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Abstract: The development of childhood and adult non-communicable diseases (NCD) is associated
with environmental factors, starting from intrauterine life. A new theory finds the roots of epige-
netic programming in parental gametogenesis, continuing during embryo development, fetal life,
and finally in post-natal life. Maternal health status and poor nutrition are widely recognized as
implications in the onset of childhood and adult diseases. Early nutrition, particularly breastfeeding,
also plays a primary role in affecting the health status of an individual later in life. A poor maternal
diet during pregnancy and lack of breastfeeding can cause a nutrient deficiency that affects the
gut microbiota, and acts as a cofactor for many pathways, impacting the epigenetic controls and
transcription of genes involved in the metabolism, angiogenesis, and other pathways, leading to
NCDs in adult life. Both maternal and fetal genetic backgrounds also affect nutrient adsorption
and functioning at the cellular level. This review discusses the most recent evidence on maternal
nutrition and breastfeeding in the development of NCD, the potentiality of the omics technologies
in uncovering the molecular mechanisms underlying it, with the future prospective of applying a
personalized nutrition approach to prevent and treat NCD from the beginning of fetal life.

Keywords: precision nutrition; pregnancy; breastfeeding; non-communicable diseases; gut micro-
biota; nutrigenetics; epigenetics; transcriptomics

1. Introduction

Nutrition plays an important role at all life stages—before and during pregnancy,
lactation, infancy, and childhood, as well as during adult life. Maternal nutrition has a
major impact on the infant, not only because the nutrient exchange through the placenta
and breast milk is involved in fetal and infant growth, but it also plays a role in determining
the offspring’s risk of developing non-communicable diseases (NCDs) [1–3]. NCDs are
defined as non-infectious diseases that progress slowly, but become chronic; they usually
require long-term treatment. NCDs include cardiovascular disease (CVD), type 2 diabetes
(T2D), metabolic syndrome, etc. [1]. Recent studies have investigated the roles of pregnancy
and infancy as the most critical stages that influence the risks of NCDs in childhood and
adult life. New nutritional recommendations were developed to reduce the burden of
NCDs in future generations [4].

In the last few years, the food science have started to analyze the effects of nutrients
and dietary behaviors on cellular functions and gene modulation This new approach is
defined as precision nutrition, where genetic background as well as microbiota are taken
into account, to understand the response to diet and to single nutrients intake, and to tackle
metabolic diseases (e.g., NCDs) [5,6].

Since there is limited evidence for personalized nutrition in pregnancy and early life,
this review aims to summarize current data and perspectives on the roles of diet, nutrige-
netics, gut microbiome, epigenetics, and transcriptomics in pregnancy and breastfeeding,
contributing to develop NCDs in the offspring.
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2. Maternal Diet and NCDs

Maternal health status and poor nutrition are widely recognized as implications in
the onset of childhood and adult diseases [7]. A poor maternal diet can cause a nutrient
deficiency that, as mentioned before, acts as a cofactor for many pathways, impacting the
control of genes involved in the metabolism, angiogenesis, cognitive development, and
other pathways, leading to chronic diseases in adult life. The mechanism is known as
the “window of susceptibility” to nutritional programming in the fetal life [8] and refers
to vulnerability of the fetus to environmental factors, such as the maternal diet, affecting
health outcomes determined by the timing of the exposures [9]. In the 1980s, the paradigm
of the Developmental Origins of Health and Disease (DoHAD) was developed. Utilizing
multiple studies from different geographical areas, researchers observed how famine
affected the following generations [10]. The Dutch famine resulted in low caloric intake,
below 1000 Kcal per day, for a certain period of time. Therefore, researchers investigated
whether the maternal diet had a role in the offspring developing NCDs [11]. Researchers
examined the long-term consequences of starvation on the fetuses after many years. The
Dutch famine data showed that the prevalence of coronary artery disease was significantly
higher in fetuses exposed to undernutrition compared to non-exposed fetuses [12]. Ravelli
et al. found also that exposure to famine during fetal life resulted in the development of
glucose intolerance in adulthood [13]. Moreover, adults who were exposed to the Chinese
famine during gestational life showed significantly higher systolic and diastolic blood
pressure, hypertension, and a higher risk of developing metabolic syndrome, compared
to those who were not exposed to the famine [14]. Type 2 diabetes (T2D) was higher in
offspring exposed to the Biafran famine [15] and the Ukraine famine, where the analysis
showed that the more severe the exposure, the higher the risk [16]. According to prior
studies on human and non-human models, authors showed an association between low
maternal protein intake during pregnancy and an increase in the systolic blood pressure in
the offspring later in life [17–19]. On the opposite side, a study on 569 children showed
that infants of mothers who followed the Mediterranean diet during gestation period had
lower blood pressure during childhood [20]. This finding is supported by another study
that used a rat model fed with a high-fat diet during pregnancy; it showed an association
with hypertension in the offspring [21]. Moreover, pre-conceptional obesity was found to
be a risk factor, creating adverse metabolic effects in the mother and children [22,23]. An
obesogenic diet during pregnancy after the fertilization stage can lead to the fetus acquiring
morbidities, such as hyperinsulinemia and hypercholesterolemia, which are related to
obesity, and increase the disease vulnerability throughout adult life [24].

Researchers are looking at potential mechanisms that explain the link between mater-
nal nutritional status and offspring developing NCDs. The hypothesis is that adaptations
occur in cases of nutrient deficiencies in fetuses, in order to give priority to the vital organs,
such as the brain, and to maintain normal growth; therefore, the growth and functioning of
the non-vital insulin-sensitive organs (e.g., the liver and pancreas) are compromised [25].
This can happen by blood flow redistribution to the organs, as well as reduction in secreting
anabolic hormones, such as insulin, with reduced performance of these organs, which
can continue later in life, causing disease [26]. Other theories suggest that the impact
can start from the oocyte meiosis process until the baby’s birth. Intake of nutrients in the
preconception period could affect the oocyte and later the fetal development, as referring
to the recent research from Santangelo et al., who drew attention to the role of polyphenol
intake in inhibiting the oocytes apoptosis and follicle atresia during ovarian developing
stages [27].

3. Breastfeeding and NCDs

Many studies demonstrated the beneficial effects of breastfeeding in reducing the risk
of NCDs. It has been shown that breastmilk plays a protective role against obesity [28–31]
compared to formula milk [32]. This might be due to differences in the components in terms
of nutrients and hormones of each type of milk. The protein content is higher in formula
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milk than in breast milk, while breast milk contains the leptin hormone that is lacking in
the formula milk [33]. A study showed an association between the high fat and protein
content in baby formula and the high secretion of insulin growth factor-type 1 (IGF-1),
which consequently stimulated the adipocytes, resulting in weight gain [34]. According to
in vitro studies, leptin that is present in the breast milk could possibly affect the growth
factors and prevent the formation of the adipocytes [35,36]. Furthermore, breastfeeding
has an impact on the protein and calorie intake [37], secretion of insulin [38], size of
adipocyte, as well as maintaining balanced fat reserves [39]. Moreover, breastfeeding
is suggested to prevent type 2 diabetes (T2D) in adulthood [40–43]. Different studies
indicated that infants consuming formula milk have increased level of insulin compared to
breast-fed infants [38,44,45], leading to a change in glucagon and insulin release, which
play a role in early development of insulin resistance and T2D. This phenomenon can be
explained again by the different compositions between the two types of milk, but also
by the amount of formula milk intake that is usually much higher than breast milk [46].
Furthermore, breastfeeding is associated with a reduction of the main risk factors for
cardiovascular diseases in adulthood [43,47], such as a high level of cholesterol [43,48],
high blood pressure [43,48], and a low density lipoprotein (LDL) level [40]. In addition,
high density lipoprotein (HDL) levels in adulthood can be improved by breastfeeding
during infancy [49,50]. Finally, because of reduced sodium content in the breast milk,
breast-fed infants are at a lower risk of developing hypertension during adult life [51].

These (and other) studies suggest the importance of nutrition during pregnancy and
early life in determining the development of NCDs later in adulthood. The molecular
mechanisms underlying these events are still far from being fully clarified. The approach
of precision nutrition is to identify the molecular mechanisms underlying the effect of diet
on the onset on NCD, and for this purpose, it uses the multi-omics approach, which is
able to detect changes at a molecular level. The results from this multilevel analysis will
elucidate the specific mechanisms of each nutrient on single tissues, cell types, and genes
in a personalized medicine fashion.

4. Omics Technologies Applied to the Precision Nutrition in Pregnancy

The science of precision nutrition is relatively new and is taking advantages of all the
recent technical advances in the omics technologies, such as genomics, transcriptomics,
epigenomics, and microbiome. Precision nutrition merges the traditional diet and nutri-
tional status analyses with multi-omics, enabling the capacity to define the individual
response to diet and a personalized treatment for each single patient other than the “one-
size-fits-all” approach traditionally used in diet therapy. In the following sections, we will
discuss the current knowledge on single omics applications in pregnancy and offspring
health status; in particular, we will focus on studies performed on the gut microbiota,
nutrigenetics, epigenetics, and transcriptomics.

4.1. Diet and Gut Microbiota in NCD

The human microbiota refers to the community of 10–100 trillion microorganisms liv-
ing in different sites of the human body, with a majority in the intestinal tract. The term
microbiome refers to the genome of the microbiota [52]. Microbial dysbiosis has been shown
to be related to some NCDs, such as obesity and autoimmune disorders [53–58]. That is
because microbiota was found to be involved in host metabolism regulation, immunologi-
cal responses, as well as in other physiological pathways [54,58–60]. Due to the fact that
diet [61,62] and breast-feeding [61,63] are some of the environmental factors influencing
the gut microbiota composition and abundance [60], maternal diet effects on offspring
developing NCDs might be interfered by the microbiome.

4.1.1. Maternal Diet and Gut Microbiota

The New Hampshire Birth Cohort Study data indicated that infant gut microbiota
is influenced by maternal diet. The researchers showed that infant gut Streptococcus and
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Clostridium neonatale were positively and negatively correlated with maternal fish and
seafood consumption, respectively. Moreover, a decrease in abundance of genus Bifidobac-
terium in the infants’ gut was related to increased consumption of fruit by the mothers
during pregnancy; however, the authors suggested that the results can be influenced by the
mode of the delivery as well [64]. Another study, conducted on primate models, confirmed
the role of the maternal diet on the offspring’s microbiota alterations. Two groups of Macaca
fuscata animal mothers were given different diets, one was fed with standard chow (CTD),
consisting of 13% fat from soya bean oil, and the other group with a high fat diet (HFD),
consisting of 36% fat from different sources. The offspring were delivered vaginally and
breastfed until 6 to 7 months, when they either maintained their mothers’ diets or switched
to the other diet, ending up with four offspring cohorts. This study data illustrated that
persistent microbial dysbiosis was shown in the offspring of mothers fed with HFD during
gestation, where Epsilonproteobacteria Campylobacter spp. and Helicobacter spp. were
depleted and Firmicutes Ruminococcus and Dialister were enriched [65].

Since there is not yet a clear causal pathway of maternal diet during pregnancy affect-
ing the health of the neonates, it was suggested that microbiome may have an influential
role. Metabolic diseases, such as obesity and insulin resistance in children, were found to be
associated with maternal obesity and dietary intake, correlating with infant gut microbiota
alteration [66]. Hansen et al. examined the effect of feeding non-obese diabetic pregnant
mice with gluten-free diets on their offspring. The co-authors found that the female off-
spring showed a decrease in gut bacterial levels of Cyanobacteria and Deferribacteres, as
well as a reduction in diabetes incidence. After 4 and 10 weeks from birth, the offspring
presented an increase in Verrucomicrobia, Proteobacteria, and TM7 abundances and these bac-
teria were reported having a preventive role against diabetes development [67]. Similarly,
a maternal low protein diet showed an alteration of the male offspring microbiota in early
development in which consistent high Roseburia intestinalis levels were shown; this bacterial
taxa was reported to be inversely correlated with atherosclerotic lesions [68], as well as its
abundance, was low in T2D patients [55]. Another study conducted on mice described
the effects of the maternal diet on the offspring’s intestinal dysbiosis as the pregnant dam
mouse model fed with a western-style diet caused high abundance of Clostridiales and
adverse outcomes, such as autoimmunity [69]. The mechanism of how the maternal diet
alters the infant microbiome is still not clear. However, it is thought that the infant obtains
the mother’s microbiome through swallowing the amniotic fluid [70] as some studies have
demonstrated the similarity of bacterial taxonomies between the placenta and amniotic
fluid, and the oral and meconium of the neonate [71–73].

4.1.2. Breastfeeding Effect on Offspring Gut Microbiota

Human milk is another factor that impacts the development and maturation of the
microbiome of the newborn, which is closely related to the mother’s milk and skin micro-
biome [74]. The breast milk prebiotic compounds, like the human milk oligosaccharides
(HMO), are metabolized by the infant gut microbiome [75], and indorse bacterial commu-
nity growth [76]. HMOs were found to a have a protective role in the development of
obesity and autoimmune diseases in mouse models [77,78]. Based on Savage et al., the
abundance of Bifidobacteria, Lactobacillus, and Clostridia were positively correlated with the
duration of breastfeeding [79]; when breastfeeding was compared to formula feeding, it
was shown to significantly impact the health of the infant by reducing the risk of developing
obesity [80,81], with an increase in the breastfeeding duration [82]. Moreover, breastfeeding
showed a protective role against type 1 diabetes acting on the gut microbiome [74,83].

Many of these studies have been conducted on non-human models, showing an
association between diet during pregnancy, lactation period, and the microbiota alterations,
leading to NCDs in their offspring (summarized in Figure 1). Further investigations are
needed to validate these findings in human subjects.
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Figure 1. The effect of mother’s nutrition during pregnancy on the fetus and offspring health has been associated with
microbiome, genetics, epigenetics, and transcriptomics in humans and non-human models. A repeated number in the lists
indicates the pathway to follow from the mother to fetus and to offspring in each omics separately. Numbers not indicated
show that there is no stated association. Arrows: (↑) represents the increase, (↓) represents the decrease, (↑↓) represents the
disturbance/imbalance, (→) represents the leading cause.

4.2. Nutrigenetics Role in Offspring NCD
4.2.1. Maternal Diet and Nutrigenetics of NCD

The interaction between the mother’s nutrition during pregnancy and her genetics
background impacts the fetal nutrient source; hence, these alterations could influence fetal
growth and development [84,85]. The nutritional genetics, which is called nutrigenetics,
refers to a different response to nutrients and dietary factors due to gene variants [86]. We
summarize here—below and in Figure 1—the most recent findings in nutrigenetics. An
example of the interaction between genes and nutrients leading to a disease is the genetic
variants of the methylenetetrahydrofolate reductase (MTHFR) gene with a single nucleotide
polymorphism (SNP), in which a cytosine is substituted with a thymine, resulting in the
amino acid change [87]. This SNP reduces the enzyme efficiency causing the accumulation
of homocysteine in the plasma and, as a consequence, reducing the bioavailability of
folate and vitamin B12 [88]. These two latter nutrients play a very important role in cell
proliferation and differentiation, thus low availability or intake of folate and vitamin B12
by pregnant women carrying this SNP could affect the embryogenesis [89]. In addition,
disturbances of maternal folate and vitamin B12 levels during pregnancy may contribute
to the development of T2D and adiposity after 6 years of age, as stated by Yajnik et al. [90].
Maternal over-nutrition, leading to diabetes and obesity, may affect the function of the
placenta and the fetal metabolism by nutrients provided through the placenta. Changes in
these nutrients possibly provoke the proadipogenesis effect, as well as hyperinsulinemia
in the fetus [91]. High levels of lipids in pregnant women could lead to accumulation
of lipids in the placenta [92], and the fetal supply of crucial, long chain fatty acids are
affected [93]; thus, impacting the growth and development of the fetus [94]. A genome-
wide association study(GWAS) that used the largest number of individuals to identify
maternal and fetal variants contributing to gestational weight gain (GWG) found some
evidence that maternal SNPs may be a factor of GWG more than fetal SNPs. These
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preliminary data propose that the relation between GWG and the later outcome of the
offspring possibly reflect the role of intrauterine environment [95]. A study on 950 African
mother–child pairs, aimed to explore whether the genetic predisposition to adulthood
obesity and birthweight was related to the mother’s obesity and whether an unbalanced
diet could be a contributing factor. The study found that fetuses who were genetically
susceptible to obesity showed a significant negative correlation with birthweight when
the mother was also at a high genetic risk of obesity [96]. Changes in birthweight were
reported to be linked to nutrients availability in the intrauterine environment [97]. In
addition to unhealthy diet intake during pregnancy, polymorphisms in the mother and
infant genes were shown to affect fetal health negatively [98]. For instance, Fatty Acid
Desaturase 1 (FADS1) and Fatty Acid Desaturase 2 (FADS2) genes encode delta-5 and
delta-6 desaturase enzymes, which are involved in the metabolism of polyunsaturated fatty
acids (PUFA) [99]. Genetic variations in these genes, in mothers, was associated with a
decrease in eicosapentaenoic acid (EPA) and arachidonic acid (AA) levels in the breast milk
as well as in the baby blood [100,101]. Abnormal levels of maternal omega-3 and omega-6
fatty acids were reported to be correlated with low birth weight (LBW) [102], and this
outcome was linked with CVD [103]. Moreover, abnormal activity of these enzymes affects
the glucose metabolism, leading to a direct relation with diabetes risk [104]. Research
was conducted on newborns affected by maturity-onset diabetes of the young (MODY)
to study the association between birthweight and inherited mutations in the glucokinase
gene (GCK) that causes a reduction in the pancreatic beta cells sensing to the glucose
molecules. The study discovered that the baby birthweight was higher than the average
when the mother carried the GCK–MODY gene mutation, because of the high maternal
blood glucose level that activated high insulin secretion. The birthweight was reduced in
case the fetus carried the mutation. So, it was suggested that alteration in the birthweight
reflected the fetal insulin secretion induced by the fetal genotype as well as by the maternal
hyperglycemia and her genotype [105]. Other studies, taking into account the birthweight,
were conducted with scope to analyze the correlation between T2D risk loci variants,
influencing the secretion of the insulin, and the birthweight. These studies concluded
that 2 fetal risk alleles at the CDK5 regulatory subunit-associated protein 1-like 1 gene
(CDKAL1) and 2 alleles at hematopoietically expressed homeobox/insulin-degrading
enzyme (HHEX/IDE) loci were related to a lower birthweight. Interestingly, fetuses who
carried the four risk alleles and had reduced birthweights were the ones whose mothers
smoked three cigarettes daily in the last three months of pregnancy [106].

4.2.2. Breastfeeding and Nutrigenetics of NCD

Early nutrition could also contribute to the health of newborns. Human breast milk
(HBM) shows a protective influence from developing metabolic disorders later in life even
in individuals who are genetically susceptible to these diseases [107]. The peroxisome
proliferator-activated receptor-γ (PPARγ2) is a transcription factor that is expressed in
fat cells and regulates insulin sensitivity. A study found that adolescents who were
not breastfed in their early lives and carried the polymorphism PPARγ2 Pro12Ala, had
increased BMI, waist circumference, and skinfold thickness compared to the ones who
consumed breast milk, regardless of the breastfeeding duration [107]. Similarly, variations
in the PPARγ2 gene were linked to a high risk of developing obesity in adulthood [108].
Since this gene ligand is present in the HBM, it was suggested to reduce the transcriptional
activity of PPARγ2 in individuals with the polymorphism [109]. Moreover, PPARγ2
deficiency was found to contribute to increased levels of lipid oxidation enzymes in the
lactating mammary gland and high levels of oxidized free fatty acids were observed in the
offspring of mothers lacking this gene [110].

The impact of the nutrients on the interaction between metabolism and genetic vari-
ability is complex and this can explain the scarcity of studies on the genome and diet
interaction in pregnant women and the infant susceptibility to NCD. Further research will
give a better view on how and what nutrients taken during the gestation period can be
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affected by the maternal and fetal genetic background, resulting in a disease status in the
children, hence the protection from those diseases. As a “one-size fits-all” approach is not
recommended to be applied in the precision medicine revolution, then nutritional recom-
mendations will be more valid if they are based on the patient’s nutrigenetics background.

4.3. Epigenomics Role in Offspring NCD
4.3.1. Maternal Diet and Epigenetics of NCD

It has been proven that unhealthy diet contributes to NCDs and health problems [111–113].
However, the mechanisms are still not completely understood and seem to involve also the
epigenetic modifications, which by definition affect the gene expression without changing
the DNA sequence. Epigenetic changes can be established during fetal development and
known to get impacted by the environment including maternal nutrition [114] leading
to changes in the phenotype, such as NCD [85] (Figure 1). Diet can influence the epige-
netics via different mechanisms, including histones modifications, DNA methylation and
microRNA (miRNA). Histones modifications occur in the proteins that are bounded with
DNA base pairs (histones) by covalent addition or removal of functional groups that alter
the chromatin structure, hence affecting the gene expression [115]. DNA methylation is
the epigenetic mechanism that transfers a methyl group onto specific cytosine residues
of the DNA chain, modifying the DNA helix structure and affecting the binding of the
transcription complex to DNA transcription site [116]. The third mechanism of epigenetics
is the miRNA regulation. The miRNAs are 18–25 nucleotides non-coding RNAs that mod-
ulate the gene expression by binding to the untranslated regions of the mRNA in order to
repress the translation of proteins and deteriorate the mRNA [117].

Nutrients may change the structure of chromatin, as lysine and arginine found in
the histone N-terminal tails [118]. Moreover, many nutrients work as methyl-donors (e.g.,
methionine, choline, folate), directly providing the substrates for the methylation reactions;
other nutrients, such as vitamin B2, B6, and B12, are cofactors of the enzymes involved in
the methylation and, finally, nutrients (e.g., polyphenols) are able to modulate the function
of the methylation enzymes [119]. Thus, many findings from different studies indicate
that the susceptibility of fetal epigenetic modifications can be due to maternal diet, among
other factors.

McKay et al. found that unbalanced concentrations of nutrients intake during preg-
nancy affect the offspring DNA methylation. High levels of vitamin B12 in the maternal
blood was correlated with the reduction in the total level of DNA methylation of the
neonate, whether the elevated concentration of serum vitamin B12 in the newborn corre-
lated with decrease methylation levels of the insulin-like growth factor-binding protein
3 (IGFBP-3) gene, responsible for intrauterine growth [120]. Low maternal folic acid in-
take, as well as pregnant women exposed to famine, also affect the expression of insulin
growth factor 2 (IGF-2) gene in the offspring by modification of the DNA methylation
levels [84]. According to an epigenome-wide analysis, methylated regions that existed in
insulin receptors, and carnitine aminotransferase genes that were associated with glucose
homeostasis and lipid metabolism, were identified in adults exposed to famine in their fetal
life [24,121,122]. Methylation cofactors, such as folate and zinc derived from food, play a
role in developing NCD in the offspring. Imbalance of maternal folate concentration affects
the development of the fetus [123] through homocysteine buildup, which subsequently
affects the fetus organs, including renal and cardiovascular systems [124]. Zinc deficiency
in the intrauterine life may have an epigenetic impact on the methylation of promoters,
leading to immune pathogenesis [125], increasing the risk of developing CVD and renal
disorders [126]. The role of long chain polyunsaturated fatty acids (LC-PUFAs) during
gestation was investigated in the offspring health. Khot et al. aimed to look into this aspect
and its epigenetic mechanism [127]. The investigators found that low maternal intake
of LCPUFAs affects the DNA methylation patterns on angiogenic factor genes, which
promotes vascular dysregulation that turns out in rising the cardiovascular risk [127].
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The effect of maternal undernutrition on the offspring’s cholesterol dysregulation
via epigenetic mechanisms was firstly demonstrated by Sohi et al. in 2011 [128]. This
study used rat models that were fed either a low protein diet (LPD), which consisted
of 8% protein, or a control diet, consisting of 20% protein. Both diets contained the
same amount of Kcal. The authors showed evidence that low protein intake in gestation
and lactation period had a role in increasing the cholesterol level in offspring at day 21
after birth. This was found to correlate with the cholesterol 7α-hydroxylase (Cyp7a1)
transcriptional repression because of post-translational histone modifications of Cyp7a1
promoter. Cyp7a1 is a rate limiting enzyme that converts the cholesterol into bile acids
to regulate the cholesterol level in the body [129]. High circulating cholesterol is one of
the risk factors of cardiovascular diseases [130,131]. Additionally, the expression of the
Jumonji domain-containing demethylase (Jmjd2a) gene in utero decreased as a result of the
LPD, which may have contributed to the significant increase in histone H3 trimethylation
associated with Cyp7a1 promoter [128]. Similarly, in an experimental rat model, it was
shown that maternal protein restriction during pregnancy and lactation led to an impaired
glucose tolerance via histone acetylation of the liver X receptor α (LXRα), which regulates
the gluconeogenesis in the liver [132]. A similar correlation was also found between
maternal protein restriction and histone modifications on the glucose transporter type 4
(GLUT4) gene resulting in the overexpression of GLUT4 in the skeletal muscle of the female
offspring [133], as well as histone modifications on the GATA binding protein 6 (GATA6)
gene, which is associated with cardiovascular and metabolic diseases in adulthood [134].
In another animal study, the DNA methylation and histone acetylation in the placenta and
liver of the fetus were affected by the abnormal levels of cholesterol and lipid induced by
the maternal diet, causing lipid accumulation in the fetal liver [135].

Nutrition also shows an effect on the levels of miRNA, impacting its function in mod-
ulating gene expression [136]. Of particular interest in our discussion, specific miRNAs are
involved in the regulation of metabolic processes, such as insulin signaling and glucose
metabolism, so miRNA dysregulation can be leading to NCDs, for instance T2D [137–139]
and CVD [137,140]. Moreover, it was shown that maternal malnutrition can impact the
miRNA of the fetus, resulting in modified proteins, contributing to the development of obe-
sity and diabetes after birth [141]. Particularly, it was shown that nutrients can influence the
expression of miRNAs regulating the folate-mediated one carbon metabolism, which has a
role in the regulation of homocysteine, methionine, as well as the protein methylation [142].
Studies on animals reported that both maternal overeating and low protein consumption
during pregnancy were associated with significant miRNA dysregulation in the offspring
tissues, such as liver and heart [141,143]. These miRNAs are used as biomarkers for some
chronic diseases [144,145], which are extracted from various samples, including breast
milk [137,146]. An animal study reported that high caloric intake by obese ewes during the
peri-conception period led to elevation in expression of specific liver miR-29b, miR-103, and
miR-107 in the offspring [147]. In previous reports, miR29b expression was found increased
in the liver [148], kidney [148], and pancreatic tissues [149,150] of diabetic animals and
human models [151,152]. Moreover, a high level of expressed miR-29b was involved in
repressing glucose uptake by insulin via the inhibition of Akt activity, which indicated in-
sulin resistance [153]. An increased serum level of miR-29a was seen in T1D children [154].
The miR-103 and miR-107 are involved in regulation of insulin sensitivity [155] and were
found to be upregulated in ewes offspring, signifying that those lambs developed insulin
signaling dysregulation [156]. Another form of miR-29 is miR-29c, which targets elastin
and collagen in the aorta and functions in maintaining its elasticity. MiR-29c was observed
being inhibited in rats of mothers who were undernourished in the gestation period. Thus,
the offspring vascular contractility was affected and hypertension was developed [157,158].
Reports on baboons showed that having an obesogenic diet before and after pregnancy
promoted significant changes in the cardiac miRNA levels, which are possibly related to
cardiovascular diseases [159]. In this study, cardiac miRNAs were assessed and eight of
them were differentially expressed; 55 of them were upregulated, and the rest were down-
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regulated in baboons who were born from mothers under high fat/high fructose (HFD)
diets compared to those born from mothers who had normal diets during gestation. Some
of these miRNAs were also reported in human mapping and contributed to CVD [159].

Maternal vitamin intake was shown to play a key role in the health of the offspring
in the long-term; moreover, vitamins were found to have an impact on the expression of
miRNAs [160]. A study showed that low vitamin D concentration in pregnant women
contributed to their children developing chronic diseases via the expression of miRNAs
involved in multiple metabolic pathways [161]. Moreover, low level maternal vitamin B12
was associated with alteration of miRNA expression, which are involved in adipogenesis
and insulin metabolism that may initiate metabolic disorders in the offspring [162]. Other
micronutrients showing similar effects were polyphenols. These are considered as antiox-
idants and were found to modify the miRNA expression linked to glucose metabolism,
insulin signaling, oxidative stress, and inflammation, which may lead to diabetes and
CVD [138,163]. Polyphenol sources are mainly fruits and drinks made from plants [164].
Rat models were used in a recent study to show the harmful effects of maternal consump-
tion of flavonoids from grape seeds in downregulating the offspring hepatic miR-33a,
which plays a role in cholesterol regulation, promoting CVD [165]. A study conducted
on obese women showed that diet restrictions (for these women to lose weight before
pregnancy) led to reprogramming the lipid metabolisms of the offspring, in which the
infants’ DNA methylations in liver genes switched to healthy expressions.

4.3.2. Breastfeeding and Epigenetics of NCD

Researchers reported the association between long duration of breastfeeding and
reduction in obesity risk later in life [166] and other studies demonstrated the impact of
breastfeeding duration on the infants’ DNA methylation [167,168]. According to Obermann-
Borst et al., the long period of breastfeeding lowered the CpG methylation of the leptin
(LEP) gene, which is involved in appetite regulation and fat metabolism, and the LEP CpG
methylation, was inversely correlated with BMI of children who were at 17 months of age.
The reduced methylation of LEP caused an increase in the expression and concentration of
leptin, a hormone that plays a role in programming the metabolic pathways. In addition,
leptin is one of the breast milk constituents; it was proposed that it would likely contribute
to programming the neuroendocrine system via methylation of the LEP promoter, with
a protective effect on childhood obesity [167]. Another study, analyzing the LEP gene,
found a significant difference between a child’s growth and the LEP methylation level. The
authors observed higher LEP CpG3 methylation when children breastfed for 7 to 9 months
and a significant reduction in the weight of the children when they were breastfed for 10 to
12 months [169].

Several studies showed that miRNAs have a crucial function in epigenetic regula-
tion processes as well as intercellular communication [170–172]. Moreover, miRNAs are
involved in regulation and development of the immune system [173]. Approximately
1400 different miRNAs were identified in breast milk [174–176]. Melnik and colleagues
found an association between miRNA-148a derived from milk with pancreatic beta-cell
differentiation, highlighting that breastfeeding can have a potential protective role against
T2D [176]. Human (and some mammals) milk contain abundant levels of miR-125a-5p,
which regulate oxysterol-binding protein-related protein (ORP), which has a role in lipid
metabolism [177]. It was observed that highly expressed miRNA in human breast milk is
involved in production and homeostasis of triglycerides and some were linked to regula-
tion of fatty acid biosynthesis genes [173]. The authors of the aforementioned findings also
reported other miRNAs that are involved in regulating lactose synthesis, which occurs in
the mammary gland, more specifically, regulating the UDP-glucose transporter, as well as
the UDP-galactose transporter [173]. There is very limited evidence on maternal dietary
patterns affecting the nutritional content of breast milk [178]. According to a study con-
ducted in nursing rats, it reported that an obesogenic diet may lead to changes in specific
miRNA levels in the breast milk. Compared to controls, there was an increase in miR-222
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concentration and a decrease in miR-200 and miR-26 in those obesogenic diet-fed rats.
The study researchers also mentioned that this type of diet changes the levels of bioactive
proteins found in the milk, such as increasing leptin and adiponectin concentrations and
decreasing irisin levels, which, consequently, influence the offspring’s metabolism [179].
Another study conducted on humans indicated that maternal nutritional status and diet
could affect the expression of miRNA present in breast milk. Findings by Zamanillo et al.
showed that leptin, adiponectin, and miRNAs decreased throughout the lactation period
in normal weight mothers, while they were altered in the overweight/obese mothers.
Moreover, a negative correlation was observed between milk miRNA expression and
leptin or adiponectin levels in normal-weight mothers, while there was no correlation
observed between those in the overweight/obese mothers. Furthermore, the BMI of infants
of normal-weight mothers was negatively correlated, with the miRNAs were miR-103,
miR-17, miR-181a, miR-222, miR-let7c, and miR-146b [180].

These findings emphasize the role of epigenetics and nutrition in influencing the
metabolism of one’s offspring; the findings also show how these epigenetic modifications
are reversible, which can be used in disease treatment and prevention. However, more
research needs to be done in humans, as the data scarcity can be due to difficult clinical
applications on pregnant women to ensure safety [84].

4.4. Nutri-Transcriptomics Role in Offspring NCD

Likewise, the genetic variants and epigenetics are involved in the health outcomes of
the offspring due to the nutritional status of the mother; the proteins being translated by
those genes can have a crucial role in developing a disease. This concept is called nutri-
transcriptomics, as the transcription of the gene depends on the diet, and how nutrients
and nutritional status impact the gene expression at the level of mRNA [181].

4.4.1. Maternal Diet and Nutri-Transcriptomics of NCD

A trial study by Al-Garawi et al. investigated the role of vitamin D on gene expression
during pregnancy. Thirty pregnant women enrolled in the study were supplemented
with vitamin D, and their blood samples were collected in the first and third trimesters.
Transcriptional profiles revealed that 5839 genes were significantly differentially expressed,
and 14 of them exhibited significant correlation with maternal vitamin D concentrations.
Their data suggest that alterations of the gene expression occur during pregnancy and this
could be associated with vitamin D supplementation, which contributes toward increasing
the concentration of the circulating 25(OH)D precursor [182]. Another study confirming
this concept proposed that changes in the gene expression are directly induced by maternal
vitamin D intake, which can have an effect on the birth outcome [183]. Other observa-
tional studies found that low administration of vitamin D during pregnancy might cause
preeclampsia. A study was conducted on female mice models that were divided into two
groups, one deficient in vitamin D and the other sufficient with vitamin D; then they were
bred with vitamin D-sufficient males. The pregnant mice with low vitamin D concentra-
tions presented high systolic and diastolic blood pressure, and it was continued until 7 days
after delivery. Moreover, according to their kidney function analyses, an increase in the
mRNA expression for renin and angiotensin II receptors was shown and related to the
vitamin deficiency. Surprisingly, when the vitamin D was re-supplemented to the deficient
models, it reversed the effect [184]. This was supported by another randomized controlled
trial conducted on human pregnant subjects who were supplemented with vitamin D daily
throughout their pregnancies. They were classified into two groups, whose subjects with
circulating 25(OH)D below 100 nmoles are considered deficient, and above that level were
considered sufficient. Their placental mRNAs were analyzed and showed that soluble
FMS-like tyrosine kinase 1 (sFlt-1) and vascular endothelial growth factor (VEGF) genes,
which have critical functions in the angiogenesis pathway, were significantly downreg-
ulated in women who had higher intake of vitamin D (≥100 ng/mL). Thus, maternal
vitamin D supplementation may have an impact on the placental gene transcription by
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downregulation of antiangiogenic factors that can contribute to vascular complications
in pregnancy, such as preeclampsia [185]. The relation between an increase of sFlt-1 and
preeclampsia was well addressed in many research studies [186–189]. It was reported that
children of preeclamptic mothers were more prone to develop endocrine and metabolic
diseases in their first five years of age [190]. In addition, body mass index (BMI) was found
higher in males born with preeclamptic mothers compared to those of normotensive preg-
nancies [191]. Besides this finding, studies on metabolic and inflammatory factors found
that the lipid profile differed, and the level of tumor necrosis factor alpha (TNF-α) was
higher in the cord blood of children of preeclamptic mothers [192–194]. Furthermore, high
levels of triglycerides and leptin levels were presented in preeclampsia-exposed children
who measured low on the Quantitative Insulin Sensitivity Check Index (QUICKI), which is
an assessment used to calculate the insulin resistance degree and the secretory capacity
of the pancreatic beta cells [195]. Low levels of QUICKI indicate highly insulin resistance,
which is associated with obesity risk and cardiovascular diseases [196].

Animal models were mostly used to study the association between nutrition and
transcriptomic background. A significant reduction of hypoxia-inducible factor 1-alpha
(HIF-1α) levels was seen in baboon fetuses of HFD-fed mothers, as this factor is known to
be crucial for cardiovascular system development [197,198]. Therefore, a reduced level of
HIF-1α could precede to abnormal cardiac function during fetal and post-fetal life [159]. In
another animal study, two groups of pregnant female mice were assigned to two different
diets during conception and lactation periods: one with a normal chow diet (NCD) and
the other with an isocaloric low protein diet (LPD). Their findings demonstrated that
offspring born from LPD-fed mothers exhibited LBW, glucose intolerance, and a decrease
in insulin secretion. The same animals also expressed some of miRNAs at weaning stage,
and all of these expressed miRNAs were involved in inflammatory pathways with a high
levels of serum pro-inflammatory IL-6 and TNF-α cytokines. In addition, the mRNA and
protein expression of these cytokines was a significant high level in those offspring. Hence,
these results illustrate that consuming low protein levels during pregnancy affects miRNA
expression, which might be linked to chronic inflammation and glucose intolerance in
offspring [199].

A study on pigs focused on nutrient intake during pregnancy and its influence on
the offspring developing metabolic problems. Cai et al. observed that pig mothers who
consumed betaine while they were pregnant gave birth to newborn pigs who presented
elevated serum and hepatic betaine contents, with a significant upregulation of the hepatic
enzyme glycine N-methyltransferase (GNMT). Moreover, liver cholesterol was higher and
the expression of the cholesterol metabolic genes was altered in the neonate piglets. Choles-
terol homeostasis is maintained through certain factors, such as 3-hydroxy-3-methylglutaryl
CoA reductase (HMGCR) and sterol regulatory element-binding protein-2 (SREBP2) were
both downregulated at mRNA level. The enzymes cholesterol-27α-hydroxylase (CYP27α1)
and cholesterol-7α-hydroxylase (CYP7α1), which function in bile acid transformation, were
upregulated at the mRNA levels [200]. Moreover, the same author conducted another study
on the role of betaine in galactose metabolism of piglets. The study reported that neonate
piglets exposed to betaine in their fetal lives showed low concentrations of galactose in
their blood, which was correlated with a significant downregulation of the galactokinase-1
(GALK1) hepatic gene, involved in galactose breakdown process. This enzyme deficiency
was associated with increase galactose in the newborn’s blood, as galactose can pass freely
from the mother through the placenta to the fetus, and its elevated level causes liver
toxicity. Thus, as betaine is involved in galactose and cholesterol homeostasis, and its
deficiency could be associated with lipid disorder and diabetes, this study suggests that
betaine can play an effective role in the offspring’s health via genetics, transcriptomics, and
epigenetics [201].
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4.4.2. Breastfeeding and Nutri-Transcriptomics of NCD

Few research studies have investigated the effects of breastfeeding in nutri-transcriptomics
and its role in NCD development. Cheshmeh et al., in a case-control study involving
150 infants, aged between 5 and 6 months, investigated the impact of breastfeeding and
formula feeding on the expression of obesity-related genes, which are fat mass and obesity-
associated (FTO), carnitine palmitoyltransferase 1A (CPT1A), and peroxisome proliferator-
activated receptor-α (PPAR-α). The subjects were categorized into three groups: breastfed
only, formula-fed only, and fed with both milks. The study findings showed that infants fed
formula milk in either groups exhibited higher weight as well as higher expression of FTO
and CPT1A genes, and a lower expression of PPAR-α gene when compared to the exclusive
breastfeeding group. The authors concluded that breastfeeding apparently showed a
protective effect against obesity, modulating the expression of obesity-related genes [202].
A parallel, multicentric study measured the expression levels of PPARα and CPT1A genes,
together with other genes, such as solute carrier family 27 member 2 (SLC27A2), fatty
acid synthase (FASN), insulin receptor (INSR), and leptin receptor (LEPR), which are used
as transcriptional biomarkers of the metabolic status in children from 2 to 9 years old
from eight different European countries. The children who were breastfed showed higher
expressions of SLC27A2, FASN, PPARα, and INSR, and were at lower risk to develop obesity.
On the other hand, an increase in triglycerides levels was shown in formula-fed children
who also had low expression of these genes. According to these data, higher expressions
of SLC27A2, FASN, PPARα, and INSR genes in the children’s blood reflected a protective
role of breastfeeding, as these genes are indicators of a lower risk of developing insulin
resistance and dyslipidemia linked with obesity in children. In addition, these biomarkers
are likely to distinguish—among formula-fed children—the ones that are at a high risk of
metabolic changes [203].

Thus, transcriptomics is very helpful in terms of identifying the genes that express
RNAs that have been modulated by diet, specifically nutrients taken during pregnancy
and breastfeeding, and then correlate the physiological and pathological long-term effects
on the offspring. The main studies are summarized in Figure 1.

5. Conclusions

Maternal diet and nutritional status, as well as single nutrient intake during the entire
course of pregnancy and breastfeeding, were demonstrated to affect fetal molecular path-
ways, such as lipid and liver profiles, inflammation, and angiogenesis, which contribute to
the development of NCDs in childhood and adult life. These pathways are regulated at
multiple levels via the gut microbiota, through epigenetic modifications, ending with affect-
ing gene expression and protein function (Figure 2). The application of omics technologies
to study the role of maternal diet and breastfeeding on the offspring’s health status is able
to detect the modifications at a molecular level. However, more studies are needed to
confirm the current findings; moreover, it is recommended to move to an integrated multi-
omics approach that is able to dissect the multiple interactions among nutrients, microbiota
metabolites, and the mutual effects on genes modifications and expression. Moreover,
population-specific and patient-personalized studies will contribute to the development of
a personalized nutrition approach to prevent and treat NCD from the fetal life stage.
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Figure 2. Precision nutrition applied to pregnancy to understand the mechanisms that lead to NCD
in childhood and adult life. Created with BioRender.com (accessed on 7 May 2021).
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