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Abstract: An investigation into the addition of different weight percentages of Fe3O4 nanoparticles
to find the optimum wt.% and its effect on the microstructure, thermal, magnetic, and electrical
properties of aluminum matrix composite was conducted using the powder metallurgy method. The
purpose of this research was to develop magnetic properties in aluminum. Based on the obtained
results, the value of density, hardness, and saturation magnetization (Ms) from 2.33 g/cm3, 43 HV
and 2.49 emu/g for Al-10 Fe3O4 reached a maximum value of 3.29 g/cm3, 47 HV and 13.06 emu/g
for the Al-35 Fe3O4 which showed an improvement of 41.2%, 9.3%, and 424.5%, respectively. The
maximum and minimum coercivity (Hc) was 231.87 G for Al-10 Fe3O4 and 142.34 G for Al-35 Fe3O4.
Moreover, the thermal conductivity and electrical resistivity at a high weight percentage (35wt.%)
were 159 w/mK, 9.9 × 10−4 Ω·m, and the highest compressive strength was 133 Mpa.

Keywords: magnetic iron oxide nanoparticles; thermal properties; magnetic properties; electrical
properties; aluminium matrix composite; powder metallurgy

1. Introduction

Aluminium matrix composite (AMC) has a distinctive characteristic in multifunctional
electronic packaging, renewable energy, optoelectronic devices, the telecommunication
industry, medical equipment, access control systems, and others [1]. However, many
researchers have confirmed that AMC is an applicable composite to improve magnetic
properties in various applications, such as electrical, aeronautical, and automotive ap-
plications [2,3]. Aluminium is categorised as a paramagnetic alloy with poor magnetic
properties compared to ferrous materials such as steel, titanium, cast iron, and carbon
steel [4]. The innovation of new magnetic composite materials with continuous develop-
ment has resulted in various choices of superconducting permanent magnet applications in
electromagnetic shielding or absorption [5].

Magnetite (Fe3O4), on the other hand, is a natural iron oxide magnet, which is the most
abundant magnetic mineral on earth. It is one of the important ores of iron. A significant
property of magnetite is the Verwey transition (Tv » 120 K), which results from a small
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distortion in the crystal structure when it changes from inverse cubic spinel to monoclinic
and the effect presents itself in the electrical conductivity reduction, thermal expansion,
and magnetisation of the mineral at the transition point [6,7]. Magnetite is believed to be
an appropriate filler because it is abundant, inexpensive, and produces high free energy
upon reaction with aluminium. This reaction develops wettability among aluminium
and magnetite in providing additional energy for the rest of the process [8]. Magnetite
nanoparticles are favoured for their paramount characterised filler materials because of
their noble magnetic properties. In addition, ferromagnetic materials can be classified as
“soft” or “hard” depending on their response to an external magnetic field. Hard magnetic
materials have a wide hysteresis loop, high saturation induction (Bs), large coercivity (Hc),
and high residual induction (Br). On the other hand, soft magnetic materials have a narrow
hysteresis loop, low Hc, and high magnetic permeability. Soft magnetic materials with a
narrow hysteresis loop and low losses can be used as cores in electronic devices, such as
power transformers in AC adapters [9,10].

Investigations on aluminium composite characteristics focusing on magnetic properties
revealed that Fe3O4 nanoparticles led to an improvement in soft magnetic properties [11–13].

Ferreira et al. investigated the magnetic properties of AMC reinforced with 10, 20, and
30 wt. % Fe3O4 using the powder metallurgy method. It was observed that the Ms of the
composites increased by increasing the weight percentage of Fe3O4. Meanwhile, the satu-
ration magnetisation (Ms) of Al-10F (0.55 ± 0.02 emu/g) and Al-20F (7.46 ± 0.05 emu/g)
(Ferreira et al., 2016) was achieved with the addition of silicon carbide in the experiment,
and it was observed that the Ms improved compared to the Ms for the Al-10 Fe3O4 of
0.55 emu/g [10].

Fathy et al. studied the impact of iron on the mechanical, microstructure, and magnetic
properties of AMCs. Mechanical ball milling was utilised for the synthesis of 0.5%, 10%,
and 15% Fe-Al composites. The outcomes demonstrated that the Hc for Al-15%Fe was
higher than that of Al−5%Fe and Al−10%Fe composites. This might be ascribed to the
moderately fine microstructure of the 15% Fe-Al composite [14].

Maleki et al. studied the addition of magnetic nickel ferrite into aluminium. A nickel
ferrite-reinforced aluminium matrix should generate a lighter material with exceptional
magnetic attributes for multiple applications, including sensitive measurement tools, au-
tomotive, and aeronautical purposes. As such, this study synthesised AMCs reinforced
with NiFe2O4 nanoparticles to determine their magnetic characteristics, microstructure,
and mechanical properties. Coercivity and magnetisation of the nanocomposite reinforced
with 10 wt. % magnetic nanoparticles were 121 Oe and 1.7 emu/g, respectively [15].

Borgohain et al. fabricated magnetic composites with cobalt ferrite magnetic nanopar-
ticles scattered in aluminium. Cobalt ferrite contributed to the significant development of
the magnetisation estimation of the aluminium matrix with an Ms of 17.07 emu/g for the
aluminium sample reinforced with 10 wt.% cobalt ferrite. The Ms and Hc of the composite
with 1 wt.% cobalt ferrite were found to be 3.51 emu/g and 967 Oe, respectively, which
changed to the Ms of 17.07 emu/g and Hc of 583 Oe with an increase in the ferrite content
(10 wt.% cobalt ferrite) in the Al matrix [16].

Moreover, research on magnetic materials is mostly concentrated on achieving higher
magnetic energy in a tiny size for various applications, such as transportation parts, hy-
brid motors, and sustainable energy technologies [17]. The thermal stability of modern
permanent magnets is highly related to their resistance at elevated temperatures. It implies
that permanent magnet variable flux sources are more efficient compared to electromag-
nets because of their small size; hence, large power supplies or cooling systems are not
required [18]. It is also necessary to design advanced magnetic materials in electrical appli-
cations, such as automobiles and aircraft, to withstand higher speeds or high torsion, large
loads, and higher temperatures of up to 600 ◦C. The invention of novel magnetic materials
is an ongoing process, leading to a diverse selection of superconducting permanent magnet
applications for the electrical industry [19,20].
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There are limitations to design materials that can eliminate heat and preserve their
dimensional stability at elevated temperatures and in corrosive environments in the elec-
tronics industry [21]. Although much research on the thermal properties of AMC has been
conducted, there is no information available that focuses on the thermal properties of Al-
Fe3O4 composites produced using the powder metallurgy method. Moreover, the thermal
expansion coefficient of aluminium is higher compared to ceramics and metal oxides; thus,
major variations in dimensions with increasing temperatures would cause difficulties with
metallic components with close tolerance [22]. In this regard, one of the new methods to
diminish the thermal expansion of aluminium is the addition of particles with a lower
coefficient of thermal expansion, as reinforcing aluminium with Fe3O4 nanoparticles will
lead to a decrease in thermal expansion.

AMCs are commonly manufactured, either using powder metallurgy or liquid route.
However, the powder metallurgy method has been recognised as a very promising method
and the most attractive option due to several advantages. One of the advantages is the con-
trol over the microstructural phases. The low temperature required throughout the process
accounts for the severe control of interphase kinetics. Other fabrication techniques such as
casting have the drawbacks of reinforcement segregation, reaction between reinforcement
particles and matrix, interfacial chemical reactions, and high localised residual porosity
along with poor interfacial bonding. Powder metallurgy can fabricate a homogeneous
and net-shape product to obtain properties that are not achievable by conventional metal
processing technologies [23].

Powder metallurgy is one of the low-cost methods for fabricating complex shapes.
When magnetic powder is involved, interfacial reactions between magnetic powder and
the aluminium matrix must be avoided. This is to inhibit the formation of undesirable
phases that may reduce the bonding between the matrix and the particles, hence affecting
its magnetisation property. On the other hand, porosity negatively affects mechanical
and physical properties. The advantages of powder metallurgy include the ability to
fabricate complex shapes with precise dimensions, uniform distribution of reinforcements,
and lower porosity at low costs. The key advantage of powder metallurgy is that the
reinforcement and matrix are mixed in the solid state which prevents the formation of
any unwanted phases, the uniform distribution of reinforcement in the matrix and better
control of microstructure, low manufacturing temperatures that reduces the interfacial
reactions among the matrix and reinforcements.

There are various advantages of isostatic pressing over uniaxial pressing, including
uniform strength in all directions. The pressure used to compact the powder is applied
equally in all directions and provides uniform density, increases density, and improves
the material’s mechanical properties. A two-step compaction results in lower porosity in
samples. During the production of samples with the powder metallurgy technique, two
factors need to be investigated, firstly the mechanical parameters such as compressing
pressure, ball milling time and speed, sintering temperature, and time. Secondly, met-
allurgical factors such as the amount and shape (fiber or particles) of the reinforcement.
Metallurgical factors refer to the metallurgical parameters such as the size and shape of
the reinforcements, the interfacial characteristics, and also the volume fraction or weight
percentage of the reinforcement [21,22,24–26].

In this study, aluminium composites that utilise Fe3O4 nanopowder were developed.
The magnetic, electrical, thermal, hardness, and compressive properties are systemati-
cally investigated to identify the optimum amount of nanofiller with processing opera-
tional steps.

2. Material Selection and Methodology
2.1. Fabrication Procedure

Fe3O4 (40 nm), and Aluminium powder with a purity of 99.7% and an average grain
size of 2 µm, purchased from (MHC Industrial Co., Ltd., Xiamen, China), was used to
fabricate Al-Fe3O4 samples using the powder metallurgy method. Planetary ball mills (PM
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100, Retsch, Haan, Germany) at room temperature were used for mixing the powder and
binder. The powder and metal were mixed in a container at a continuous speed of 400 rpm
for 1 h and in the reverse mixing direction for another hour. The weight ratio of milling
ball-to-powder was 15:1. The powder mix with a binder (magnesium stearate) was placed
into a tubular die with a diameter of 20 mm. The addition of a binder during ball milling
can prevent the agglomeration of particles and refine the distribution of the reinforcement
in the matrix. Laboratory conditions and sintering processes can produce a uniform mixture
where microporosities appear between the reinforcement particles and the matrix. Once
mixing was completed, a universal testing machine (Instron 3382, Shandong, China) was
operated at a pressure of 250 MPa and a cold isostatic pressure (CIP) (Reiken Seiki, Niigata,
Japan) of 250 kgf was applied for 15 min to compact the blended powder. The samples were
heated at 600 ◦C for 20 min with a heating and cooling rate of 10 ◦C/min by a Linn High
Therm furnace. Sintering was performed under an argon atmosphere to avoid oxidation
throughout the sintering process. Five basic compositions were prepared in this study
that rely on magnetic nano iron oxide. All of the compositions contained 5% Mg stearate
powder. Five basic compositions of magnetic nano iron oxide were prepared (Table 1).
The specimens were ground and polished using different abrasive papers of 800, 1200,
2000, and 2500 grit and diamond paste with alumina slurry, followed by ultrasonication
in acetone and deionised water for 10 min to clean, and lastly drying was performed at
100 ◦C for 1 h. Keller’s reagent solution was used for 5 s to etch the surface of each sample
prior to using an optical microscope (OM) and field emission scanning electron microscopy
(FESEM, SU8000, Hitachi, Tokyo, Japan).

Table 1. Compositions of aluminium and magnetite composites.

Composition Al (wt.%) Fe3O4 (wt.%) Mg (wt.%)

Sample a1 85 10 5
Sample a2 80 15 5
Sample a3 75 20 5
Sample a4 65 30 5
Sample a5 60 35 5

2.2. Phase and Microstructural Analysis

The phase analysis was completed using a PANalytical Empyrean system (grazing
incidence X-ray diffraction (GIXRD), Almelo, The Netherlands) with Cu-Kα radiation
(λ = 1.54178 Å) over a 2θ range from 20◦ to 80◦ operating at 45 kV and 30 mA, with a scan-
ning rate of 0.1◦ s−1 and a step size of 0.026◦. The PANalytical X’Pert HighScore software
was utilised to determine the X-ray diffraction (XRD) patterns; therein, all the reflections
corresponded with the standards given by the Joint Committee on Powder Diffraction
and Standards (JCPDS, card 02-1109 for Al and 01-075-1609 for Fe3O4). To examine the
microstructure and the morphologies of particles, FESEM (SU8000, Hitachi, Tokyo, Japan)
with an acceleration voltage of 2 kV was applied. Energy-dispersive spectroscopy (EDS)
connected to the FESEM device was used to carry out the component analysis.

2.3. Density Measurement

The density measurement was conducted using Archimedes’ principle, where the
samples were first weighed in the air and then in water according to ASTM B311-08.
The measured density of the composites was determined using water displacement, and
the theoretical density of the composites was estimated by the rule of mixtures equation
(Equation (1)). The rule of mixtures is a technique for the approximate calculation of
composite properties on the basis of a hypothesis that a composite material’s property is
the volume-weighted mean of the phases (matrix and reinforcement phases) properties.

ρc = (ρm × Vm) + (ρf × Vf) + (ρf × Vf) (1)
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where ρc, ρm, and ρf refer to the densities of the composite, matrix, and reinforcement,
respectively, while Vm and Vf describe the volume fraction of the matrix and dispersed
reinforcement, respectively [27].

2.4. Microhardness Evaluation

The microhardness of the composites was assessed by a Vickers microhardness testing
instrument (Mitutoyo-AVK C200-Akashi Corporation, Kanagawa, Japan) using a selected
load (98.07 mN) and a holding time of 15 s. The tests were performed on five random parts
and the average value was measured. The relationship between the Vickers microhardness
and the load (F)/area of trace (A) was calculated using Equation (2), where Hv is the Vickers
microhardness, F is the applied load, and d is the diagonal length of the indentation [28].

Hv = 1854.4
(

F
d2

)
(2)

2.5. Compressive Test

The Brazilian test is a diametral compression experiment of cylindrical samples and
is well-known for powder metallurgy, ceramic materials, and concrete. A diametral com-
pression experiment includes implementing force until the material sample is broken in
half. A schematic representation of the diametral compression experiment is presented in
Figure 1 [29].
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Figure 1. Schematic view of the diametral compression experiment.

The samples were prepared as Type II in Figure 2. The diametral compression experi-
ment was performed on discs of a 20 mm diameter and 5 mm thickness with a crosshead
speed of 1 mm min−1 following ASTM E8/E8M.
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The tensile strength can be calculated using Equation (3).

σx =
2P
πDt

(3)

where σx is the splitting tensile strength, P is the maximum applied load, t is the thickness
of the specimen, and D is the diameter of the specimen [30].

2.6. Analysis of Magnetic Properties

A vibrating sample magnetometer device (VSM, Lakeshore 7407 series) was utilised
to measure the magnetic response of the aluminium composite at room temperature. The
measurements of magnetic properties, including the hysteresis loops and magnetisation
with a vibrating sample magnetometer, were conducted. The coercive force, saturation
magnetisation, and remanence of samples with a 2 mm width and 3 mm thickness were
observed at an ambient temperature. For this purpose, the samples were cut into the desired
size using a precision saw (IsoMet5000, Buehler, Leinfelden-Echterdingen, Germany).

2.7. Measurement of Electrical Properties

The four-point probe technique (Keithley Characterisation and Measurement Set)
was utilised to measure the electrical properties of the composites, including resistivity
and conductivity. For this purpose, 20 A current and 20 V voltage with direct current
(DC) was employed at an ambient temperature. To achieve this objective, the sample
dimension should be 10 mm in diameter. The electrical conductivity δ was calculated using
Equation (4), where ρ is the electrical resistivity.

δ =
1
ρ

(4)

There is a classical (model analysis) electrical conductivity equation that can be used to
calculate electrical resistivity, which is equal to electrical conductivity. This can be achieved
by replacing electrical resistivity with electrical conductivity, as in the Maxwell model
(Equation (5)), where ρer.c, ρer.m, and ρer.p, are the electrical resistivity of the composite,
matrix, and particles, respectively, and vp is the volume fraction of particles.

ρer.c = ρer.m

1 + 2ρer.m
ρer.p

− 2vp

(
ρer.m
ρer.p

− 1
)

1 + 2ρer.m
ρer.p

+ 2vp

(
ρer.m
ρer.p

− 1
)
 (5)

2.8. Measurement of Thermal Properties

The linear thermal expansion coefficient α is identified as the fractional modifica-
tion in the length of the sample ∆l/l per temperature degree modification ∆T(K) by
Equation (6) [25].

α =
1 ∆ls
ls ∆ T

(6)

The coefficient of thermal expansion (CTE) of a composite can be calculated from the
matrix and fibre. When the matrix and fibres or particles are placed in a series, the change
in length, ∆Lc of the composite is given by the sum of the variants in the length of the
components by Equation (7):

∆Lc = ∆L1 + ∆L2 (7)

where ∆L1 and ∆L2 are the variations in the dimensions of the component’s matrix and
reinforcement, respectively. The difference in the expansion coefficients causes thermal
stresses, which can be adequate to distort the matrix plastically, and consequently influ-
ences mechanical behaviour. In general, thermal diffusivity and thermal conductivity
of composites increase by increasing the temperature. For the purpose of assessing the
thermal diffusivity δ of cylinder samples (10 mm diameter) at room temperature, the laser
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flash method (LFA, Netzsch MicroFlash, LFA457, Selb, Germany) was employed, and the
specific heat, C (J/gK) of the samples was computed by differential scanning calorimetry
(DSC, Mettle Toledo, TGA/DSC 1 HT, Columbus, OH, USA). The thermal conductivity
(W/mK) of the specimens was calculated by multiplying the thermal diffusivity, density,
and specific heat capacity, as shown in Equation (8).

λ = Cpαρ (8)

where ρ is the density, α is the coefficient of thermal diffusivity, Cp is the heat capacity, and
λ is the thermal conductivity [26].

3. Results and Discussion
3.1. Microstructural Analysis

The microstructure depends on several factors, such as solidification rate, type, and
amount of reinforcement [27]. Figure 3 indicates the OM images of the a.5 composite before
and after etching, which confirmed that the distribution of Fe3O4 particles in the composite
is homogeneous, and no pores or cracks could be observed on the composite surface. The
optical microscopy for a.5 identified that the microstructure consisted of the following three
main phases: aluminium, Fe3O4, and intermetallic compound Al3Fe.
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Figure 4 shows the Al grains (grey colour) as a matrix and Fe3O4 particles (white colour,
40 nm) available at the Al grain boundaries. Additionally, the homogeneous scattering of
particles in the matrix is evidently clarified. By increasing the amount of weight percentage
of reinforcement, the likelihood of agglomeration at the grain boundaries also increased.
FESEM micrography of the a.5 sample after etching and heat treatment at 600 ◦C indicated
that the Al matrix and Fe3O4 powder (white) were placed at the grain boundaries, as
presented in Figure 5.

Concerning soft magnetic properties, such as coercivity, permeability, and saturation
magnetization; higher densities, lower quantities of interstitial sites, and larger grain
sizes are required. Microstructural defects, such as dislocations and grain boundaries,
tend to hinder the movement of domain walls, therefore enlarging and distorting the
magnetization curve.

Both magnetic volume and grain size exert huge impacts on coercivity, density, DC
losses, magnetic saturation, and mechanical strength, as observed for nanocrystalline
and amorphous materials. Composites with larger grain and particle sizes can lower
hysteresis losses and coercivities, and can enhance density due to certain defects (e.g., grain
boundaries and airgaps) and limited nonmagnetic addition.
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Figure 5. FESEM of a.5 composite sample after etching and heat treatment at 600 ◦C, (a) 1 µm,
(b) 10 µm, (c) 100 µm.

The larger grain size seemed to enhance magnetic performance, wherein both nanocrys-
talline and amorphous materials failed to outperform crystalline powder. As for the powder
materials, if additional nonmagnetic regions were found between the particles, their impact
on magnetic saturation and coercivity would be stronger than grain size. Particle bound-
aries may have more regions in terms of air gaps and thicker inclusions, which can lead to
a larger demagnetizing field. Small particle sizes not only result in low density but also
significantly more regions of boundaries due to low surface-to-volume ratios.
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As mentioned before, the microstructure of materials has an impact on coercivity.
Similarly, particle size and grain boundaries affect the hysteresis losses. SMCs that utilize
organic binders are forced to use low-temperature curing, mainly for a breakdown in the
coating consequences in strained ferrous grains and high hysteresis losses. Consequently, by
using large-grained, higher-purity ferromagnetic powder, and post-compaction annealing
to release impurities and work-hardened areas, the pinned domain walls can be removed
and reduce the hysteresis losses.

The EDS spectrum showed for a.5 after heat treatment at 600 ◦C. The EDS results in
Figure 6 confirmed the presence of Al, Fe, O, and Mg in the grain boundaries. EDS analysis
of the revealed surface displays the results for Point 1 is aluminum, where the Al peak
(83.83 wt.%) is the main peak, and was detected by using FESEM, in a light gray color
and Fe3O4 particles (white color) exists in the aluminium matrix, with confirmed peaks
of Fe (47.85 wt.%) and O (37.79 wt.%) at point 2. The compositions of Al3Fe (Al 69.11 and
Fe 28.73 wt.%) were detected at point 3, respectively, which were also confirmed by the
XRD pattern.
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3.2. X-ray Analysis

An X-ray analysis was performed before and after sintering. The XRD images of
pure aluminium and Fe3O4 powder are displayed in Figure 7a,b. The XRD revealed
four key peaks for aluminium (111, 200, 220, 222) as displayed in Figure 7a and three
main peaks for Fe3O4 as illustrated in Figure 7b. Figure 8 indicates the XRD analysis
of a.5 before and after heat treatment. The aluminium matrix has a face-centered cubic
structure (FCC). After the addition of Fe3O4 nano-particles into aluminium, three peaks
appeared, which refer to iron oxide with two crystal systems, Orthorhombic and Cubic,
before heat treatment. Moreover, after heat treatment, three new peaks appeared which
were assigned to Fe3O4 with the cubic phase. The XRD analysis of a.5 after heat treatment
identified Al-Fe intermetallic compounds (Al3Fe, and Al13Fe4) and Al2O3. The first peak is
related to Fe3O4 with a cubic crystallography system. After adding Fe3O4 nano-particles
into aluminium, and heat treatment, five main peaks were revealed for aluminium, three
main peaks for Fe3O4. 2θ = (38/784, 44/600, 65/186, 78/306, 82/352) were associated with
aluminium, and 2θ = (30/125, 35/483, 62/629) was assigned to the Fe3O4 cubic crystal
system, respectively.
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3.3. Density Analysis

The density measurements were conducted using Archimedes’ principle [31]. As
shown in Figure 9, the density differs from 2.33 to 3.29 g/cm3. The density values for
Al-10 Fe3O4, Al-10 Fe3O4, Al-15 Fe3O4, Al-20 Fe3O4, Al-30 Fe3O4, and Al-35 Fe3O4 are
2.33, 2.58, 2.74, 2.81, 2.92, and 2.98 g/cm3 before sintering and 2.67, 2.71, 2.79, 2.86, 2.97,
and 3.29 g/cm3 after sintering, respectively, indicating a 41.2% improvement by increasing
the weight percentage of Fe3O4. The density of magnetite (4.8 g/cm3) is higher than
aluminium (2.70 g/cm3). The density measurements of the composites were performed
using water displacement. The theoretical density of the composites was calculated with
the rule of mixtures formula. By comparing the experimental and theoretical densities,
the density of the composites were found to be acceptable. As can be seen, the density
changed from 2.33 to 2.98 g/cm3 before sintering by increasing the weight percentage of
Fe3O4 nanoparticles. Under the same condition, the density of Al-Fe3O4 composites after
sintering was evaluated. After sintering, the density of each sample increased slightly.
Figure 9 shows the evolution of density before and after sintering, where the density after
sintering increased rapidly by 3.29 g/cm3 for Al-35 Fe3O4. Adding different amounts of
reinforcements with a higher density increases the density of composites. Moreover, the
density of the composites increases at high sintering temperatures. The diffusion of atoms is
easier at higher sintering temperatures. As a result, the density of the composites increases.
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The density measurement for Al-Fe3O4 was performed using Archimedes’ principle.
The samples were first weighed in the air and then in water according to ASTM B311-08.
The density of the composites, as shown in Figure 9, varies slightly from 2.20 to 3.00 g/cm3.
The density of the composites was calculated by water displacement, and the theoretical
density of the composites was measured using the rule of mixtures equation. The density
of the composites was calculated using Equation (9):

ρ =
m1+
m1
ρ1
+

m2
m2
ρ2
+

+m3
m3
ρ3

(9)
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where m1 is the mass of the matrix and m2 and m3 are the mass of reinforcements. ρ1 refers
to the density of the matrix and ρ2 and ρ3 are the density of reinforcements. Figure 10
compares the theoretical and experimental densities of the composites. By comparing the
theoretical density values, the density of the composites is found to be acceptable, with
the relative density ranging from 90% to 98%. By dividing the density of the samples after
sintering with the theoretical density, the relative density was determined to be between
90% and 98%.
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3.4. Hardness Assessment

The mechanical properties of composites depend on the weight percentage of re-
inforcement materials, sintering temperature, and microstructure [32]. Different weight
percentages of nanofiller are added into the aluminium matrix to find an optimal amount of
Fe3O4 powder and its properties, such as hardness, for composite modification. Therefore,
the hardness of the composites with different weight percentages of Fe3O4 has been investi-
gated. Figure 11 shows the samples’ hardness for different percentages of reinforcement
particles in the matrix. The microhardness of the composites improved as the weight
percentage of Fe3O4 nanoparticles increased to 35 wt.% Figure 11 shows that the highest
hardness value (47 HV) belongs to the sample with 35 wt.% Fe3O4, while the hardness
remained steady around 43 HV as a low amount of reinforcement (5–10 wt.%) was added.
The hardness value improved by 9.3% from Al-5Fe3O4 to Al-35Fe3O4 composite. The iron
oxide nanoparticles block the motion of dislocations and restrain the deformation of the
nanocomposites, in addition to providing strong interfacial bonding between Al and ce-
ramic nanoparticles, which are the key reasons for the improvement in microhardness [33].

3.5. Compressive Test

The effect of the reinforcement on the compressive strength of Al-nano Fe3O4- com-
posites fabricated by the cold isostatic pressure method is shown in Figure 12. As the
weight percentage of Fe3O4 increased, the compressive strength associated with magnetite
reinforcement initially improved and then remained constant. The reason for this increase
is due to improved work-hardening, which can be due to the elastic properties of Fe3O4
particles, and as a result, prevents the plastic distortion of aluminium. The results con-
firmed the noticeable effect of Fe3O4 particles on the strengthening of the composites. In
this regard, the strength increases as the amount of reinforcement increases. On the other
hand, with an increasing amount of magnetite reinforcement particles, the homogeneous
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distribution of particles in the aluminium decreases, which may lead to cluster formation.
Thus, Fe3O4 particles with low mechanical bonding between them reduce the compressive
strength. A lack of bonding between the particles and the matrix alloy can reduce compres-
sive strength. A decrease in compressive strength occurred slightly with an increase in the
weight percentage of Fe3O4 particles in aluminium. The crack started in the central section
of each disc sample, which is the most extremely stressed tension zone (Figure 13).

Materials 2022, 15, 4153 15 of 25 
 

 

 

Figure 11. Vickers hardness values for different weight percentages of Fe3O4 in the composites. 

3.5. Compressive Test 

The effect of the reinforcement on the compressive strength of Al-nano Fe3O4- com-

posites fabricated by the cold isostatic pressure method is shown in Figure 12. As the 

weight percentage of Fe3O4 increased, the compressive strength associated with magnetite 

reinforcement initially improved and then remained constant. The reason for this increase 

is due to improved work-hardening, which can be due to the elastic properties of Fe3O4 

particles, and as a result, prevents the plastic distortion of aluminium. The results con-

firmed the noticeable effect of Fe3O4 particles on the strengthening of the composites. In 

this regard, the strength increases as the amount of reinforcement increases. On the other 

hand, with an increasing amount of magnetite reinforcement particles, the homogeneous 

distribution of particles in the aluminium decreases, which may lead to cluster formation. 

Thus, Fe3O4 particles with low mechanical bonding between them reduce the compressive 

strength. A lack of bonding between the particles and the matrix alloy can reduce com-

pressive strength. A decrease in compressive strength occurred slightly with an increase 

in the weight percentage of Fe3O4 particles in aluminium. The crack started in the central 

section of each disc sample, which is the most extremely stressed tension zone (Figure 13). 

20

30

40

50

10 15 20 30 35

H
ar

d
n

e
ss

 (
H

V
)

wt.%

Figure 11. Vickers hardness values for different weight percentages of Fe3O4 in the composites.
Materials 2022, 15, 4153 16 of 25 
 

 

 

Figure 12. Compressive strength composite specimens with different weight percentages of rein-

forcement. 

 

Figure 13. Scheme of the fracture in the Brazilian test. 

3.6. Magnetic Properties of Al-Fe3O4 Composites 

Magnetised materials are named ferromagnetic (or ferrimagnetic). These materials 

contain nickel, iron, cobalt, and their alloys, with some alloys of rare-earth metals. Mag-

netism is classified as a physical phenomenon that is mediated by a magnetic field. The 

source of magnetism is the orbital and spin movement of electrons and how the electrons 

interact with each other. The magnetic behaviour of a material is related to different fac-

tors, such as pressure and temperature. Materials may reveal more than one form of mag-

netism. The magnetic action of materials can be categorised into diamagnetism, paramag-

netism, ferromagnetism, and antiferromagnetism. Diamagnetism and paramagnetism 

materials exhibit no collective magnetic interactions, whereas ferromagnetism and anti-

ferromagnetism materials indicate long-range magnetic order under a particular temper-

ature [34]. Ferreira et al. synthesised Al-10 Fe3O4 with a particle size of 70 nm using a 

microwave and investigated its magnetic and Hc properties, which were 0.55 emu/g and 

199 G, respectively. Therefore, Al-Fe3O4 composites are considered ferromagnetic [10]. 

Figures 14 and 15 present the magnetic hysteresis curve (N) based on the magnetic 

moment and field, as well as the saturation coercive field (Hc) and Ms for different weight 

percentages of Fe3O4 in the composites. The values of Ms and Hc varied with increasing 

weight percentages of Fe3O4, where the highest Ms was achieved at 35% Fe3O4. Based on 

122

124

126

128

130

132

134

a1 a2 a3 a4 a5

C
O

M
P

R
ES

SI
V

E 
ST

R
EN

G
TH

 (
M

P
a)

wt.%

Figure 12. Compressive strength composite specimens with different weight percentages of reinforcement.



Materials 2022, 15, 4153 15 of 22

Materials 2022, 15, 4153 16 of 25 
 

 

 

Figure 12. Compressive strength composite specimens with different weight percentages of rein-

forcement. 

 

Figure 13. Scheme of the fracture in the Brazilian test. 

3.6. Magnetic Properties of Al-Fe3O4 Composites 

Magnetised materials are named ferromagnetic (or ferrimagnetic). These materials 

contain nickel, iron, cobalt, and their alloys, with some alloys of rare-earth metals. Mag-

netism is classified as a physical phenomenon that is mediated by a magnetic field. The 

source of magnetism is the orbital and spin movement of electrons and how the electrons 

interact with each other. The magnetic behaviour of a material is related to different fac-

tors, such as pressure and temperature. Materials may reveal more than one form of mag-

netism. The magnetic action of materials can be categorised into diamagnetism, paramag-

netism, ferromagnetism, and antiferromagnetism. Diamagnetism and paramagnetism 

materials exhibit no collective magnetic interactions, whereas ferromagnetism and anti-

ferromagnetism materials indicate long-range magnetic order under a particular temper-

ature [34]. Ferreira et al. synthesised Al-10 Fe3O4 with a particle size of 70 nm using a 

microwave and investigated its magnetic and Hc properties, which were 0.55 emu/g and 

199 G, respectively. Therefore, Al-Fe3O4 composites are considered ferromagnetic [10]. 

Figures 14 and 15 present the magnetic hysteresis curve (N) based on the magnetic 

moment and field, as well as the saturation coercive field (Hc) and Ms for different weight 

percentages of Fe3O4 in the composites. The values of Ms and Hc varied with increasing 

weight percentages of Fe3O4, where the highest Ms was achieved at 35% Fe3O4. Based on 

122

124

126

128

130

132

134

a1 a2 a3 a4 a5

C
O

M
P

R
ES

SI
V

E 
ST

R
EN

G
TH

 (
M

P
a)

wt.%

Figure 13. Scheme of the fracture in the Brazilian test.

3.6. Magnetic Properties of Al-Fe3O4 Composites

Magnetised materials are named ferromagnetic (or ferrimagnetic). These materials
contain nickel, iron, cobalt, and their alloys, with some alloys of rare-earth metals. Mag-
netism is classified as a physical phenomenon that is mediated by a magnetic field. The
source of magnetism is the orbital and spin movement of electrons and how the electrons
interact with each other. The magnetic behaviour of a material is related to different factors,
such as pressure and temperature. Materials may reveal more than one form of magnetism.
The magnetic action of materials can be categorised into diamagnetism, paramagnetism,
ferromagnetism, and antiferromagnetism. Diamagnetism and paramagnetism materials ex-
hibit no collective magnetic interactions, whereas ferromagnetism and antiferromagnetism
materials indicate long-range magnetic order under a particular temperature [34]. Ferreira
et al. synthesised Al-10 Fe3O4 with a particle size of 70 nm using a microwave and inves-
tigated its magnetic and Hc properties, which were 0.55 emu/g and 199 G, respectively.
Therefore, Al-Fe3O4 composites are considered ferromagnetic [10].

Figures 14 and 15 present the magnetic hysteresis curve (N) based on the magnetic
moment and field, as well as the saturation coercive field (Hc) and Ms for different weight
percentages of Fe3O4 in the composites. The values of Ms and Hc varied with increasing
weight percentages of Fe3O4, where the highest Ms was achieved at 35% Fe3O4. Based
on the results, the Ms values are 2.49, 6.55, 10.06, 11.06, and 13.06 emu/g for Al-10 Fe3O4,
Al-15 Fe3O4, Al-20 Fe3O4, Al-30 Fe3O4, and Al-35 Fe3O4, respectively. The Ms increased
while the Hc decreased as the weight percentage of Fe3O4 increased. It means that Hc leads
to an opposite trend as opposed to Ms, as shown in Figure 14. The curves indicated that
the values of Hc did not fluctuate with a lower amount of iron oxide (10–15 wt.%). The
maximum Hc is 231.87 G for Al-10 Fe3O4 and the Hc decreased to 188.82 G as the weight
percentage of Fe3O4 increased from 10 to 15 wt.%. The addition of 15–20 wt.% Fe3O4
resulted in 150.26 G. Coercivity reduces due to the growth of the soft magnetic phase. It is
proposed that the reduction in remanence and coercivity is caused by dipolar interaction
and the presence of a magnetic vortex state. Besides, with low concentrations of the soft
phase, the exchange interaction on the soft magnetic moments emitted by the hard phase
is strong, resulting in the increase in Hc. Meanwhile, by increasing the concentration of
the soft phase, the exchange force on soft grains would be enervated. Consequently, the
reverse domains in the soft phase with a low nucleation field can be nucleated, resulting in
a decline in Hc.
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Figure 15. Correlation between Hc and Ms.

Moreover, Hc is a crucial factor in soft magnetic materials and it can be influenced
by diverse defects, particularly a non-homogeneous structure, grain boundaries, dislo-
cations, locally agglomerated nanoparticles, precipitates, pores, airgaps, impurities, the
distribution of magnetite nanoparticles in the matrix, and non-magnetic particle dispersion.
Accordingly, to reduce Hc, these elements should be kept low [35,36].

This could be the reason that the Hc increased to 165.12 G for Al-30 Fe3O4. The
minimum Hc of 142.34 G for Al-35 Fe3O4 is the optimum value. Although the addition
of more nanoparticles in the composite may result in higher Ms and lower Hc values,
increasing the weight percentage of Fe3O4 can also lead to mechanical degradation. Defects
can happen during milling or due to pores and contaminants, resulting in an increased
value of Hc. Magnetic properties are investigated at room temperature and the values
can be affected by an increase or change in temperature. In general, electromagnetic
absorbing materials can be divided into two types based on the loss mechanism, which
are dielectric materials SiC and magnetic materials Fe3O4, and a higher Ms leads to better
electromagnetic absorbing properties.
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3.7. Electrical Resistivity and Conductivity Measurements

The electrical properties of Al-Fe3O4 were assessed with the four-point probe method.
To achieve this objective, DC power was applied with the provided current and voltage
of 20 A and 20 V, respectively. Ferreira et al. synthesised an Al-20 Fe3O4 composite using
the microwave method and investigated its electrical resistivity, which was determined
to be 0.001028 Ω·m. Figure 16 presents the electrical resistivity of Al-Fe3O4 composites
with different weight percentages of Fe3O4 into the matrix at room temperature. Based
on the experiment, the electrical resistivity of Al-5Fe3O4 and Al-10 Fe3O4 are 2 × 10−4

and 2.81 × 10−4 Ω·m, respectively, and by increasing the weight percentage of Fe3O4 to
15 and 20 wt.%, the electrical resistivity reached up to 3.21 × 10−4 and 4.32 × 10−4 Ω·m,
respectively. This proved that the electrical resistivity improved slightly with a lower
weight percentage of Fe3O4. By increasing the addition of Fe3O4 from 20 to 30 wt.%,
the electrical resistivity increased significantly to 9.7 × 10−4 Ω·m. The highest electrical
resistivity is 9.9 × 10−4 Ω·m for Al-35Fe3O4. The decline in the electrical conductivity
of the composites can be explained as follows. In producing metal matrix composites,
the higher conductivity of reinforcement particles can enhance the electrical conductivity
in composites, but for most of the combinations, the particles play a role as an insulator
due to the existence of free electrons, which are important for both electrical and thermal
conductivity [37]. Due to the free path of an electron, metals can exhibit greater electrical
conductivity compared to alloys. The electrical resistivity of Al-Fe3O4-5% Mg composites
increases by adding higher Fe3O4 content. The electrical resistance of metals illustrates
the integrity of the crystal lattice to scatter electron waves. For the conductive properties
of Al-Fe3O4 composites, aluminium is an exceedingly conductive constant phase. The
continuous Al matrix determines the electrical conductivity of Al-Fe3O4 composites and
increasing Fe3O4 particles strongly block the motion of electrons in the matrix, which
increases the chance of scattering of electrons. Subsequently, the electrical resistivity of
the composite increases. The composite electrical resistivity is related to microstructure-
sensitive, nanoparticle arrangement and morphology, and also the number of particles,
which significantly influence the resistivity of the material. There is less dispersion of
electrons when the distribution of particles in the composite is consistent [38].
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As the electrical resistance increases, it can be related to the creation of secondary
phases, such as Al3Fe, Fe3Al, MgAl2O4, and others. These phases can influence electrical
properties adversely. Furthermore, by adding particles, mixed crystals can be formed,
leading to lattice deformation and increasing the possibility of electron scattering. The
current distorting structure may act in place of insulating materials to inhibit electron tun-
nelling and transfer from atom to atom, consequently lowering the electrical conductivity
of the Al-Fe3O4 composites. However, it has an insignificant influence on the growth in
resistivity. In addition, the agglomeration of Fe3O4 particles at Al grain boundaries may
scatter the charge carrier, and by doing so, the electrical conductivity is reduced. Therefore,
the addition of Fe3O4 decreases the electrical conductivity of aluminium. In electromag-
netic shielding or absorption application in aerospace, high electrical conductivity is not
essential although it may have a positive effect, where this hybrid composite is classified as
a semiconductor material [39].

3.8. Measurement of Thermal Properties (Expansion and Conductivity)

The coefficient of thermal expansion “α” explains the change in temperature that leads
to the change in object dimensions. The coefficient of thermal expansion of aluminium is
high. Hence, by changing the temperature, the dimension of aluminium and its alloy will
change, which is approximately two times higher than ferrous metals. As a result, it can
cause issues for metallic elements with close tolerances. Conversely, the thermal expansion
of ceramic particles is substantially smaller. Thus, it is not unexpected that adding ceramic
particles into aluminium will result in a decrease in the thermal expansion of Al-Fe3O4
composites [40].

Figure 17 shows the expansion coefficient of Fe3O4 at different temperatures, where
the values increased by raising the temperature. Generally, the thermal diffusivity and
thermal conductivity of composites are enhanced by the amplification of temperature.
Thermal diffusivity specifies how rapidly a material responds to a variation in temperature
and can be evaluated using the laser flash technique. The thermal conductivity of the
composites with various weight percentages of Fe3O4 and pure Al is presented in Figure 18.
The test results were obtained at room temperature for Al-Fe3O4 nanoparticles. The thermal
conductivity of all the composites remained almost steady with a low percentage of Fe3O4.
The maximum thermal conductivity is 168 W/mK for Al-5Fe3O4. The thermal conductivity
reduced slightly from 166 to 165 W/mK as the weight percentage of Fe3O4 increased from
10 to 15 wt.%. As the Fe3O4 content increased to 20 and 30 wt.%, the thermal conductivity
reached 163 and 161 W/mK, respectively. The minimum thermal conductivity is 159 W/mK
for Al-35Fe3O4, which has only a slightly negative influence on these properties, and it
is possible that increasing the weight percentage of Fe3O4 will significantly affect the
composites. Fe3O4 has low thermal conductivity. Therefore, it is necessary to find an
optimum weight percentage of Fe3O4.

A possible explanation of this issue is that lattice vibrations (phonon) and the move-
ment of free electrons conduct the heat in solid materials. By adding Fe3O4 and Mg particles
into aluminium, a higher number of nanoparticles lead to the growth of the interfacial
layer and the increase of the interface temperature resistance, resulting in the decline in
thermal conductivity. Moreover, the porosity of composites has a complicated effect on
thermal conductivity. The pores can be considered as the scattered phase and the increase
in porosity will decrease the thermal conductivity [41].

Figure 19 indicates the linear expansion coefficient of the composites with different
weight percentages of Fe3O4. Based on the results, the thermal expansion coefficient
of Al is 2.3 (10−6 C−1). The Al-5Fe3O4 composite has a thermal expansion coefficient
of 2.2 (10−6 C−1). As the weight percentage of Fe3O4 increased from 10 to 15 wt. %,
the thermal expansion coefficient decreased from 2.1 to 2.0 (10−6 C−1), and the thermal
expansion coefficient declined from 1.9 to 1.8 (10−6 C−1) as the weight percentage of
Fe3O4 increased from 20 to 30 wt.%. The thermal expansion coefficient for Al-35Fe3O4 is
1.7 (10−6 C−1).
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These findings can be explained as follows. First, from Turner’s model, the ther-
mal expansion coefficient of composites mostly correlated with the thermal expansion
coefficient of the aluminium matrix and the restriction on the reinforcement through the
matrix/reinforcement interface [42]. The main influence on the thermal expansion coeffi-
cient is the weight percentage of reinforcement particles. Secondly, interface stress, as a
result of the existing mismatch between matrix and particle’s thermal expansion inside the
restrictions of the boundary, will cause residual stress in the matrix close to the interfacial
area, which can cause the elastic strain in the aluminium matrix. There are other parameters,
including the binding force among atoms, grain size, and porosity, that depend on each
specification, which may have a negative or positive effect on thermal expansion [43,44].

4. Conclusions

Different weight percentages of Fe3O4 nanoparticles (40 nm) were added into the
aluminium matrix to find the optimum weight percentage and to develop magnetic prop-
erties using cost-effective powder metallurgy. In accordance with the achieved data and
conducted experiments, the five composites have an approximately similar density, from
2.33 g/cm3 for Al-10 Fe3O4 before sintering to 3.29 g/cm3 Al-35 Fe3O4 after sintering.
Fe3O4 nanoparticles were added to aluminium to develop magnetic properties. The results
of magnetic properties indicate that the addition of Fe3O4 from 10 to 15 wt.% in the com-
posite slightly increased the Ms from 2.49 to 6.55 emu/g and reduced the Hc from 231.87 to
188.82 G. By increasing the weight percentage of Fe3O4 (20–30 wt.%), these values improved
significantly to 10.06 and 11.06 emu/g, respectively, and finally reached the maximum
Ms of 13.06 emu/g for Al-35Fe3O4, which is an improvement of 424.5%, whereas the Hc
decreased to 142.34 G. The hardness also improved from 43 to 47 HV from the lowest to the
highest weight percentage of Fe3O4 in the composite. The distribution of particles in AMC
is homogeneous, which increased the hardness value of aluminium by 9.3%. The thermal
conductivity of Al-35Fe3O4 is 168 W/mk, while for Al-5 Fe3O4, the thermal conductivity is
approximately 159 W/mk. The coefficient of thermal expansion also decreased from 2.2 to
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1.7 (10−6 C−1). Although increasing the weight percentage of Fe3O4 has a negative effect on
thermal conductivity, this value does not change significantly. The electrical resistivity of
the Al-35 wt.% Fe3O4 composite (9.9 × 10−4 Ω·m) in the scope of semiconductor materials
(10−10 Ω·m < δ < 10) can be manufactured by conventional powder metallurgy. Based on
the hardness, magnetisation, thermal conductivity, and electrical resistivity of all speci-
mens, the Al-35Fe3O4 composite can be selected as the optimum composite, particularly
for magnetic applications.
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