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Abstract

We propose a new method for smallRNAs (sRNAs) identification. First we build an effective target genome (ETG) by means
of a strand-specific procedure. Then we propose a new bioinformatic pipeline based mainly on the combination of two
types of information: the first provides an expression map based on RNA-seq data (Reads Map) and the second applies
principles of comparative genomics leading to a Conservation Map. By superimposing these two maps, a robust method for
the search of sRNAs is obtained. We apply this methodology to investigate sRNAs in Mycobacterium tuberculosis H37Rv. This
bioinformatic procedure leads to a total list of 1948 candidate sRNAs. The size of the candidate list is strictly related to the
aim of the study and to the technology used during the verification process. We provide performance measures of the
algorithm in identifying annotated sRNAs reported in three recent published studies.
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Introduction

Modulation of gene expression through RNA regulators in

bacteria is mediated by a heterogeneous group of molecules that

act by various mechanisms. One of the most extensively studied

class of regulators is represented by small non-coding RNAs

(sRNAs) [1,2,3]. The growing list of discoveries in the field of

sRNAs is the best indication of why it is indispensable for those

involved in the field of genetics to gain knowledge about this

critical regulatory concept. The typical size of these functional

RNA molecules varies from 30 to 350 nucleotides. sRNAs can

modulate transcription, translation, mRNA stability, and DNA

maintenance or silencing. Thus, bacteria can regulate transcript

expression through cis-acting sRNAs, acting in antisense manner

and controlling the expression of mRNAs encoded on the opposite

DNA strand, or trans-acting sRNAs. This alters the expression of

multiple target mRNAs [4,5].

sRNAs are involved predominantly in stress response pathways

and pathogenesis, but they are also found to regulate metabolism,

transport, quorum sensing, and other important physiological

paths [1,3,5,6]. RNA regulators may have several advantages over

protein regulators and transcriptional factors in terms of cost,

speed of response, complexity and specificity of the regulatory

outcome [3,5]. Bacterial capacity to survive in hostile environ-

ments has driven the evolution of specific mechanisms for

monitoring, which adjust their gene expression and physiology

accordingly to the hostile environment. This is crucial for

pathogenic bacteria in constant interaction with the host during

infection. The majority of sRNAs were discovered in Escherichia

coli, and a smaller subset was characterized in other bacteria,

including pathogenic species such as Salmonella enterica serovar

Typhimurium, Vibrio cholerae, and Mycobacterium leprae [7,8]. On

Mycobacterium tuberculosis H37Rv (MTB) [9], the causative agent of

tuberculosis, only few sRNAs have been identified and experi-

mentally validated, and an experimental genome-wide approach

was never adopted [10,11]. Tuberculosis remains one of the

leading causes of morbidity and mortality from infectious disease

worldwide, and understanding the pathophysiology of MTB is

imperative for developing new drugs and vaccines.

Most of the 140 bacterial sRNAs discovered in the past six years

were identified by systematic screens using computational methods

or experimental-based approaches, including microarray and

shotgun cloning [12,13]. A smaller number were discovered by

direct labelling or by functional genetic screens.

Computational approaches predicting sRNAs commonly rely

on comparative genomics analysis focused on intergenic genomic

regions (IGRs); some examples are methods such as QRNA [14]

and Intergenic Sequence Inspector [15]. However, these methods

present some limitations being species-specific and discarding

regions on the antisense strand of protein-encoding genes.

Recently, further bioinformatic approaches for identification of

sRNA molecules in bacteria have used different combinations of

comparative genomics, GC content profiling, sequence alignment

of IGRs with known sRNAs, together with the search for
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appropriate consensus sequences for transcriptional initiation and

termination sites [12,16,17,18]. However, the aforementioned

approaches may be ineffective when studying mycobacteria due to

different factors, such as their genomic composition, the difficulty

in defining accurate transcriptional signals, and the lack of verified

sRNAs.

Among experimental-based methods two approaches led to very

promising results. The first [19,20] is based on the search for

sRNA in Escherichia coli by the analysis of low-molecular-weight

RNA molecules isolated from cultures. According to this

approach, nine putative sRNAs have been recently identified

[11] in MTB. A second approach provides important suggestions

to improve the accuracy of annotation of many genes dealing with

strand-specific variation of RNA-seq [21], called single-strand

RNA-seq, ssRNA-seq [22]; this approach also applies to the

identification of novel sRNAs.

However, these methods suffer from some limitations. The main

one is the strong dependency on both the amount of sRNAs

present in the sample as well as experimental conditions. For this

reason this methodology identifies only sRNAs that are highly

expressed during the selected experimental conditions.

We propose a new bioinformatic approach for sRNAs

identification based on both ssRNA-seq data and comparative

genomics. We provide a genome-wide identification of sRNAs in

MTB.

In section 2 we illustrate the statistical and bioinformatic

fundamentals leading to our identification method, which

consisted of the construction of both the expression map and the

conservation map.

Section 3 shows the results of the proposed method applied to

data from sRNA-seq experiment conducted specifically on

Mycobacterium tuberculosis H37Rv.

Methods

We introduce a method (summarized in Figure 1) which relies

mainly on the combination of two genomic features: the first

extracts information from RNA-seq data (Reads Map) and the

second is based on IGR conservation analysis (Conservation Map).

The reliability of sRNA candidates has been assessed by screening

their genomic characteristics, such as secondary structure stability,

similar to the already annotated sRNAs and others that will be

discussed in further sections.

We next describe in detail the preliminary step, sRNAs

screening maps methods, threshold criteria, sRNAs candidate

definition and discuss the reliability of our approach.

2.1 Construction of the Effective Target Genome (ETG)
The first step of the analysis is the generation of the Effective

Target Genome (ETG). Since our target region (IGR), all regions

annotated as coding for proteins (CDS) or as coding for functional

RNA molecules (tRNA, rRNA) are extracted and discarded. This

procedure is performed by means of custom BioPerl [23] script

named IGRExtract, which combines information about bacterial

genome sequences (.fna) and annotation files (.gff) obtained from

the NCBI FTP site and returns:

1. two strand-specific databases containing genomic coordinates

(start, end position and strand) of regions which are not used as

template for transcription (IGR+AS) named Target InterGenic

AntiSense Region Coordinates -T_IGRAScoord-. The sum of

these two databases corresponds to the Effective Target

Genome (ETG).

2. one database containing genomic coordinates of IGR regions

named Target InterGenic Region Coordinates -T_IGRcoord-.

It represents a sub-sample of the ETG.

3. the third database reports DNA sequences corresponding to

the IGR regions (Target InterGenic Region Sequences -

T_IGRseq-).

2.2 Reads maps Construction
We next introduce a novel genome-wide approach to exploit

RNA-seq technology for the identification of putative sRNAs

encoded by transcriptional templates located in not annotated

regions. The input needed in this step corresponds to the output of

standard next generation sequencing mappers such as SOAPv1

[24], Bowtie [25], ELAND or BWA [26] and the previously

described (see section 2.1) T_IGRAScoord database. A filtering

procedure has been implemented in BioPerl to extract from these

an alignment program output, those reads that uniquely map to

any of the genomic intervals contained in each of the

T_IGRAScoord files separately. Only reads completely mapping

within the IGRAS are included. Two strand-specific reads maps

are obtained. From these maps a coverage value is computed at a

single base resolution for all screened bases of the Target

InterGenic AntiSense genome. We define a reads coverage value Ri

of a specific genomic position i as the count of reads overlapping

that position (Figure 2) given by:

Ri~
X

Iij

where Iij is the indicator function equal to 1 if the position i is

between the start position and the end position of the generic reads

ri and i can assume all values included in the regions contained in

T_IGRAScoord database.

2.3 Conservation map construction
The following step is based on IGRs conservation analysis. The

main advantage of this conservation- based method is also its main

limitation. For example, the more an IGR is conserved among

other species the more likely it can be considered as a functional

unit for the genome. However, it is not possible to identify

organism-specific coding elements. A first fundamental issue in

conservation analysis is the choice of the comparative set of

organisms. The number of genomes considered for the compar-

ison as well as their relative evolutionary distance represents a

crucial feature together with computational time required for the

analysis. For instance, a large set, which includes distant genomes,

leads to a computationally intensive procedure without signifi-

cantly improving the identification power. On the other hand, a

restricted set of genomes closer to the selected target produces a

high conservation index diffused across all IGRs, thus leading to a

reduction in terms of discriminatory power. This approach starts

from the creation of single-base resolution conservation map.

Unlike the reads map, the conservation map is not calculated in

AS regions since these show a very high conservation degree. It is

clear that the conservation map is symmetrical with respect to

strand, since strands are defined starting from IGRs, which are

complementary. First we extract information on genome sequence

(.fna) and annotation files (.gff) from the NCBI FTP website for

each bacterium included in the conservation set. Running the

script (IGRExtract script defined in section 2.1) over the genomes

set, a comparison database of IGRseq is created (C_IGRseq).

Each IGR in T_IGRseq file was compared using BLASTN 2.0

[27] with the whole C_IGRdb (E-value threshold: 1e-2). By

A Genome-Wide Procedure for Identifying sRNAs
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processing the obtained matches output file, a conservation map is

subsequently created. The sequence conservation value (Ci) of a specific

genomic position corresponds to the weighted count of different

genomes containing that position with at least one alignment

satisfying quality criteria. Details on the definition of the sequence

conservation value are reported in Text S1. The distance between

genomes included in the analysis is calculated accordingly with the

method proposed in the recent literature [28].

2.4 Thresholds definition
sRNAs identification procedure is based on the definition of

reads and conservation thresholds which are established on

empirical distribution functions determined by means of statistical

criteria and according to data characteristics (Text S2). Factors

such as mRNA degradation, background signal and genome

complexity influence the thresholds identification. On the other

hand, thresholds can affect candidate features like length, start-end

positions, type, and secondary structure estimation.

Figure 1. Outline of the bioinformatic pipeline. (a) Construction of the effective target genome (ETG) in terms both of sequences and
coordinates. (b) Construction of the two strand specific reads maps. (c) Construction of two strand specific conservation maps. (d) Combination of
reads and conservation map to allow for the identification of putative sRNA encoding regions. (e) annotations of putative sRNA to assess their
reliability.
doi:10.1371/journal.pone.0032723.g001
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A first general consideration for threshold definition is that each

observation within a given base is the result of two sources of

random values: background noise [29] and sRNA expression. We

assume that these two sources of randomness are independent and

apply the Empirical Distribution Function (EDF) to define

thresholds. A detailed description of the statistical approach is

provided in Text S2.

In particular, ExprT1 and ConsT1 thresholds correspond to

95th percentile of reads abundance and conservation distributions

respectively, while ExprT2 and ConsT2 thresholds correspond to

the 90th percentile. Setting the threshold on a combination of

background noise and sRNA candidates signal represents a

conservative approach since it shifts the discriminating cut-off to

a larger value and hence to a higher percentiles producing an

higher significant effective level. From the comparative genomics

step we consider the percentiles of the conservation distributions as

ad hoc cut-offs to identify the more likely promising regions.

2.5 sRNA candidate definition
For each region stored in the strand-specific databases

T_IGRAScoord files, reads and conservation maps are superim-

posed to identify putative regions encoding for sRNA candidates.

As mentioned above, conservation map support is a subset of reads

map support. In AS Regions the value of Ci is set equal to 0. In

particular we defined a Genomic Region (GR) as an sRNA

candidate if all of the following conditions are satisfied:

I. genomic region made up by consecutive nucleotides

II. genomic region length $30 nt and #550 nt

In addition, at least one of the following conditions must be

tested and satisfied on GR base, GRi (for thresholds definition see

section 2.4):

III. all GRi has reads abundance Ri value$ExprT1 threshold

IV. all GRi has a conservation value Ci$ConsT1 threshold

V. all GRi interval has an abundance reads Ri value$ExprT2

threshold and a conservation value Ci$ConsT2 threshold.

Different combinations of three of the previous testing

conditions lead to three possible candidate types (type A, type B,

type C) (Figure 3). The selection of the candidate type is crucially

affected by the order of testing conditions. In other words finding

type A candidates should be the first step which influences step 2

for the search of type B and step 3 for identifying C candidates.

– Step 1: identification of regions satisfying conditions I, II and

III (type A candidates);

– Step 2: identification of regions satisfying conditions I, II and V

(type B candidates);

– Step 3: identification of regions satisfying conditions I, II and

IV (type C candidates).

The application of these steps will enable the identification of

‘‘highly expressed’’ candidates, ‘‘mildly expressed’’ candidates that

show conservation features, and ‘‘lowly expressed’’ candidates

conserved among the phylogenetic genus. Accordingly to this

hierarchical approach, we should obtain ‘‘bona fide’’ candidates

identified on evidence criteria such as expression means (Type A),

expression plus conservation (Type B), and conservation alone

(Type C). We would also expect that the most promising

candidates are included in the category Type A, whereas Type

B and Type C could include candidates with an higher number of

false positives.

By fulfilling expression-based conditions a first experimental

validation is provided. Thus we start data processing by scanning

all regions specified in T_IGRAScoord, for type A candidates

which are then removed from the ETG to select regions satisfying

the expression constraints. On the remaining ETG, type B

candidates are identified and removed. Last, residual ETG is

analysed to search for type C candidates. This procedure clearly

implies that sRNAs candidates lying on AS Regions (with Ci = 0)

Figure 2. Reads maps construction. Reads map (blue curve) is obtained by assembling together all reads (sequences in red) mapping uniquely
and completely within the same IGR or AS region (sequence in black). The BioPerl procedure implemented merges NGS mappers output and
T_IGRAScoord files.
doi:10.1371/journal.pone.0032723.g002
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can only be type A candidates. In IGRs all types of candidates are

identifiable. We remark that type C candidates based on

conservation only, could also lie on opposite strands (with the

same coordinates). Reads map can be used to select the more likely

strand. Therefore, results are highly dependent on the order of the

scanning criteria applied, as mentioned above. Note that type A

candidates are the most promising ones.

Within the analysis of spatial distribution of reads derived from

NGS technology along the genome a well-known problem is the

presence of un-mappable regions in the investigated genome

which represents a crucial bias factor [30,31]. For example, a

possible misleading scenario may occur in the presence of a non-

mappable genomic interval inside a true candidate. This type of

blind portion of the genome corresponds to not uniquely mappable

reads sequences. These reads are filtered out in the reads map

construction step, showing a decrease in the expression signal.

Whenever these ‘‘blind regions’’ have a considerably larger length,

the reads map signal goes below ExprT1 threshold, splitting a

single candidate into multiple, shorter ones. This leads to an

unreliable predictions dataset (in terms of both total amount of

sRNA as well as start and end coordinates). Unreliability refers

also to secondary structure stability, target predictions and other

sequence dependent information. To overcome this genome

mappability problem basically related to NGS technology, we

implemented an additional merging procedure focused on type A

candidates. To be more specific, the procedure binds together two

consecutive type A candidates located on the same strand if, and

only if, their distance is less than a given threshold and the total

length satisfies the above mentioned length constraints.

We last remark that in the merging procedure of type A

candidates, the threshold must assume a small value according

with reads length, mappability profile for the investigated genome,

minimum length of identifiable sRNA and typical length of the

promoter region.

2.6 Assessing prediction reliability
In order to assess and to minimize the risk of identifying false

positive sRNAs from the list of candidates, many different

characteristics of each putative sRNA are analyzed. Parts of these

are commonly used in in silico identification algorithms whereas

others are new. More specifically, identified sRNAs are annotated

for

a) maps derived information:

– mean reads coverage value across the candidate

– mean conservation across the candidate

b) position within the genome:

– candidate type (trans-encoded, coding region cis-encoded,

59/39 cis-encoded)

– distance from closest upstream and downstream annotated

gene

c) secondary structure stability (Minimum Free Energy associ-

ated p-value):

– Minimum Free Energy (MFE) calculated by means of

Randfold algorithm [32]

d) homology with previously verified sRNA annotated in RFAM

database version 10.0 [33].

– primary structure conservation using BLASTN comparison

(E-value,1e-2).

– secondary structure conservation using Infernal algorithm

[34] (E-value,1e-2).

Specifically, we define as trans-encoded sRNAs those candidates

located between stop and start codons of CDSs. We do not fix any

minimum distance from flanking encoding regions to avoid

possible bias. Cis-encoded antisense sRNA (in the opposite

direction of a transcription unit) are divided into two main groups

depending on the relative location of the associated gene. Coding

regions cis-encoded are located antisense to the coding region and

Figure 3. SRNA identification process. For each IGR (sequence in black), reads (blue curve) and conservation (green curve) maps are
superimposed. First Type A candidates (highlighted in blue) are identified and extracted by testing length constrains (conditions I and II) and reads
coverage above ExprT1 (dotted blue line). On the remaining portions of IGRs, Type B candidates (highlight in yellow) are identified and extracted by
testing length constrains (conditions I and II) and contemporaneously both reads coverage above ExprT2 and conservation depth above ConsT2 (dot
and dashed yellow lines). Finally, Type C candidate (highlighted in green) are identified in the remaining IGRs on the basis of high sequence
conservation (above ConsT1 threshold reported as dotted green line).
doi:10.1371/journal.pone.0032723.g003

A Genome-Wide Procedure for Identifying sRNAs

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32723



59/39 cis-encoded are located antisense to the start or end region of

a coding region.

All these criteria may lead to different constraints depending on

the aim of the experiment. For instance, the definition of precise

constraints on average reads abundance or homology with sRNA

stored in the RFAM database, enable us to select a subset of very

promising sRNA encoding regions. Generally, the criteria and

consequently the dimension of the validation subset depend on

verification technology and can vary from 1000–2000 candidates

for massive custom-designed microarray-based verification to 1–10

for northern blot approach. Indeed, if we were interested in a

particular genomic region, for example cis-encoded sRNA of a

specific target gene, a position- and type-specific filtering could be

performed.

Results

Our algorithm was tested on data from sRNA-seq experiments

conducted specifically to identify and provide novel insights on the

regulatory network mediated by novel sRNAs in Mycobacterium

tuberculosis H37Rv. M. tuberculosis H37Rv genome (NCBI RefSeq

Accession NC_000962) is ,4.4 million bps long and hosts 4047

genes (protein coding+t/rRNA). Due to different factors, such as

the high GC Content (61.65%) typical of Mycobacterium species,

the lack of a well conserved rho-independent terminator sequence

and the absence of verified sRNA in related species, most

computational approaches for sRNA analysis do not perform well

on the MTB genome.

3.1 MTB Effective Target Genome
After removing the genomic regions used as the template and

transcribed in RNA by means of IGRExtract script we obtained

an ETG of a length equal to about half of the whole genome. To

be more specific, regions in T_IGRAScoord retrieved from the

positive strand are 1669, corresponding to 2443765 nucleotides

(nt) and those retrieved from the negative one are 1677

corresponding 2362067 nt (M. tuberculosis H37Rv complete

genome: 4,411,532 nt). The total number of regions stored in

T_IGRcoord and corresponding sequences in T_IGRseq is 3218.

3.2 sRNA-seq data
For direct sequencing of sRNAs, M. tuberculosis H37Rv was

grown in Middlebrook 7H9 medium, supplemented with 10%

OADC (Oleic Acid, Albumin, Dextrose, Catalase). Exponential

growth phase culture was harvested at OD600 between 0.5 and 0.8

and washed twice in PBS. The sRNA fraction was extracted using

the mirVana miRNA Isolation kit (Ambion) according to the

manufacturer’s instructions. Both sRNA and total RNA (depleted

of sRNAs) fractions were collected and checked by Bioanalyzer

analysis (Agilent Biotechnologies). The sRNA fraction was then

sequenced through the Illumina high-throughput sequencing

approach at GATC Biotech AG (Konstanz, Germany). According

to the protocol used for cDNA library preparation, RNA samples

were poly(A)-tailed using poly(A) polymerase followed by ligation

of a RNA adapter to the 59-phosphate of the sRNAs. First-strand

cDNA synthesis was then performed using an oligo(dT)-adapter

primer and the M-MLV reverse transcriptase. The resulting

cDNAs were PCR-amplified using a high fidelity DNA polymer-

ase.

Illumina sequencing produces 36-base reads; these have been

computationally processed to remove the poly-A tail. Resulting

sequences show an average length of 20 nt. These were then

mapped to the whole genome using SOAPv1 tool (seed size

parameters: 6; maximum gap size allowed: 1).

After running SOAP on 9711909 reads from the Illumina

platform we combined SOAPv1 output with T_IGRcoor

databases. The total dataset was split as follow:

– 3548742 reads mapping to previously annotated CDS (27%)

– 1507477 reads repeatedly mapped or not mapped (11%)

– 8204432 reads mapping uniquely to any interval contained in

T_IGRAScoor databases (4042926 on strand plus+4161506 on

strand minus) (62%)

3.3 Genomes comparison set and conservation analysis
As a comparison set, 21 genomes were selected for conservation

analysis, corresponding to all annotated organisms of the same

genus of MTB. Conservation distances between the comparison

set and the target genome were computed by means of the

CVTree web server [28], accounting for standard parameter

setting. From the matrix of distances (Table S1) and cluster

analysis (Figure S1) one can easily see that, as expected, all

genomes belonging to Mycobacterium tubercolosis complex are very

close (minimum distance equal to 0.0066 in Mycobacterium

tuberculosis H37Ra and maximum distance equal to 0.0365 in

Mycobacterium tuberculosis CDC1551). The genomes of the remain-

ing bacteria have distances from MTB between 0.399 (Mycobac-

terium marinum M) and 0.46 (Mycobacterium abscessus). The complete

list of weights wj is reported in Table 1.

The final IGR database contains 148140 sequences. The

BLASTN output lists 133591 hits satisfying the quality criteria of

e-value,1e-2.

3.4 Thresholds definition
Empirical distribution of percentiles (Table 2) of reads

abundance leads us to set ExprT1 (95% percentile) to 50 and

ExprT2 (90% percentile) to 22. Conservation thresholds ConsT1

and ConsT2 are fixed to 1.77 and 0.95, respectively. The

threshold distance between two candidates in the merging

procedure is fixed to 30 bps. This value derives from consider-

ations about promoter region length in bacteria (35 bps) and reads

average length (20 bps).

3.5 Candidates sRNA encoding region
In total, 1948 sRNA candidates were identified (891 strand+;

1057 strand 2). Subdivisions in terms of candidate type and

relative position to other genes in the genome are summarized in

Table 3; details are available in Table S2. sRNA candidates in

regions which are cis-encoded and 59/39 cis-encoded have at least

one hit within an AS Region. Therefore, these can be only type A

candidates. Type C candidates are reported in Table 3 and are

symmetric and unique (data in parenthesis are divided into the two

typologies).

SRNA candidate length range from 30 to 543 nt with an

average length equal to 67 (median value equal to 46). Among

these candidates, 237 show a secondary structure MFE p-

value,5e-2, calculated by means of the Randfold algorithm using

simple a mononucleotide shuffling method (Table S2).

Type A candidates show a mean reads abundance value varying

between 59 and 24770, with an average value of 342. Within this

group there are 120 (27%) candidates localized in IGR (220+212),

which presents an average conservation value which is higher than

90% of the distribution. These candidates (65 are over 95-th

percentile) are particularly promising since they are selected both

on expression information and high conservation degree. More-

over, some of these (36 out of 120) present a p-value associated to

MFE score,5e-2.

A Genome-Wide Procedure for Identifying sRNAs
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3.6 Candidate Selection Strategy
In the literature, existing computational approaches for

identifying bacterial sRNAs demonstrate an increasing level of

success, being based on both computational and experimental

evidence [18]. Our approach has the advantage of accounting for

expression and conservation aspects within a sequential approach,

by testing before the deep sequencing data and then the

conservation comparison.

The algorithm that we propose here, once the statistical

threshold is set on the available data, leads to a total amount of

,2000 sRNAs in MTB. Two main features are fundamental.

First, considering that totally 14 over 27 (B11 and F6 sRNAs in

[10] correspond to Mcr14 and Mpr19 in [11]) previously

annotated sRNAs are identified by means of both computational

and experimental approaches, we are confident on a high level

identification performance since predictions obtained on MTB are

strongly consistent with annotated and verified sRNAs.

Second, due to the large number of candidates sRNAs

identified, criteria are needed to enable selection of the most

promising candidates. We consider as a filter for the putative trans-

encoded sRNAs a minimum distance from upstream and

downstream genes (50 bps) and for a minimum free energy

(MFE) p-value #5e-2. Thus, we obtain a shorter list of 59

candidates, where 4 out of 5 trans-encoded sRNAs reported in [10]

(C8 pvalue = 0.08) and Mcr3 annotated in [11] are included. By

ranking this short-list for mean reads abundance, we can extract

the most promising trans-encoded sRNAs.

A further possible filtering strategy can be designed on available

sRNA target prediction algorithms, such as IntaRNA [35],

sRNATarget [36], TargetRNA [37], where possible interaction

with genes involved in particular pathways such as virulence

control can be investigated. Regarding putative cis-encoded sRNA,

the target mRNA is fixed to the antisense gene. We preserve only

those interactions with a score above a given threshold, depending

upon the algorithm.

Discussion

Elucidating the mechanisms of tuberculosis pathogenesis is a

key-point in achieving disease control. Although MTB is one of

Table 1. Complete list of weights wj for conservation map calculation.

Genome Ref seq Accession wj

Mycobacterium tuberculosis H37Ra NC_009525 0.00661

Mycobacterium tuberculosis F11 NC_009565 0.01299

Mycobacterium tuberculosis KZN 1435 NC_012943 0.01555

Mycobacterium bovis AF2122/97 NC_002495 0.01948

Mycobacterium bovis BCG str. Tokyo 172 NC_012207 0.02284

Mycobacterium bovis strain Pasteur 1173P2 NC_008769 0.02404

Mycobacterium tuberculosis CDC1551 NC_002755 0.03652

Mycobacterium marinum M NC_010612 0.39919

Mycobacterium avium subsp. paratuberculosis K-10 NC_002944 0.40764

Mycobacterium ulcerans Agy99 NC_005916 0.41261

Mycobacterium avium NC_008595 0.41444

Mycobacterium leprae TN NC_002677 0.41792

Mycobacterium leprae NC_011896 0.41802

Mycobacterium sp. MCS NC_008146 0.44789

Mycobacterium sp. KMS NC_008705 0.44793

Mycobacterium sp. JLS NC_009077 0.44918

Mycobacterium sp. Spyr1 NC_014814 0.45108

Mycobacterium gilvum PYR-GCK NC_009338 0.45114

Mycobacterium vanbaalenii PYR-1 NC_008726 0.45129

Mycobacterium smegmatis str. MC2 155 NC_008596 0.45333

Mycobacterium abscessus ATCC 19977 NC_010397 0.46
P

wj 6.22

For each genome of the comparison set the corresponding Ref Seq accession number and the evolutionary distance from MTB genome are reported. The sum of wj is
equal to 6.22 that correspond to the upper limit of conservation value Ci.
doi:10.1371/journal.pone.0032723.t001

Table 2. Summary of reads coverage and conservation depth
empirical distributions.

Reads coverage Conservation depth

Min 0 0

25.00% 0 0.1

50.00% 1 0.14

75.00% 6 0.14

90.00% 22 0.95

95.00% 50 1.77

99.00% 260 3.97

Max 79033 6.22

doi:10.1371/journal.pone.0032723.t002
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most prominent bacterial pathogens, the presence of sRNAs has

only recently been investigated as a post-transcriptional regulatory

mechanism. Due to particular characteristics of the mycobacterial

genome, a ‘‘pure’’ computational approach is not reliable. This

work presents a genome-wide screening for sRNA identification in

MTB that combines experimental and computational approaches

for the first time. Further characterization of sRNAs in MTB will

open a broad range of opportunities in the field.

In this paper we propose a new bioinformatic pipeline for

identification of sRNAs in Mycobacterium tubercolosis A robust

method for the search of sRNAs is obtained by sequentially

testing information from an expression map and a conservation

map. This approach can be conceptualized by superimposing the

two maps as shown in Figure 3. The procedure leads to new

sRNAs candidates for MTB.

In Table 4 we compare our sRNAs candidate regions with those

previously verified in the literature [10] for coding sRNAs.

More specifically, nine sRNA candidates are so classified: five are

trans-encoded (B11, B55, C8, F6 and G2) and four are cis-encoded

(antisense -AS- to desA1, pks12, Rv 1726 and Rv 1890c). For trans-

encoded sRNAs we highlight the successful performance of the

algorithm, especially for those with one distinct processed 59 end

(B11, B55). Decreasing accuracy in start and end coordinates

identification is observed for all the trans- and cis-encoded sRNAs

showing multiple 59 ends (C8, F6, G2 and ASdes) as expected. No

candidates result in regions around the remaining 3 antisense sRNAs

(ASpks12, ASRv 1726 and ASRv 1890c). This is probably due to a very

low amount or absence of transcript in RNA-seq experiment

conditions, corresponding to a very small amount of reads mapping

in those genomic intervals. This is likely to occur especially for ASpks,

that has only been observed under certain stress conditions [10].

To reinforce the robustness of our methodology we performed a

second comparison with results reported in [12] where the SIPHT

algorithm was applied to the MTB genome. SIPHT is a ‘‘pure

computational’’ tool that utilizes workflow management and

distributed computing to effectively conduct kingdom-wide predic-

tions and annotations of intergenic sRNA-encoding genes. This

algorithm considers a few sequence features such as the presence of

putative Rho-independent terminators and intergenic sequence

conservation in the identification step, and several other features in

the annotation of sRNAs encoding loci step. Using SIPHT, a total

number of 102 candidates were identified in MTB (http://newbio.

cs.wisc.edu/sRNA/). We remark that the searching region

investigated by SIPHT algorithm, is different from our ETG. In

Livny’s paper [12] a genomic region is considered as intergenic if

none of the two strands is used as a template for coding, that

corresponds to our IGR. Therefore, to perform a correct cross-

check with our results, we have to consider only candidates defined

as trans-encoded (977 candidates). 27 genomic loci are defined as

possible coding for sRNAs according to both methods (Table S3).

Most putative sRNA encoding regions identified with a

corresponding SIPHT result are type A candidates (type A:16,

type B:8,type C:14). We reveal a significant difference in length

and in start-end coordinates identification between datasets with in

some cases more than one candidates corresponding to one

SIPHT putative sRNA. Since there is no experimental-based

(Northern Blot, tiling array) validation on Livny predictions [12],

performance measures to compare the two algorithms cannot be

provided. Despite that, since thresholds are defined in a highly

conservative manner and the possible problems previously

described can occur also at the start/end positions of candidates,

an underestimation of sRNAs length may occur.

In Di Chiara et al. [11] several sRNA are identified in

Mycobacterium bovis BCG by means of Northern Blot. The

identification procedure was derived by in silico predictions based

on the SIPHT (Mpr) algorithm, along with an experimental

approach based on cloning (Mcr). In total, 37 candidates were

obtained and validated on Mycobacterium bovis BCG (19 Mcr and 18

Mpr). Twenty (11 Mcr and 9 Mpr) out of 37 were present also in

MTB. To compare these candidates with ours, we extracted

sequences of all 37 candidates using the same start and end

position predicted and available in [11]. The dataset so obtained

was compared by means of BLASTN algorithm with our MTB

candidate sequences, after setting a cut-off on e-value,0.1

(Table 5).

With regards to sRNAs based on cloning (Mcr), 5 candidates

validated in MTB were very close to our candidates. Moreover, 2

Mcr in MTB which are not validated in [11] show homologous

Type A candidates in our prediction dataset (Mcr4 and Mcr9).

As regarding Mpr candidates, 5 out of 9 validated in MTB also

have a homologue in our database. 7 sRNAs, which Di Chiara et

al. have identified in bovis BCG but not in MTB, have a high

degree of homology with our candidates.

Homology with a custom library of annotated sRNAs stored in

RFAM database (excluding human, viral, and microRNA

sequences) was investigated from both primary and secondary

structure levels. Regarding primary structure conservation, each

candidate sequence was searched against the custom library using

BLASTN, with an E-value threshold of 1e-2. The total number of

matches was 757, tracing back to 27 different candidates and 23

different RFAM families (Table S4). The more significant were

candidate_852 (e-value 3E-048) that showed a high homology with

SAM-IV riboswitches (RF00634), candidate_1740 (e-value 1E-

046) very similar to RF00059 TPP riboswitches family, candi-

date_766 and candidate_754 (e-value 2e-36 7e-29) similar to

RF00380 YkoK leader family.

To verify conservation in terms of secondary structure, we

compared our candidate sequences with RNA secondary structure

profile by means of the INFERNAL software package [34] with an

E-value threshold of 1e-2 (Table S5). As in BLASTN comparison,

the more significant homologies are between candidate_852 (e-

value 1.23e-22) An interesting homology is discovered between 6C

RNA family and candidate_877 (e-value 1.35e-14).

It is commonly known that sRNAs play an important functional

role in the physiology and virulence of many bacterial species. A

critical question is to determine how sRNAs contribute to bacterial

adaptation mechanisms [10,12]. Our results will enable us to

Table 3. Candidate classification based on candidate
definition provided in 2.4.

Coding region
cis-encoded Trans-encoded

59/39

cis-encoded

Strand +

type A 329 190 82

type B 0 61 0

type C 0 229(190+39) 0

Strand 2

type A 432 217 128

type B 0 53 0

type C 0 227 (186+41) 0

761 977 210

1948

doi:10.1371/journal.pone.0032723.t003
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develop conditional mutants to elucidate the regulation of the

stress response in M. tuberculosis and to better understand the role of

specific metabolic pathways in the mechanism of adaptation to the

human immune system.

The proposed approach represents a new perspective to the

extent that it relies on the use on combing expression data from

RNA-seq to address the identification of new molecules on a

genome-wide scale with comparative genomics information. The

algorithm here proposed merges information deriving from

expression data and conservation analysis, and via a data-driven

threshold definition method leads to a total number of ,2000

sRNAs in MTB. Considering that in total 14 out of 27 (B11 and

F6 sRNAs in [10] correspond to Mcr14 and Mpr19 in [11])

different sRNAs previously annotated are identified by means of

both computational and experimental approaches, we are

confident on a high-level identification performance since

predictions obtained on MTB are strongly consistent with

annotated and verified sRNAs.

Table 4. Comparison with Arnvig, et al. [10] annotated sRNA.

Arnvig, KB., et al., 2009 annotated sRNA Candidate identified by our method

sRNA Start End Id Type Start End meanExpr meanCons mfePvalue

Trans-encoded sRNA

B11 4099478 4099386 candidate_1603 A 4099477 4099384 2564.23 4.12 0

B55 704187 704247 candidate_84 A 704187 704246 3713.08 0.13 0

C8 4168281 4168154
4168212
4168224

candidate_1621 A 4168281 4168193 970.13 3.68 0.08

F6 293604 293641
293661
293705

candidate_29 A 293604 293662 634.93 1.88 0

G2 1915190
1915028

1914962
1914977

candidate_1269 A 1915164 1915013 548.41 0.14 0.01

Cis-encoded sRNA

ASdes 918264
918350
918365

918432
918412
918458

candidate_121 A 918327 918360 256.03 0 0.47

doi:10.1371/journal.pone.0032723.t004

Table 5. Comparison with DiChiara, et al. [11] sRNAs annotated in Mycobacterium bovis BCG.

SRNAs verified in Mycobacterium bovis BCG in DiChiara et al [11] Candidate identified by our method

Id Start End Verify by Northern in MTB Id Type Start End meanExpr meanCons e-value

Mcr3,
Mpr7

1498201 1498256 + candidate_190 A 1471657 1471737 24422.29 3 1.00E-024

Mcr4 2137103 2137148 2 candidate_1314 A 2136173 2136126 10706 0.22 1.00E-021

Mcr6 4141762 4141802 + candidate_1621 A 4168281 4168193 970.13 3.68 9.00E-019

Mcr8 4073966 4073908 + candidate_1935 C 4100859 4100792 13.72 3.06 3.00E-029

Mcr9,
Mpr14

3317517 3317634 2 candidate_1502 A 3363153 3363023 215.58 2.04 3.00E-064

Mcr11 1439808 1439904 + candidate_1693 B 1413139 1413102 330.15 0.96 1.00E-016

Mcr14 321693 321658 + candidate_1676 B 293659 293603 388.51 1.96 6.00E-013

Mpr1 2813325 2813408 2 candidate_801 C 2849576 2849542 0.83 2.58 8.00E-015

Mpr3 935527 935628 2 candidate_710 C 905089 905185 19.96 4.8 3.00E-042

Mpr4 4073793 4074096 + candidate_561 A 4100684 4100816 167.03 2.37 1.00E-072

Mpr5 1205934 1205651 + candidate_1142 A 1292095 1291823 272.63 0 0.09

Mpr8 1857323 1857431 2 candidate_1822 C 1852175 1852137 3.1 2.59 4.00E-017

Mpr10 2300720 2300817 2 candidate_330 A 2522164 2522218 190.9 2.01 1.00E-007

Mpr15 3506470 3506359 + candidate_846 C 3551163 3551221 0 3.19 5.00E-026

Mpr18 4066488 4066544 + candidate_1155 A 1321893 1321807 147.74 0 0.02

Mpr19 4072633 4072493 + candidate_877 C 4099384 4099497 3.26 3.93 3.00E-046

Mpr21 818357 818428 2 candidate_1881 C 3215656 3215591 1.53 3.12 2.00E-008

doi:10.1371/journal.pone.0032723.t005
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