait value after 770

generations. Even if selection gradients of this strength

are not likely to remain constant over long time periods

(e.g. [28,29], but see [30]), this illustrates that typical evolv-

abilities are not likely to generate macroevolutionary

constraints by themselves. The naive expectation from this

is that among-species variation is generated by differences

in adaptive optima, and that phylogenetic effects have to

do with similarities in the optimal states of related species

[22,23]. For example, under simple quadratic stabilizing selec-

tion, the rate of evolution towards an optimum, measured in

generations, would be be ¼ –2s(z 2 u)e, where s is the mean-

standardized curvature of the fitness function, u is the opti-

mum, and the distance from the optimum is also measured

in units of the trait mean. The time it would take to move

half the distance towards the optimum under this model

would be t1/2 ¼ ln2/(2se) [23]. With e ¼ 0.1% and even a rela-

tively small s ¼ 1 (which implies the mean would have to be

shifted 45% of the optimum to give b ¼ 0.9) it would give

t1/2 � 350 generations, which is again nearly instantaneous

on macroevolutionary timescales.

Still, there are many indications of correlations between

measures of evolvability and among-population variation

(see Discussion). Hence, it is at least possible that evolvabil-

ities, and particularly conditional evolvabilities, of some

trait combinations may be small enough to constitute detect-

able constraints on macroevolutionary timescales. If so, we

may find a relationship between measured evolvabilities

and among-species variation. Note that proportional changes

scale with evolvability, so that we expect among-species
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Figure 1. Relationship between among-population variance (var[lnz]) and
2es given by equation (2.3) for different values of a. The approximated scal-
ing exponent between the among-population variance and evolvability on a
log – log scale is given by g (the average derivative of the relationship on a
log – log scale). The among-population variance is given in units of V, the
stationary variance of the Ornstein – Uhlenbeck process.
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Figure 2. Blossom morphology and measurements (drawing by M. Carlson,
photo by C. Pélabon). See table 1 for measurement definitions. (Online
version in colour.)
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variances to scale with the square of evolvability. From

equation (2.1), we get

var[lnz] � e2var[b]t r, (2:2)

where r is a constant, and the variance in selection gradients

may result from different directions of selection in different

populations or from fluctuating selection gradients. For stable

differences in direction of selection, we expect scaling with

the square of the time since divergence (a scaling exponent of

r ¼ 2), while for fluctuating selection gradients, we expect

linear scaling with the time since divergence (a scaling exponent

of r ¼ 1) because the trait mean will then evolve as a Brownian

motion. The scaling with the square of evolvability differs from

predictions under neutral models, where among-species var-

iance scale linearly with evolvability (e.g. [31–33]). If the trait

is tracking a moving optimum, we get different scaling relation-

ships (e.g. [34,35]). Under a simple model of quadratic selection,

outlined above (be ¼ 22s(z 2 u)e), around an optimum, u, that

moves according to an Ornstein–Uhlenbeck process (see

appendix A in the electronic supplementary material for the

analytical derivation), the equilibrium among-species variance

in the trait mean becomes

var[lnz] ¼ V
2es

2esþ a
, (2:3)

where V is the stationary variance of the optimum and a is the

pull parameter in the Ornstein–Uhlenbeck process. This yields

a positive relationship between among-population variance

and evolvability that eventually flattens out at an asymptote

(figure 1). Note that if a� 2es, the among-population variance

goes to zero. The optima move too fast to be tracked and the

populations will experience this as a constant (multiplicative

average) optimum. If, on the other hand, the population can

track faster than the optimum moves (a� 2es), then among-

population variance converges on the variance of the optima,

and the relationship with evolvability disappears. Hence,

stationary fluctuating optima can explain a relationship

between evolvability of traits and among-population variance

if at least some of the traits have rates of adaptation (2es) of

the same order of magnitude as the rates of movement in the
optimum (a). Note also that this common rate would have to

be consistent with observed phylogenetic signal in the data.

This may require phylogenetic half-lives (t1/2 ¼ ln2/a � ln2/

2es) on the order of 100 000 generations or more.

These considerations concern the divergence of a one-

dimensional trait. Linking evolvability to patterns of multivariate

divergence is more complicated, because we rarely have direct

information about the multivariate directions of selection or the

positions of optima. In most cases, we only have differences

between populations to go by. This makes it unclear whether it

is the respondability, the evolvability or the conditional evolva-

bility that is most relevant statistic to use. We will assess all of

these and test which one gives the best predictions.
3. Material and methods
(a) Study species and blossom traits
Dalechampia scandens L. (Euphorbiaceae) is a Neotropical vine dis-

tributed from Mexico to Argentina. Its blossoms (pseudanthial

inflorescences) comprise a cluster of three pistillate flowers situated

below a cluster of 10 staminate flowers (figure 2) [36,37]. Each

female flower contains three ovules so that each blossom can pro-

duce a maximum of nine seeds. The flower cluster is subtended by

two involucral bracts that may provide a signal to pollinators [38],

and may also have a protective role as they close to protect

the whole structure at night and during fruit maturation [39].

A gland that produces terpenoid resin is associated with the

staminate flowers. The resin varies in colour among Dalechampia
species and is collected for use in nest construction by various

bees in the genera Eulaema, Eufriesea, Euglossa (Apoidea: Euglos-

sini), Hypanthidium (Megachilidae: Anthidiini) and/or Trigona
(Apidae: Meliponini). Which bees are attracted depends on charac-

teristics of the blossom and location of the population [40]. Larger



Table 1. Definition of traits (l, left; r, right); see figure 2 for measurements.

trait units abbreviation definition

functional traits

gland – anther distance mm GAD GAD

gland – stigma distance mm GSD 1
3(GSDl þ GSDc þ GSDr)

style width mm SW 1
3(SWl þ SWc þ SWr)

gland size mm
p

GA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GW� 1/2(GHl þ GHr)
p

bract size mm
p

BA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UBW � 1/3(UBLl þ UBLc þ UBLr)
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LBW� 1/3(LBLl þ LBLc þ LBLr)
p

bract traits

upper-bract-length centre mm UBLc UBLc

upper-bract-length sides mm UBLs 1/2 (UBLl þ UBLr)

upper-bract width mm UBW UBW

lower-bract-length centre mm LBLc LBLc

lower-bract-length sides mm LBLs 1/2 (LBLl þ LBLr)

lower-bract width mm LBW LBW
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glands produce more resin [41], and blossoms with large glands

attract larger bees than blossoms with smaller glands [40,42,43].

The efficiency with which different bees transfer pollen is influ-

enced by the distances between the resin gland and the stigma

(GSD) and anthers (GAD) [40,42,44].

Dalechampia scandens contains at least two reproductively

isolated groups with overlapping geographical distributions

(figure 3). The two ‘species’ differ in blossom size, and particularly

in the size of the resin gland. Microsatellite analysis show that they

fall out as well-separated groups on the phylogeny (figure 3).

Despite many attempts, we have never managed to obtain fertile

hybrids between these two species [45,46]. Judging from blossom

morphology, the small-glanded species seems to be able to self-

pollinate more easily than the large-glanded species.

The morphological measurements used in this study are

illustrated in figure 2 and summarized in table 1. One observer

(C.P.) measured all plants in the quantitative genetics exper-

iments, and a second observer (G.H.B.) measured all plants in

the among-population dataset. Two blossoms were measured

for most plants.
(b) Quantitative genetics experiments
The plants used in the quantitative genetics analyses were derived

from seeds collected in two distinct populations, a large-glanded

population near Tulum, Mexico (208130 N; 878260 W) and a small-

glanded population near Tovar, Venezuela (88210 N, 718460 W).

Fruits with seeds were collected from separate individuals in

these two populations in 1998. We germinated one seed per

maternal family and conducted two separate block diallels in

which 12 and nine sets of five parents, in Tulum and Tovar,

respectively, were combined into complete 5 � 5 diallels with

both reciprocals and selfed crosses. Two individuals were raised

from each cross and subsequently measured. The first diallel

(Tulum) was conducted between 1999 and 2000 and results from

this have been published [24,47,48]. The second diallel (Tovar)

was conducted between May 2005 and June 2006. The measure-

ments in the two diallels were similar, but while blossoms with

one to three open male flowers were measured in the Tulum

diallel, only blossoms with a single open male flower were

measured in the Tovar diallel.
(c) Among-population data
In total, we obtained data on trait means from 24 populations (elec-

tronic supplementary material, tables S1–S3), including the two

populations on which the quantitative genetics experiments were

conducted (see above). The measured plants in the remaining 22

populations were from fruits with seeds sampled from roadsides

in Mexico (states of Veracruz, Tabasco, Campeche, Yucatán and

Quitana Roo; see the electronic supplementary material, table S1

for exact locations) during the autumn of 2007. All plants were

grown in the same greenhouse in Trondheim (Norway) during

the same time period. Sample sizes ranged from one to 33

(median 12) plants per population (electronic supplementary

material, table S2).

We constructed a neighbour-joining tree (figure 3) based on

the genetic-distance measure DA [49] using 70 microsatellite mar-

kers developed for D. scandens [50]. The genetic distances had a

perfect tree structure, suggesting limited gene flow between

populations. We therefore interpret the genetic distances as

reflecting time since divergence. The program Populations

1.2.31 was used to estimate this tree, which we interpret as a phy-

logeny. See appendix B in the electronic supplementary material

for details.

(d) Data analysis
All analyses were conducted on two sets of traits (table 1). The

first set included five functionally related traits: gland–anther

distance, gland–stigma distance, style width, gland size

(square root of gland area) and bract size (square root of bract

area). The second set included six morphologically integrated

bract traits: upper-bract-length centre, upper-bract-length sides,

upper-bract width, lower-bract-length centre, lower-bract-length

sides and lower-bract width.

(i) Within-population variation
For the quantitative genetic experiments, we fitted mixed models

with the R package MCMCglmm [51]

zijkl ¼ ui þ aij þ bij þ dik þ qijkl,

where z is the trait value, u is the trait mean, a is the breeding

value, b is the non-genetic plant-level effect, d is the
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but sampled at different times. The population ‘Tovar’ is located in Venezuela. The phylogeny is scaled to unit depth. The phylogeny with branch lengths is deposited in Dryad.
(Online version in colour.)
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measurement-date effect and q is the residual within-plant effect.

The subscripts, i, j, k and l represent trait type, plant, day and

blossom, respectively. The random effects are assumed to be dis-

tributed as a � N(0, G � A), b � N(0, B � I), d � N(0, F � I) and

q � N(0, E � I), where A is the additive relatedness matrix, I is the

identity matrix and� is the Kronecker product. The model estimates

the additive genetic variance matrix G, the among-plant environ-

mental variance matrix B, the among-date variance matrix F and

the residual variance matrix E. The traits were mean standardi-

zed before the analyses to obtain mean-standardized variance

matrices. The complete posterior distributions of all G-matrices are

reported in the electronic supplementary material, tables S4–S7.

As priors for the Bayesian mixed models (MCMCglmm), we

used zero-mean normal distributions with very large variances

(108) for the fixed effects, half-Cauchy distributions with scale

parameter 20 [52] for the variance components, and inverse-

Wishart distributions with parameters V and n for the residuals.

The matrix parameter V was a crude guess based on the pheno-

typic variance matrix, and the value of n was set to x 2 0.998,

where x is number of traits in the analysis [51]. The models

were robust against changes in the priors, but note that the influ-

ence of these priors on functions of variance components is not

well understood (JD Hadfield 2014, personal communication).

These models ran for 1 100 000 iterations, with a burn-in phase

of 100 000 and a thinning interval of 1000. Visual inspection of

trace plots showed that the posterior distributions had good con-

vergence and mixing of chains. The autocorrelation was less than

0.1 per sampled iteration for almost all chains.
(ii) Evolvability measures
To calculate evolvability measures from the estimated G-matrices,

we followed the approach of Hansen & Houle [17]. We have

implemented functions to calculate these measures in the R pack-

age evolvability (see appendix C, electronic supplementary

material). The measures e(b), r(b) and c(b) are explained in the

theory section. We also use a measure of evolutionary integration,

i(b) ¼ 1 2 c(b)/e(b), that measures the fraction of additive genetic

variance bound up in the other traits. This integration index varies

between zero, no integration, and one complete integration. To cal-

culate the average, the minimum and the maximum evolvability

(emean, emin and emax) for each G-matrix, we used the average, the

minimum and the maximum of the eigenvalues. The minimum

and maximum evolvability correspond to the evolvability in the

directions of the smallest and largest eigenvector of G, while

the average evolvability corresponds to the expected evolvability

in a random direction. To calculate the average respondability, con-

ditional evolvability and integration (rmean, cmean and imean) we took

an average over 1000 random selection gradients uniformly distrib-

uted on the unit sphere for r(b), c(b) and i(b) instead of using the

analytical approximations in Hansen & Houle ([17], see also [53]).

Note that some of these measures are biased due to estimation

error in the estimated matrices. For example, the largest eigenvalue

is overestimated and the lowest eigenvalue is underestimated. The

mean of the eigenvalues is not biased, however.

To generate the set of random selection gradients uniformly

distributed in k dimensions, we used the function randomBeta

in the evolvability R-package. This function samples each



Table 2. Means of evolvability measures (e, r and c in % of trait mean) and integration (i in proportions) over uniformly distributed random directions in the
G-matrices. The maximum and minimum values of e are given by the highest and lowest eigenvalue, respectively. Estimates are posterior medians with 95%
highest posterior density interval in parentheses.

functional traits bract traits

Tovar Tulum Tovar Tulum

emean 0.55 (0.47, 0.66) 0.23 (0.17, 0.30) 0.40 (0.30, 0.49) 0.27 (0.20, 0.35)

emin 0.140 (0.097, 0.182) 0.037 (0.001, 0.069) 0.003 (0.001, 0.005) 0.002 (0.001, 0.004)

emax 1.28 (0.99, 1.68) 0.64 (0.36, 0.90) 2.12 (1.64, 2.71) 1.47 (1.07, 2.00)

rmean 0.64 (0.52, 0.77) 0.29 (0.19, 0.38) 0.76 (0.60, 0.97) 0.52 (0.39, 0.71)

cmean 0.38 (0.31, 0.44) 0.12 (0.06, 0.17) 0.016 (0.007, 0.023) 0.009 (0.004, 0.014)

imean 0.31 (0.24, 0.40) 0.44 (0.27, 0.70) 0.91 (0.87, 0.95) 0.92 (0.88, 0.96)
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element of each vector (selection gradient) independently from

a zero-mean Gaussian distribution with unit variance, and

subsequently normalizes each vector to unit length.

For direct comparison of G-matrices, we calculated the

squared correlation coefficient, R2, between evolvabilities,

e(b), r(b) and c(b), computed along 1000 random selection

gradients. These estimates of R2 describe the amount of variance

across directions in the evolvability parameter of one G-matrix

that can be explained by the same parameter from another

G-matrix. All measures were calculated at each iteration of the

posterior distribution of the G-matrices to include uncertainty.
(iii) Among-population variation
We estimated the among-population variance using phylogenetic

mixed models [54,55]. Because of the small number of popu-

lations considered, we fitted only univariate models for the

among-population variance. We used the natural logarithm of

the trait values in the analysis because variances on this scale

are directly comparable to evolvability measures. The small-

and large-glanded populations were analysed separately. The

phylogenetic mixed models were specified as

zijkl ¼ uþ ai þ pi þ bij þ dik þ qijkl,

where z is the trait value, u is the trait mean, a is the phylogenetic

effect, p is the residual population effect, b is the plant-level effect,

d is the measurement-date effect and q is the residual within-

plant effect. The subscripts, i, j, k and l represent population,

plant, day and blossom, respectively. Random effects were

assumed to be identically independently normally distributed,

with the exception of the phylogenetic effects for which we

allowed phylogentic correlations as a � N(0, s2
phylo:compA),

where A is the phylogenetic relatedness matrix composed of

shared branch lengths between populations. We also fitted

models in which the residual population effects ( p) were

excluded, which gave us an estimate of the evolutionary rates

(s2
rate), that is, the phylogenetically corrected among-population

variance. This is the parameter we used when comparing

population divergence and evolvability. Evolutionary rates are

measured as increase in variance per unit of time, here the

length of the phylogeny, among taxa evolving independently

as if by a Brownian motion. The phylogenetic mixed models

were fitted using the R-package MCMCglmm with the same

specifications as in the genetic models.
(iv) Population and species divergence
To understand whether population differentiation had happened

along lines of high evolvability, we compared evolutionary rates
(s2
rate) and evolvability (e, r and c) for all traits and for 1000

random directions (unit-length selection gradients). The different

evolutionary models predict different scaling relationships

between evolvability and evolutionary divergence (figure 1).

These scaling relationships were investigated by plotting the log

evolutionary rates against log evolvability and comparing this to

isometry (a scaling exponent of 1). We did not estimate the scaling

exponents directly because a rigorous statistical method for this

has not yet been developed. The direction of the vector of species

divergence (bspecies) was compared to the range of evolvabilities of

the G-matrices to see whether this direction had high or low evol-

vability. Each element of bspecies was calculated by subtracting the

average trait values (on the natural log scale) of the small species

from the average trait values of the large species estimated in the

phylogenetic mixed models, and dividing by the norm of this

vector for standardizing to unit length. Uncertainty was assessed

by evaluating the complete posterior distributions.

Morphological integration may constrain the independent evol-

ution of individual traits [56]. We investigated the effect of

integration by comparing i(b) with the fraction of independent

among-population variance (the ratio of conditional variance

among populations over the total among-population variance).

Because of statistical power, we were only able to estimate

two-dimensional among-population variance matrices using the

phylogenetic mixed model described above (not including the inde-

pendent population effects, p). We therefore only compared the

pairwise combinations of all traits for autonomy and fraction of

independent among-population variance. All analyses were done

in R v. 2.15.2 [57].
3. Results
(a) Patterns of evolvability
Average functional-trait evolvabilities were e¼ 0.55% and 0.23%

for the small-glanded and large-glanded species, respectively

(table 2). These averages are well within the normal range, but

larger than the median e¼ 0.09% for linear traits reported in a

recent compilation [25]. The traits ranked similarly regarding

evolvability in the two species, with the striking exception of

gland–anther distance being the most evolvable (e¼ 0.85%) in

the small-glanded species, but the least evolvable in the large-

glanded species (e ¼ 0.06%; table 3). Much of the variation in

trait evolvabilities was probably due to estimation error. The

functional traits were not very integrated, with mean integration

across random directions of i¼ 0.31 and 0.44 for the small- and

the large-glanded species, respectively (table 2). This means that



Table 3. Functional-trait means (zmean in mm) with standard error, and variance components with 95% highest posterior density interval of the quantitative
genetic analyses for the five functional traits. The variance components, evolvability (e), among-plant environmental variance (s2

environment),
among-measurement-date variance (s2

day) and among-blossom (residual) variance (s2
blossom) are mean standardized and multiplied by 100.

GAD GSD SW
p

GA
p

BA

Tovar (a small-glanded population)

zmean 3.22+ 0.08 5.47+ 0.13 1.13+ 0.02 4.15+ 0.06 37.94+ 0.60

e 0.85 (0.65, 1.09) 0.78 (0.50, 1.11) 0.50 (0.33, 0.64) 0.22 (0.16, 0.33) 0.32 (0.26, 0.46)

s2
environment �0 (0.00, 0.07) �0 (0.00, 0.26) �0 (0.00, 0.07) �0 (0.00, 0.04) �0 (0.00, 0.02)

s2
day 0.35 (0.20, 0.58) 0.20 (0.08, 0.34) 0.21 (0.11, 0.33) 0.10 (0.04, 0.16) 0.09 (0.05, 0.15)

s2
blossom 0.94 (0.83, 1.09) 1.34 (1.14, 1.51) 0.77 (0.66, 0.88) 0.54 (0.47, 0.61) 0.46 (0.40, 0.52)

Tulum (a large-glanded population)

zmean 4.63+ 0.04 4.61+ 0.05 1.36+ 0.01 4.37+ 0.04 38.19+ 0.34

e 0.06 (0.01, 0.13) 0.34 (0.23, 0.51) 0.31 (0.20, 0.45) 0.19 (0.08, 0.28) 0.21 (0.16, 0.31)

s2
environment �0 (0.00, 0.08) �0 (0.00, 0.04) �0 (0.00, 0.04) �0 (0.00, 0.06) �0 (0.00, 0.03)

s2
day 0.21 (0.16, 0.38) 0.16 (0.10, 0.29) 0.29 (0.23, 0.51) 0.25 (0.16, 0.41) 0.17 (0.10, 0.25)

s2
blossom 0.92 (0.85, 1.06) 1.20 (1.07, 1.33) 0.88 (0.78, 1.01) 1.26 (1.17, 1.45) 0.56 (0.52, 0.65)

Table 4. Bract-trait means (zmean in mm) with standard error and variance components with 95% highest posterior density interval of the quantitative genetic
analyses for the six bract traits. See table 3 for further explanation.

UBLc UBLs UBW LBLc LBLs LBW

Tovar (a small-glanded population)

zmean 18.97+ 0.31 16.54+ 0.26 19.49+ 0.33 21.24+ 0.38 18.27+ 0.32 19.99+ 0.34

e 0.35 (0.28, 0.46) 0.32 (0.27, 0.44) 0.37(0.27, 0.51) 0.45 (0.34, 0.56) 0.46 (0.35, 0.55) 0.36 (0.27, 0.52)

s2
environment �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.03) �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.03)

s2
day 0.05 (0.02, 0.10) 0.04 (0.01, 0.08) 0.09 (0.06, 0.20) 0.042 (0.01, 0.09) 0.040 (0.01, 0.08) 0.13 (0.06, 0.22)

s2
blossom 0.45 (0.38, 0.50) 0.40 (0.36, 0.46) 0.55 (0.47, 0.62) 0.56 (0.52, 0.67) 0.51 (0.44, 0.57) 0.73 (0.63, 0.81)

Tulum (a large-glanded population)

zmean 18.88+ 0.17 16.63+ 0.13 20.32+ 0.18 20.52+ 0.20 17.38+ 0.16 20.49+ 0.22

e 0.26 (0.18, 0.34) 0.18 (0.13, 0.26) 0.24 (0.18, 0.34) 0.28 (0.20, 0.41) 0.25 (0.17, 0.35) 0.31 (0.21, 0.44)

s2
environment �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.01) �0 (0.00, 0.03)

s2
day 0.18 (0.11, 0.32) 0.12 (0.06, 0.21) 0.14 (0.08, 0.23) 0.21 (0.11, 0.31) 0.15 (0.09, 0.27) 0.30 (0.19, 0.46)

s2
blossom 0.58 (0.53, 0.65) 0.60 (0.53, 0.66) 0.61 (0.55, 0.68) 0.73 (0.66, 0.83) 0.69 (0.62, 0.78) 0.87 (0.76, 0.96)
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conditional evolvabilities on average were as high as 69% and

56% of the unconditional evolvabilities. Hence, most combina-

tions of functional traits had a high degree of independent

evolutionary potential.

Bract traits had average evolvabilities of e ¼ 0.40% and

0.27% for the small- and large-glanded species, respectively

(table 2). These averages were similar to those of the functional

traits, but the bract traits were much more integrated and had

more equal evolvabilities (tables 2 and 4). The high average

integration of i ¼ 0.91 and 0.92 means that conditional evolv-

abilities would be very low for most combinations of bract

traits. The averages of c � 0.01% indicate a potential change

of only a hundredth of a per cent per generation under unit

selection, and the minimum evolvabilities were almost an

order of magnitude below this. Note, however, that bract

traits may still be highly evolvable along a few directions.

Indeed, the maximum evolvabilities, which equal the
maximum conditional evolvabilities, were 2.1% and 1.5% for

the small- and large-glanded species, respectively (table 2).

Although the small-glanded species was roughly twice as

evolvable as the large-glanded species, their G-matrices were

qualitatively similar in the general patterns and levels of inte-

gration. There were a lot of particular differences, however,

and, for the functional traits, the evolvability measures

along different directions were poorly correlated between

the matrices (R2 ¼ 12%, 12%, 7% for r, e and c, respectively).

The bract-trait matrices were more consistent (R2 ¼ 96%,

97%, 36% for r, e and c, respectively).

In both small- and large-glanded populations, the pat-

terns of respondability were similar to the patterns of

evolvability. We will therefore not discuss respondability

further (but see the electronic supplementary material). As

for non-genetic variance components, we note that there

were large components of temporal variance (‘day’) and



Table 5. Variance components of the phylogenetic analyses for the five functional traits. The evolutionary rates (s2
rate) and the phylogenetic variance

(s2
phylo:comp) have units of 100 � (ln mm)2/t, where t is the length of the phylogeny (this is equal to the mean-scaled variance accumulated over the length of

the phylogeny in %). The phylogenetic heritability, H2
phylo, is given by ts2

phylo:comp/(ts2
phylo:comp þ s2

pop:resid). The other variance components, the population-
residual variance (s2

pop:resid), the among-day variance (s2
day), the among-plant variance (s2

plant) and the within-plant variance (s2
blossom), have units of 100 �

(ln mm)2. Estimates are posterior medians with 95% highest posterior density interval in parentheses.

GAD GSD SW
p

GA
p

BA

phylogenetic analysis for the small-glanded populations

s2
rate 1.40 (0.16, 3.04) 3.77 (0.66, 8.16) 2.97 (0.36, 6.76) 1.15 (0.17, 2.61) 0.15 (0.00, 0.49)

s2
phylo:comp 0.85 (0.00, 2.47) 1.90 (0.00, 6.10) 1.32 (0.00, 4.49) 0.92 (0.00, 2.67) 0.13 (0.00, 0.52)

s2
pop:resid 0.44 (0.00, 1.37) 1.34 (0.00, 3.63) 1.04 (0.00, 2.87) 0.30 (0.00, 1.10) 0.08 (0.00, 0.27)

H2
phylo 0.58 (0.01, 1.00) 0.51 (0.01, 1.00) 0.47 (0.10, 1.00) 0.71 (0.05, 1.00) 0.55 (0.01, 1.00)

s2
day 0.13 (0.00, 0.39) 0.13 (0.00, 0.44) 0.26 (0.00, 0.68) 0.19 (0.00, 0.53) 0.08 (0.00, 0.24)

s2
plant 0.17 (0.00, 0.48) 0.79 (0.00, 1.56) 0.34 (0.00, 0.82) 0.20 (0.00, 0.64) 0.11 (0.00, 0.34)

s2
blossom 1.88 (1.40, 2.42) 3.68 (2.70, 4.71) 2.16 (1.56, 2.81) 2.15 (1.58, 2.71) 1.23 (0.93, 1.59)

phylogenetic analysis for the large-glanded populations

s2
rate 1.44 (0.19, 3.22) 1.67 (0.12, 3.72) 1.89 (0.42, 4.31) 2.24 (0.60, 4.82) 1.54 (0.36, 3.23)

s2
phylo:comp 0.95 (0.00, 2.93) 1.11 (0.00, 3.21) 1.45 (0.00, 3.69) 1.12 (0.00, 3.57) 1.01 (0.00, 2.71)

s2
pop:resid 0.54 (0.00, 1.74) 0.59 (0.00, 1.91) 0.52 (0.00, 1.89) 0.73 (0.00, 1.96) 0.49 (0.00, 1.63)

H2
phylo 0.58 (0.01, 1.00) 0.60 (0.01, 1.00) 0.73 (0.10, 1.00) 0.53 (0.05, 1.00) 0.64 (0.01, 1.00)

s2
day 0.35 (0.00, 0.77) 0.10 (0.00, 0.29) 0.25 (0.00, 0.60) 0.07 (0.00, 0.22) 0.10 (0.00, 0.26)

s2
plant 0.76 (0.21, 1.46) 0.54 (0.05, 1.04) 0.50 (0.00, 1.02) 0.07 (0.00, 0.24) 0.16 (0.00, 0.38)

s2
blossom 1.70 (1.22, 2.21) 1.70 (1.28, 2.15) 1.79 (1.38, 2.31) 1.25 (0.96, 1.54) 1.04 (0.77, 1.32)
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that most of the residual variance was among individual

blossoms and not among plants.

(b) Patterns of evolutionary rates
The phylogenetic structure explained a substantial amount of

variation in all the measured traits, with phylogenetic heritabil-

ities [54] ranging from approximately 0.5 to 0.8 (tables 5 and 6).

For this reason, we focus on estimated evolutionary rates along

the phylogeny instead of the raw among-population variances.

These evolutionary rates are the phylogenetically corrected

among-population variances (s2
rate). We focus on the square

roots of these variances (i.e. CVrate) because they scale iso-

metrically with the evolvabilities under linear selection (see

equations (2.1) and (2.2)). The mean-scaled variance accumu-

lated over the length of the phylogeny was around 0.02 (ln

mm)2 for all traits; this equals a CVrate of around 14%. The

exception was bract traits in the small-glanded species, which

had rates of evolution an order of magnitude lower than the

other traits (tables 5 and 6).

(c) Relationship between evolvability and divergence
Note first that the rates of evolution were very small relative to

the estimated evolvabilities. With our estimated evolvabilities,

changes of this magnitude could be produced by natural selec-

tion over just a few generations. We do not have direct

information about the absolute age of the phylogeny, but

because the deepest split in the phylogeny is between species,

we regard it as likely that the populations within each species

have been separated by hundreds of thousands of years.

Hence, there is no obvious reason to expect an influence of gen-

etic constraints. However, table 7 shows that there was high

evolvability in the direction of the species divergence, and
figures 4 and 5 show that there was a relationship between

evolvability and population divergence, with populations

having diverged more in directions of high evolvability. This

holds true for conditional and unconditional evolvability in

both functional traits and bract traits in both species. Note in

particular the strong, nearly isometric, relationship between

evolvability and evolutionary rate in the bract traits shown in

figure 5. These relationships are not just due to a vague general

match between the G-matrices and the among-population var-

iance matrices. If we swap the G-matrices, and try using the

small-glanded G-matrix to predict population divergence in

the large-glanded species or vice versa, the relationships disap-

pear for the functional traits (electronic supplementary

material, figures S1 and S2). This underscores that G can

change over time, and thereby changing the predictions of

among-population divergence. In general, divergence is best

predicted by evolvability, less well by conditional evolvabi-

lity and hardly at all by respondability (see the electronic

supplementary material, figures S3 and S4 for results

on respondability).

General estimates of conditional evolvability involving

many traits are error prone, and it is not surprising that the

relationship with among-population variation was noisy.

We can get more precise estimates by conditioning single

traits on each other. This is asking how much one trait is

likely to constrain the evolution of another trait. We did

this for all pairwise combinations of traits and then tested

whether the integration (i ¼ 12conditional evolvability/

evolvability) between pairs of traits predicts the independent

evolution of the traits. There was a strong negative relation-

ship between integration and independent evolution for the

large-glanded species, but a less clear relationship for the

small-glanded species (figure 6).



Table 6. Variance components of the phylogenetic analyses for the six bract traits. See table 5 for further explanation.

UBLc UBLs UBW LBLc LBLs LBW

phylogenetic analysis for the small-glanded populations

s2
rate 0.14 (0.00, 0.66) 0.10 (0.00, 0.44) 0.29 (0.00, 0.99) 0.34 (0.00, 1.01) 0.26 (0.00, 0.83) 0.12 (0.00, 0.78)

s2
phylo:comp 0.11 (0.00, 0.70) 0.08 (0.00, 0.44) 0.14 (0.00, 0.88) 0.20 (0.00, 0.91) 0.18 (0.00, 0.74) 0.10 (0.00, 0.68)

s2
pop:resid 0.05 (0.00, 0.31) 0.02 (0.00, 0.211) 0.10 (0.00, 0.51) 0.10 (0.00, 0.51) 0.06 (0.00, 0.36) 0.06 (0.00, 0.46)

H2
phylo 0.71 (0.01, 1.00) 0.78 (0.03, 1.0) 0.55 (0.01, 1.00) 0.67 (0.01, 1.00) 0.76 (0.02, 1.00) 0.63 (0.01, 1.00)

s2
day 0.05 (0.00, 0.24) 0.04 (0.00, 0.19) 0.09 (0.00, 0.34) 0.03 (0.00, 0.19) 0.06 (0.00, 0.23) 0.07 (0.00, 0.32)

s2
plant 0.03 (0.00, 0.22) 0.06 (0.00, 0.25) 0.10 (0.00, 0.41) 0.09 (0.00, 0.45) 0.04 (0.00, 0.24) 0.20 (0.00, 0.63)

s2
blossom 1.29 (0.97, 1.62) 1.07 (0.79, 1.34) 1.53 (1.15, 2.00) 1.54 (1.18, 1.98) 1.11 (0.82, 1.38) 1.52 (1.11, 2.00)

phylogenetic analysis for the large-glanded populations

s2
rate 1.93 (0.59, 4.49) 1.76 (0.42, 4.21) 1.16 (0.19, 3.22) 1.63 (0.39, 4.23) 1.45 (0.43, 3.63) 1.47 (0.36, 4.04)

s2
phylo:comp 1.30 (0.00, 4.32) 1.01 (0.00, 3.38) 0.60 (0.00, 2.36) 0.98 (0.00, 3.53) 0.93 (0.00, 2.86) 0.90 (0.00, 3.34)

s2
pop:resid 0.37 (0.00, 2.14) 0.44 (0.00, 1.88) 0.30 (0.00, 1.30) 0.38 (0.00, 1.87) 0.29 (0.00, 1.41) 0.34 (0.00, 1.81)

H2
phylo 0.80 (0.03, 1.00) 0.71 (0.01, 1.00) 0.66 (0.01, 1.00) 0.72 (0.02, 1.00) 0.78 (0.04, 1.00) 0.75 (0.03, 1.00)

s2
day 0.11 (0.00, 0.39) 0.13 (0.00, 0.42) 0.07 (0.00, 0.29) 0.07 (0.00, 0.28) 0.08 (0.00, 0.25) 0.09 (0.00, 0.29)

s2
plant 0.14 (0.00, 0.45) 0.16 (0.00, 0.48) 0.14 (0.00, 0.39) 0.32 (0.05, 0.65) 0.20 (0.00, 0.44) 0.12 (0.00, 0.38)

s2
blossom 1.37 (1.02, 1.76) 1.31 (0.95, 1.68) 1.10 (0.79, 1.37) 1.19 (0.89, 1.57) 1.06 (0.78, 1.40) 1.24 (0.92, 1.55)

Table 7. Evolvability measures (e(b), r(b) and c(b) in %) along the vector between the species means (bspecies) in the different G-matrices.a Estimates are
posterior medians with 95% highest posterior density interval in parentheses.

functional traits bract traits

Tovar Tulum Tovar Tulum

e(bspecies) 0.97 (0.66, 1.33) 0.41 (0.18, 0.65) 1.92 (1.45, 2.55) 1.32 (0.88, 1.79)

r(bspecies) 1.05 (0.73, 1.39) 0.49 (0.25, 0.75) 2.00 (1.52, 2.59) 1.38 (0.96, 1.87)

c(bspecies) 0.66 (0.35, 1.03) 0.14 (0.01, 0.29) 0.13 (0.00, 0.57) 0.07 (0.01, 0.30)
aThe posterior medians of the unit length vectors of species differences are bspecies ¼ 0.585 � lnGAD þ 0.345 � lnGSD þ 0.429 � lnSW þ 0.479 �
ln
p

GA þ 0.298 � ln
p

BA for the functional traits and bspecies ¼ 0.362 � lnUBLc þ 0.427 � lnUBLs þ 0.435 � lnUBW þ 0.382 � lnLBLc þ 0.387 �
lnLBLs þ 0.371 � lnLBW for the bract traits.
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4. Discussion
Our results are consistent with genetic constraints on trait

divergence. Both the direction with highest among-population

divergence and the direction of divergence between the two

species had high evolvabilities compared to average directions

(figures 4 and 5; table 7). This was true for both the functionally

related pollination traits and for the morphologically related

bract traits. The two trait groups differed strikingly in their pat-

terns of integration, however, with the morphologically related

bract traits being much more integrated, with much lower

conditional evolvabilities.
(a) Modes of evolution in Dalechampia scandens
Dalechampia blossom morphology is under direct selection

from both pollinators and seed predators [38,58–60]. Com-

parative analyses show that the fitness optima of Dalechampia
blossom traits are influenced by several factors, including bee

community composition, availability of other resin sources

for the bees, presence of other Dalechampia species and
energetic constraints [40,42,44,61], but only a small part of

the interpopulation variation has been explained by models

of selective factors [44,61]. This may be due to the crude way

the selective factors have been modelled, or it may be due to

genetic constraints. Previous studies have shown that pleiotro-

pic constraints can be important in the evolution of blossom

traits in D. scandens [47,62] and in Dalechampia in general [63].

This is supported by this study.

The scaling exponent between evolvability and evolution-

ary rates for the functional traits was clearly below one for

the large-glanded populations and closer to one for the

small-glanded populations (figure 4). Such scaling relation-

ships are consistent with models of moving optima in which

the population means can almost keep pace with their

optima (a , 2es, figure 1). The similarity in the scaling relation-

ship for unconditional and conditional evolvability makes it

hard to judge if stabilizing selection has constrained evolution

in certain directions or not.

Among the functional traits, bract size in the small-glanded

populations stands out. This trait has a similar amount of addi-

tive genetic variance as the other functional traits, but much
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Figure 4. Scaling relationship between evolutionary rate (s2
rate) and evolvability for the functional traits. Grey circles represent 1000 uniformly distributed random

directions (selection gradients). The solid line indicates the isometric relationship (a slope of 1) passing through the mean of the random directions. Crosses are the
measured traits, squares are the directions with highest or lowest trait divergence, and black circles are the directions with highest and lowest evolvability out of the
1000 random directions. The circles, crosses and squares are the modes from the posterior distributions and the grey lines give the 95% highest posterior density
intervals. The vertical dotted lines are the posterior modes for the parameters named above each plot, and the vertical thick grey bars are their 95% highest
posterior density intervals (table 2). The differences between minimum and maximum evolvability and the lowest and highest evolvability of the random directions
are due partly to sampling error and partly to bias in the estimates of emin and emax.
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less among-population variance. This suggests that there is less

dispersion of optima for this trait. This pattern is consistent

across all bract traits in the small-glanded populations.

The relatively tight scaling relationship, with a scaling

exponent below one, between evolutionary rate and evol-

vability for the bract traits in the small-glanded populations

(figure 5) indicates that the population means lag behind

their moving optima (a � 2es, figure 1). With an evolvability

of say 0.1%, and moderately weak stabilizing selection (e.g.

s ¼ 1), the value of a will be too large to be consistent with

the observation of phylogenetic signal (a � 2es ¼ 0.001 gives

t1
2
� 700 generations). For very weak selection (e.g. s ¼ 0.01),

however, this model may be plausible (a � 2es ¼ 0.00001

gives t1
2
� 70 000 generations). The tight isometric relationship

observed for the large-glanded populations (figure 5) can

also be consistent with the same model, but the stabilizing

selection needs to be even weaker, because a would need to

be of the order of 10es to be consistent with the isometric

relationship (figure 1). Such an isometric relationship is also

consistent with models of neutral evolution, but the ratio of
among-population variance to evolvability, which equals the

ratio of generations to effective population size under drift, is

orders of magnitude too small.

The main difference between functional and bract traits

was their degree of evolutionary integration. This had a strong

effect on the relationship between G and divergence in both

the small- and large-glanded species. The effect of integration

on evolution was also reflected in the correspondence between

the integration index and independent evolution of the traits in

the large-glanded populations (figure 6). This reinforces pre-

vious results indicating correlated evolution among blossom

traits in D. scandens [47,62]. Note, however, that several

traits achieved independent evolution despite a high level of

integration in the small-glanded populations.

(b) The paradoxical relationship between G and
divergence

Taken at face value our evolvability estimates and even most

of our conditional-evolvability estimates predict very rapid
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evolution at macroevolutionary timescales. Yet, we also find

clear evidence for a relationship between evolvabilities and

patterns of evolution indicating that genetic constraints may

be important. How can these two results be reconciled? It is

not that this finding is unique to our study. We know

of many studies reporting a relationship between patterns

of genetic variation and population divergence or evolution-

ary rates [17,24,64–80] and also many studies reporting a

relationship between phenotypic variation and divergence

[69,81–92]. The macroevolutionary relevance of evolvability

is not that clear cut, however, and some studies have failed

to find a relationship and concluded that genetic constraints

are not important for divergence [33,84,85,93–100]. Before

generalizing from this body of work it is important to realize

that there are many unsolved methodological problems stem-

ming both from the difficulties of constructing quantitative

measures of constraints in absence of a realistic quantita-

tive theory of macroevolutionary change on a wide range of

timescales, and from statistical difficulties with achieving

reasonably accurate estimates of G. The field is also marred

by fundamental measurement/theoretical problems such as

use of inappropriate or incommensurate scales, use of theory-

free indices and use of statistical significance testing in place
of estimation [101]. Hence, the seemingly clear evidence that

evolutionary divergence is often constrained must be regarded

as tentative. However, we think that the problems will tend to

obscure the relationships between evolvability and divergence

rather than enhance them. We will briefly go through some

such problems and evaluate the studies that have found

evidence against the constraint hypothesis in this light.

A common problem, especially with the early studies, is

the use of correlation matrices (e.g. [84,94,95,97]). Correlation

matrices are poorly suited for investigating the relationship

between evolutionary potential and divergence, because

they may obscure any order among the measured traits

both in amount of divergence and in amount of genetic vari-

ation by standardizing all these values to one. The severity

of this problem can be seen from the finding that there is

no correlation between mean-scaled and variance-scaled

additive variances, i.e. no correlation between ‘evolvability

and heritability’ [25,102]. Hence, any relationship between

‘evolvability’ and divergence is predicted to be completely

randomized after variance standardization such as forming

a correlation matrix. We suspect that some studies have

failed to find evidence for constraint due to variance

standardization.
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Schluter’s [79] test of constraints based on estimating the

angle between the direction of divergence and the largest eigen-

value of G, gmax, is a common denominator across many studies

not finding evidence for constraints [85,93,96,97,99,100]. How-

ever, this method cannot falsify the constraint hypothesis,

because there may be more than one direction with high evolva-

bility [17,66,87,103]. Note that estimating the angle to the

directions of several eigenvalues of G cannot falsify the con-

straint hypothesis either, because there may be directions of

high genetic variance in between the eigenvectors.

Many studies test constraints by use of various matrix

comparison methods to assess the similarity between the

G-matrix and among-population D-matrices [33,84,93–95].

Some of these methods such as correlation of matrix

elements, often in combination with the overused Mantel

tests, have obscure meaning and little statistical justification,

but others such as common-principal-component analysis

may at least be statistically correct (but see [104]). It is hard

to interpret the results from such methods, however, because

there is no established theoretical link between the dissimilar-

ity statistics and evolutionary models. Two matrices may be

simultaneously similar and dissimilar in many different

ways. We do not know how to recognize the influence of

genetic constraints in such studies.

Note that QST2 FST studies are not directly relevant for

testing the genetic constraint hypothesis, because these are

designed to test the null hypothesis of neutral divergence

and usually not the relationship between G and D beyond

this ([105–108], but see [98]).

We are left with the two studies of Chenoweth & Blows [98]

and Kimmel et al. [100] that convincingly demonstrate no

constraining effect of G on the evolutionary divergence. How-

ever, one of these, Chenoweth & Blows [98], is not consistent

with the conclusion of a reanalysis of the same data [72] regard-

ing evidence for constraints. We therefore conclude that there is

little evidence against and quite a lot of evidence for, the genetic

constraint hypothesis, although the methodological problems

are also abundant in several of the studies that report a relation-

ship between G and divergence. At the same time, quantitative

genetic estimates of additive variance generally support high
evolvabilities [25,102], and this sends us back to the question

of how seemingly high evolvabilities can still be correlated

with evolutionary change on million-year timescales.

We consider three possible explanations for the paradoxical

relationship between G and divergence. First, natural selection

may shape within- and between-population variation in a simi-

lar manner. This is hard to rule out in the absence of direct

information about historical patterns of selection or the move-

ment of fitness optima, but in our opinion theory does not

support a strong match between G and patterns of selection

[109,110]. Also, Blows et al. [111] did not find any relationship

between a G-matrix and estimated patterns of selection. It is

particularly hard to believe that natural selection can explain

the paradox when there is strong match between the patterns.

For example, in the case of our bract traits in the large-glanded

population (figure 5), the distribution of fitness peaks must be

almost exactly proportional to G.

Second, adaptive optima may move within a restricted

area at a pace at which they can be tracked, but not reached.

If so, there will be a correlation between evolvability and

divergence because populations will track better in directions

with high evolvability. This requires, however, that stabiliz-

ing selection is very weak; otherwise, the models predict

that the population means would perfectly track the optima

for any observed levels of evolvability (see equation (2.3)).

The third and last alternative is that realized evolvabili-

ties are much smaller than measured evolvabilities, yet

correlated with them. For example, it is possible that a con-

ditional evolvability relative to a set of unmeasured traits

under stabilizing selection could be quite small, due to a high

degree of pleiotropy, and also correlated with the uncondi-

tional evolvabilities, since they both depend on the total

variation. Similarly, for macroevolutionary changes, standing

genetic variation may be less relevant for long-term response

than the supply of ‘mutational evolvability’ based on how

much genetic variation is generated each generation, and the

mutational and standing evolvabilities are likely correlated.

This last alternative is in line with several recent reviews con-

cluding that there is good evidence that genetic constraints

are important in evolution [11,18,112,113].
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Distinguishing between these and other explanations is

an empirical question, but in our opinion, a combination of

relatively weak stabilizing selection and small realized

evolvabilities is tentatively the most plausible. This can

explain why some populations evolve fast on microevolu-

tionary timescales [4,6,114,115], which would not have

been possible if realized evolvabilities are always very

small, and, at the same time, not completely at odds

with the general notion of strong natural selection

[18,27,29,116].
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