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Abstract

Objectives—CRISPR/Cas9 is currently the primary tool used for genome editing in mammalian 

cells. To cleave and alter genomic DNA, both the Cas9 nuclease and a guide RNA (gRNA) must 

be present in the nucleus. One preferred method of introducing these reagents is direct transfection 

of a recombinant Cas9 protein complexed with a synthetic gRNA as a ribonucleoprotein (RNP) 

complex. It is well established from prior work in RNA interference that synthetic RNAs can 

induce a type I interferon (IFN) response that can limit the application of such methods both in 
vitro and in vivo. While the immunological properties of short siRNAs are well understood, little 

is known about the immune recognition of longer CRISPR gRNAs. The objective of our in vitro 
study was to investigate how the composition of the gRNA influences its recognition by human 

immune cells.

Methods—The study was performed in vitro in human peripheral blood mononuclear cells 

(PBMCs). The PBMCs from healthy donor volunteers were treated with gRNA for 24 h, and the 

levels of type I IFNs in culture supernatants were measured by a multiplex enzyme-linked 

immunosorbent chemiluminescent assay. Prior to the analysis in PBMCs, the physicochemical 

parameters and functionality of all nucleic acid constructs were confirmed by electrospray-

ionization mass spectrometry and CRISPR/Cas9 gene editing assessment in HEK293-Cas9 cells, 

respectively.

Results—We found that unmodified synthetic CRISPR gRNAs triggered a strong IFN response 

in PBMC cultures in vitro that could be prevented with chemical modification. Likewise, in vitro-
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transcribed single-guide RNAs (sgRNAs) also triggered a strong IFN response that could only be 

partially suppressed by phosphatase removal of the 5′-triphosphate group. However, the process 

by which the gRNA is prepared (i.e., chemically synthesized as a two-part crRNA:tracrRNA 
complex or in vitro-transcribed as an sgRNA) does not directly influence the immune response to 

an unmodified gRNA. When experiments were performed in the HEK293 cells, only in vitro-

transcribed sgRNA containing 5′-triphosphate induced IFN secretion.

Conclusion—The results of our structure-activity relationship study, therefore, suggest that 

chemical modifications commonly used to reduce the immunostimulation of traditional RNA 

therapeutics can also be used as effective tools to eliminate undesirable IFN responses to gRNAs.
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Introduction

Type I interferons (IFNs) are a group of many proteins that play a vital role in mammalian 

antiviral and antitumoral host defense [1–3]. The most prominent members of this family are 

IFN-α, IFN-β, and IFN-ω, which in turn include several proteins. For example, there are 13 

proteins in the IFN-α group and two in the IFN-β group. The IFN proteins are produced by 

many cell types, including both immune cells (lymphocytes, macrophages, and dendritic 

cells) and non-immune cells (fibroblasts, endothelial cells, and osteoblasts) [1,2]. Among the 

immune cells, the most prominent producers of type I IFNs are the plasmacytoid dendritic 

cells. Type I IFNs play a key role in antiviral defense by activating intrinsic mechanisms of 

the infected and neighboring cells to limit the spread of viral pathogens. They also modulate 

innate immune responses by promoting antigen presentation and activating natural killer-cell 

functions [1,2]. Furthermore, type I IFNs activate the adaptive immune system by triggering 

the development of high-affinity antigen-specific lymphocyte responses and immunological 

memory [3]. In addition to their protective role, type I IFNs can have deleterious 

consequences for the host by triggering pyrogenic (fever) reactions and contributing to 

autoimmune diseases [4].

Agonists inducing type I IFN responses are not limited to tumor cells or bacterial and viral 

pathogens. Certain pharmaceutical products can also trigger an IFN response [5,6]. 

Therapeutic nucleic acids, such as siRNAs, mRNAs, and antisense oligodeoxynucleotides 

(ODNs), are among such products [5–7]. Type I IFN induction by these products is often 

associated with safety concerns due to their pyrogenic activity. Therefore, the 

pharmaceutical industry has made many attempts to identify the mechanisms of IFN 

response to therapeutic nucleic acids and ways to overcome such responses. Modifying the 

backbone; adding 2′-modified ribose backbones, such as 2′-O-Methyl RNA (2′OMe) 

residues; and removing 5′-triphosphates from in vitro-transcribed (IVT) RNAs are among 

the approaches used in the field of therapeutic nucleic acids to reduce the risk of fever and 

fever-like reactions triggered by type I IFN responses as well as improve compound stability 

and efficacy [7–11].
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The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology 

has attracted much attention due to its efficacy in genome editing, and its therapeutic 

application is a rapidly developing field. Since this technology involves RNA components, 

the immunological response to guide RNA (gRNA) is among the many safety questions that 

have yet to be addressed. Unlike other therapeutic nucleic acids, little is known about the 

immune recognition of gRNAs. We therefore conducted an in vitro study using human 

peripheral blood mononuclear cells (PBMCs) to understand whether gRNAs can induce type 

I IFN production and to identify methods to prevent this reaction. Prior to the in vitro 
analysis in PBMCs, we performed physicochemical characterization of various gRNA 
constructs and confirmed their functionality in the model cell line HEK293, commonly used 

for proof-of-concept gene-editing studies.

Materials and Methods

Reagents

Lithium heparin vacutainers were purchased from BD Biosciences (San Jose, CA). RPMI, 

fetal bovine serum (FBS), penicillin-streptomycin, Dulbecco’s phosphate-buffered saline 

(DPBS; Ca2+/Mg2+-free), Hank’s balanced salt solution (HBSS), MEGAclear™ 

Transcription Clean-Up Kit, Geneticin, Opti-MEM®, and Lipofectamine® RNAiMAX 

transfection reagent were purchased from Thermo Fisher Scientific (Waltham, MA). 

ODN2216 and chemically synthesized RNAs were synthesized by Integrated DNA 

Technologies, Inc. (IDT; Coralville, IA). A HiScribe™ T7 High Yield RNA Synthesis Kit, 

DNase I, and Antarctic Phosphatase were purchased from New England Biolabs (Ipswitch, 

MA). Multiplex chemiluminescence plates for the detection of type I IFNs were custom-

manufactured by Quansys Biosciences (Logan, UT). Dulbecco’s Modified Eagle Medium 

(DMEM) was purchased from ATCC (Manassas, VA). QuickExtract™ DNA Extraction 

Solution was purchased from Epicentre (Madison, WI). KAPA HiFi HotStart DNA 

Polymerase was purchased from Kapa Biosystems (Wilmington, MA). A Mutation 

Discovery Kit for the Fragment Analyzer™ was purchased from Advanced Analytical 

Technologies, Inc. (Ames, IA).

Preparation of gRNAs

Chemically synthesized oligoribonucleotides were manufactured by IDT using standard 

phosphoramidite chemistry. Short CRISPR RNAs (crRNAs) were synthesized as standard 

desalt RNAs, whereas long trans-activating crRNAs (tracrRNAs) were purified by reversed-

phase high-performance liquid chromatography. Chemically-modified RNAs were the Alt-

R® CRISPR-Cas9 crRNA and tracrRNA products that employ a proprietary modification 

pattern that includes end-blocking groups, 2′OMe RNA, and phosphorothioate (PS) linkages 

as a two-part system where synthetic crRNA and tracrRNA are annealed to form an active 

gRNA complex [12]. IVT single-guide RNAs (sgRNAs) were synthesized from gBlocks® 

Gene Fragments (IDT) templates using the HiScribe™ T7 High Yield RNA Synthesis Kit 

(New England Biolabs) following the manufacturer’s protocol, including a DNase I 

treatment to remove residual template DNA. IVTs were purified using the MEGAclear™ 

Transcription Clean-Up Kit (Thermo Fisher Scientific). Where indicated, Antarctic 

Phosphatase was used to remove the 5′ triphosphate following the manufacturer’s 

Schubert et al. Page 3

J Cytokine Biol. Author manuscript; available in PMC 2019 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recommended protocol. To reduce the final volume and remove residual phosphatase, IVT 

RNA was phenol-chloroform-isoamyl alcohol and chloroform-extracted, which was 

followed by ethanol precipitation. The correct products pre- and post-phosphatase treatment 

were verified by electrospray-ionization mass spectrometry (ESI-MS) for all gRNAs used. 

No remaining triphosphate containing IVTs were detected after phosphatase treatment. Prior 

to testing, all gRNAs were normalized to 100 μM in Duplex Buffer (30 mM HEPES, pH 7.5, 

100 mM potassium acetate).

Research donor blood

Healthy volunteer blood specimens were drawn under National Cancer Institute at Frederick 

Protocol OH99-C-N046. Blood was obtained from different donors to account for potential 

inter-donor variability and it was collected in BD vacutainer tubes containing lithium 

heparin as an anticoagulant.

Endotoxin analysis

To study potential particle contamination with endotoxin, the test samples were analyzed by 

a turbidity Limulus amoebocyte lysate (LAL) assay according to the protocol [13,14]. No 

endotoxin was detected in any test sample at concentrations used in the in vitro cytokine 

assay.

Cytokine response in PBMC cultures

Experiments were performed according to Nanotechnology Characterization Laboratory 

protocol ITA-10 [15]. Briefly, whole blood anticoagulated with lithium heparin was diluted 

in PBS, and PBMCs were isolated using Ficoll-Paque gradient-density centrifugation. 

Purified PBMCs were incubated with controls and gRNA samples complexed with 

RNAiMAX transfection reagent (Thermo Fisher Scientific). The complexation was 

performed according to the manufacturer’s instructions. The RNAiMAX transfection 

reagent alone was added to both the negative and positive control samples to establish the 

baseline relevant to gRNA-treated samples. The final concentration of gRNA was 1 μM. The 

incubation of cell cultures continued for 24 h. At the end of incubation, the supernatants 

were collected and centrifuged for five minutes at 18,000 g before they were analyzed for 

the presence of type I IFNs (IFN-α, IFN-β and IFN-ω) by multiplex assay (Quansys 

Biosciences).

Preparation and characterization of nucleic acid constructs

HEK293 cells that constitutively express the Cas9 nuclease (“HEK293-Cas9” cells) were 

used to verify the functionality of gRNAs. HEK293 cells were also used to test IFN 

responses to the different RNAs following lipofection. HEK293-Cas9 and HEK293 were 

maintained in DMEM supplemented with 10% FBS, 1% penicillin-streptomycin. The 

DMEM used for HEK293-Cas9 was also supplemented with 500 μg/mL G418. For lipoplex 

formation, 1.5 μL of the gRNA at a working concentration of 3 μM was mixed with 0.75 μL 

Lipofectamine® RNAiMAX in the presence of Opti-MEM® at a final volume of 50 μL and 

incubated at room temperature for 10 minutes. Next, 40,000 HEK293-Cas9 cells were plated 

on top of the lipoplex mixture in 100 μL of DMEM with 10% FBS in a 96-well plate 
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(reverse transfection). The final volume was 150 μL with a gRNA concentration at 30 nM. 

Cells were incubated at 37°C and 5% CO2.

Forty-eight hours post-transfection, cells were washed with 100 μL PBS, lysed using 50 μL 

QuickExtract™ DNA Extraction Solution, and heated to 65°C for 15 min, which was 

followed by another 15 min at 95°C. Genomic DNA was diluted three-fold with nuclease-

free water, and 1.5 μL (~15 ng) was amplified using 0.15 U KAPA HiFi HotStart DNA 

Polymerase in a final volume of 10 μL. Total gene editing was measured using an Alt-R® 

Genome Editing Detection Kit (T7EI) (IDT). Polymerase chain reaction primers (IDT) were 

designed to be at least 100 bp distant from the gRNA cut site. Cleavage products were 

separated on the Fragment Analyzer™ using the Mutation Discovery Kit. Editing 

frequencies were calculated using the following formula: average molar concentration of the 

cut products/(average molar concentration of the cut products+molar concentration of the 

uncut product) × 100. Supernatants from HEK293 cells were collected 24 h after the 

delivery of nucleic acid constructs and analyzed for the presence of IFNs by multiplex assay 

(Quansys Biosciences).

Results

Characterization of nucleic acid constructs

Endotoxin is a known immunostimulatory contaminant that can be introduced into reagents 

during their preparation and carried over to the final products [16]. Since we intended to 

analyze nucleic acid constructs in primary human blood cells, we verified that all materials 

did not contain endotoxin at levels sufficient to affect the experiments. According to the 

kinetic turbidity LAL assay, endotoxin was undetectable in all tested constructs (Table 1).

To verify that all nucleic acid constructs were correct, we performed ESI-MS for all gRNAs 
used. All samples showed the correct, expected mass (data not shown), including the IVT 

sgRNAs pre-and postphosphatase treatment. All gRNAs were normalized to 100 μM in IDT 

Duplex Buffer prior to use. The buffer was included as a negative control in all bioassays. 

The gRNAs were all tested for functional genome-editing activity in HEK293-Cas9 cells 

and resulted in the expected cleavage events in the genomic HPRT locus at sites 38087 and 

38285 (Figures 1A and 1B). Toxicity was visually observed for cultures transfected with 

IVT sgRNAs, both with and without 5′-triphosphate 5′-ends (constructs C, D, G, and H). 

The IVT sgRNAs (constructs G and H) targeting HPRT site 38285 had editing frequencies 

slightly lower than the chemically synthesized gRNAs and control gRNA as validated by 

Alt-R® CRISPR-Cas9 crRNA and tracrRNA (Figure 1). However, gene editing was still 

observed with these constructs, indicating that the correct gRNA product was present to 

enable CRISPR/Cas9-mediated cleavage. No editing was detected in the “untreated cells 

only” controls.

When supernatants from HEK293 cells were analyzed for the presence of IFNs, both type I 

and type III IFNs were found only in samples exposed to IVT sgRNAs containing 5′-

triphosphates (constructs C and G). In contrast, IVT sgRNAs without 5′-triphosphates (D 

and H) did not induce an IFN response (Figures 2A–2D). Construct C was a more potent 
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IFN inducer than construct G, despite both constructs containing a 5′-triphosphate group 

(Figure 2).

Induction of type I IFNs in PBMCs: a structure-activity relationship

PBMCs are the primary immune responders to therapeutic nucleic acids when these 

materials enter into systemic circulation [17]. Many studies demonstrated that in vitro assays 

utilizing healthy donor PBMC cultures are accurate and predictive of cytokine storm and 

pyrogenic reactions to drug products in humans [18–22]. We therefore used the freshly 

drawn blood of three healthy donor volunteers to isolate PBMCs and exposed these cells to 

various gRNA samples and controls. Since the biomedical applications of gRNA commonly 

include a delivery agent, we used an RNAiMAX lipid-based carrier in our in vitro 
experiments. We added gRNA-RNAiMAX complexes to PBMC cultures and monitored the 

levels of type I IFNs (IFN-α, IFN-ω and IFN-β) at 24 h post-treatment. In a preliminary 

experiment, the RNAiMAX reagent alone was tested to verify that it does not affect cell 

viability and responses to the assay positive control ODN2216, a CpG oligonucleotide, a 

known TLR9 agonist and a potent inducer of type I IFNs. Since no adverse effects on the 

assay performance were observed (data not shown), RNAiMAX at the same concentration as 

that used to form complexes with gRNA was also added to the negative and positive control 

samples. This experimental design allowed us to compare the effects of various gRNA 
constructs against a baseline that was equivalent across all tested samples.

No IFN-α was detected in the negative control and Duplex Buffer control samples, while 

ODN2216 resulted in high IFN-α levels (Figure 3A). All unmodified gRNA constructs—

regardless of their sequence, target site, and origin (i.e., a chemically synthesized annealed 

two-part complex or IVT sgRNA)—induced higher levels of IFN-α than single-stranded 

DNA (ssDNA) construct (Figure 3B, compare samples A, C, E, and G vs. sample I). 

Substitution of 2′OMe RNA residues for RNA at multiple locations in the two-part gRNA 
complex eliminated the IFN-α response (Figure 3C, compare sample A vs. B and sample E 

vs. F). In contrast to the unmodified IVT sgRNA samples, their counterparts without 5′-

triphosphate moiety resulted in lower levels of IFN-α secretion by the cells (Figure 3D, 

compare samples C vs. D and G vs. H).

Similar results were observed with IFN-ω (Figure 4) and IFN-ß (data not shown). High 

levels of IFN-ω were induced by the ODN2216, while neither the negative control nor the 

Duplex Buffer control showed a detectable IFN induction (Figure 4A). gRNA constructs 

were more potent IFN-ω agonists than ssDNA (Figure 4B, compare samples A, C, E, and G 

vs. sample I). Chemical modification completely eliminated IFN-ω (Figure 4C, compare 

sample A vs. B and sample E vs. F), while the removal of 5′-triphosphate from unmodified 

IVT sgRNAs reduced but did not eliminate secretion of this type I IFN (Figure 4D, compare 

sample C vs. D and G vs. H).

The effects of gRNA and ssDNA on IFN-α and IFN-ω were consistent between all tested 

donors. The trends observed in IFN-ß were similar to those observed in IFN-α and IFN-ω. 

However, the overall levels of this member of the type I IFN family were lower, and the 

responses were more pronounced in some but not all donors (data not shown).
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Discussion

Macromolecular therapeutic nucleic acids are a large family of materials that includes 

antisense oligonucleotides, triplex-forming oligodeoxyribonucleotides, immunostimulatory 

oligonucleotides, splice-switching oligonucleotides, inhibitory RNA (siRNAs and shRNAs), 

and aptamers [23]. Preclinical and clinical studies of these materials have revealed numerous 

challenges, including pharmacokinetics, toxicology, and instability in the blood [24–31]. 

While many of these hurdles have been successfully addressed through chemical 

modifications of the backbone, changes in sequences, or alterations to dose regimen 

([28,29,32], CRISPR/Cas9 is a new technology that relies on a nucleic acid component for 

function and therefore, may face similar hurdles.

In this study, we characterized various nucleic acid constructs relevant to the CRISPR/Cas9 

technology. We first confirmed that all of the gRNAs were the correct mass by ESI-MS and 

that all of the gRNAs directed the correct genome-editing events (i.e., cleaved the correct 

site in the human genome) by a functional assay in HEK293-Cas9 cells (Figure 1). We found 

that only IVT sgRNA containing 5′-triphosphate induces all IFN types (Figure 2). Removal 

of the 5′-triphosphate eliminated IFN induction. Differences in IFN induction between 

sgRNA targeting different sites of the target HPRT gene (constucts C and G) suggest that the 

sgRNA sequence may contribute to the IFN induction. These data also suggest that HEK293 

cells can respond to sgRNA through the RIG-I pathway, which is reported to depend on the 

presence of 5′-triphosphate [33,34]. Moreover, the data suggest that HEK293 cells do not 

contain TLR9, another endosomal nucleic acidsensing protein, because ODN2216, a known 

potent TLR9 agonist, does not induce IFNs in the HEK293 cells (data not shown). It is 

interesting that cells showed visual evidence for cytotoxicity following phosphatase-treated 

IVT sgRNAs even though IFN secretion was not detected, suggesting that some other 

mechanism underlies the cytotoxicity.

We demonstrated that the induction of type I IFN responses in the human primary PBMC 

cultures by various gRNA constructs follows the same trends previously established for 

other traditional therapeutic oligonucleotides, such as siRNAs (Figures 3 and 4). We showed 

that IFN induction can be eliminated by 2′-modification of the ribose backbone (Figures 3C 

and 4C). We also found that removal of 5′-triphosphate from IVT sgRNAs reduced but did 

not eliminate their ability to stimulate an IFN response in human blood leukocytes (Figures 

3D and 4D). Unlike in HEK293 cells, the delivery of gRNAs and sgRNAs into PBMCs did 

not result in a change in cell viability.

Conclusion

The results of our study suggest that the risk of undesirable proinflammatory responses to 

gRNA can be minimized by optimizing the chemical composition. 2′OMe RNA 

modification of chemically synthesized gRNA is advisable when one desires to block IFN 

response. The removal of 5′-triphosphate in otherwise-unmodified IVT sgRNAs can reduce 

immune stimulation in the PBMCs and eliminate IFN responses in HEK293 cells. As no 

simple method exists to place 2′-modified residues at select positions within an IVT sgRNA, 

it is unlikely that this approach will have significant utility for therapeutic applications.
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Figure 1. 
Functional validation of gene editing in HEK293-Cas9 cells: HEK293-Cas9 cells were 

treated with positive control (PC) consisting of a validated Alt-R® CRISPR-Cas9 crRNA 
and tracrRNA or nucleic acid constructs delivered into these cells using RNAiMAX reagent. 

An “untreated cells only” (CO) control was included. A full description of all nucleic acid 

constructs is provided in Table 1. Genomic DNA was isolated 48 h post-transfection and 

assayed for editing at the HPRT locus as described in the Materials and Methods. (A) HPRT 

site 38087. (B) HPRT site 38285. All samples were tested in triplicate. Shown are the mean 

and standard deviation (n=3) from all samples.
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Figure 2. 
Induction of IFNs in HEK293 cells: HEK293 cells were treated with negative control (NC), 

Duplex Buffer control (J), or nucleic acid constructs delivered into these cells using 

RNAiMAX reagent. A full description of all nucleic acid constructs is provided in Table 1. 

The culture supernatants were collected 24 h after treatment and assayed for the presence of 

IFNs as described in the Materials and Methods. (A) IFN-α, (B) IFN-β, (C) IFN-ω, and (D) 

IFN-λ. All samples were assayed three times. The supernatants from each sample were 

tested in duplicate on the ELISA plate. The %CV between individual replicates on the plate 

was <25%. Shown are the mean and standard deviation (n=3) from all samples.
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Figure 3. 
Induction of IFN-α in PBMCs depends on the material type and chemical modifications: 

PBMCs were isolated from the freshly drawn blood of three healthy donor volunteers. Cells 

from individual donors were treated with negative control (NC), positive control (PC), or 

nucleic acid constructs and their respective control. The culture supernatants were collected 

24 h after treatment and assayed for the presence of IFN-α as described in the Materials and 

Methods. Three independent samples were prepared for each control and test nucleic acid 

sample before being assayed in cells from individual donors (n=3). The supernatants from 

each sample were tested in duplicate on the ELISA plate. The %CV between individual 

replicates was <25%. Shown are the mean and standard deviation (n=9) from all samples in 

all donors. A description of all nucleic acids is provided in Table 1. (A) Interferon level in 

control samples. NC-media containing RNAiMAX reagent at the same concentration as that 

used to deliver all nucleic acid constructs; PC-5 μg/mL of ODN2216 in media containing 

RNAiMAX reagent at the same concentration as that used to deliver all nucleic acid 

constructs; J-Duplex Buffer used for the storage of nucleic acid constructs. (B) The role of 

the material type. Red bars (samples A, C, E, and G) are RNA-based constructs. Black bars 

(sample I) are DNA-based constructs. (C) The role of chemical modifications. Red bars 

(samples A and E) are unmodified two-part complex gRNA. Samples B and F are equivalent 

in sequence to samples A and E, respectively, but chemically modified to contain 2′-OMe 

RNA residues and PS linkages. Chemical modifications eliminate IFN-α response. (D) The 

role of 5′-triphosphate. Red bars (samples C and G) are in vitro-transcribed sgRNAs. Black 

bars (samples D and H) are modified versions of samples C and G, respectively, in which 5′-

triphosphate was removed. Statistical analysis was performed using two-tail distribution and 

two-sample equal variance Student’s t-test, * – p<0.05; ** – p<0.1.
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Figure 4. 
Induction of IFN-ω in PBMCs depends on the material type and chemical modifications: 

PBMCs were isolated from the freshly drawn blood of three healthy donor volunteers. Cells 

from individual donors were treated with negative control (NC), positive control (PC), or 

nucleic acid constructs and their respective control. The culture supernatants were collected 

24 h after treatment and assayed for the presence of IFN-ω as described in the Materials and 

Methods. Three independent samples were prepared for each control and test nucleic acid 

sample before being assayed in cells from individual donors (n=3). The supernatants from 

each sample were tested in duplicate on the ELISA plate. The %CV between individual 

replicates was <25%. Shown are the mean and standard deviation (n=9) from all samples in 

all donors. A full description of all nucleic acid constructs is provided in Table 1. (A) 

Interferon level in control samples. NC-media containing RNAiMAX reagent at the same 

concentration as that used to deliver all nucleic acid constructs; PC-5 μg/mL of ODN2216 in 

media containing RNAiMAX reagent at the same concentration as that used to deliver all 

nucleic acid constructs; J-Duplex Buffer used for the storage of nucleic acid constructs. (B) 

The role of the material type. Red bars (samples A, C, E, and G) are RNA-based constructs. 

Black bars (sample I) are DNA-based constructs. (C) The role of chemical modifications. 

Red bars (samples A and E) are unmodified two-part complex gRNA. Samples B and F are 

equivalent in sequence to samples A and E, respectively, but chemically modified to contain 

2′-OMe RNA residues and PS linkages. Chemical modifications eliminate IFN-ω response. 

(D) The role of 5′-triphosphate. Red bars (samples C and G) are in vitro-transcribed sgRNA. 
Black bars (samples D and H) are modified versions of samples C and G, respectively, in 

which 5′-triphosphate was removed. Statistical analysis was performed using two-tail 

distribution and two-sample equal variance Student’s t-test, * – p<0.05.
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Table 1

Nucleic acid constructs: The study included nine nucleic acid (NA) constructs (eight gRNA and one ssDNA) 

and a control buffer used for the NA preparation and storage. gRNA were prepared to target two sites of the 

HPRT gene. The gRNAs differed by 20-base protospacer guide domains targeting the 38285 site with 

sequence 5′-CUUAUAUCCAACACUUCGUG-3′ and the 38087 site with sequence 5′-

AAUUAUGGGGAUUACUAGGA-3′. For each site, the gRNA were either chemically synthesized or in vitro-

transcribed. The two parts of the synthetic gRNA were separately synthesized (crRNA and tracrRNA), then 

annealed to form a complete gRNA complex. These constructs were either unmodified or included end-

blocking groups, 2′-OMe RNA, and PS linkages (Alt-R® CRISPR-Cas9 crRNA and tracrRNA). The in vitro-

transcribed sgRNA was prepared as a single RNA strand and either directly used (with a 5′-triphosphate 

moiety) or treated with phosphatase to instead leave a 5′-hydroxyl group. All samples were assessed for 

endotoxin contamination by the kinetic turbidity LAL assay.

Sample Number HPRT target site Material Type Sample Description Endotoxin EU/mL*

A 38087 gRNA Synthesized, unmodified RNA, 2-part complex <0.1

B 38087 gRNA Synthesized, modified RNA (end-blocked, 2′OMe, PS 
linkages), 2-part complex

<0.1

C 38087 sgRNA In vitro-transcribed RNA (with 5′-triphosphate) <0.1

D 38087 sgRNA In vitro-transcribed RNA, phosphatase-treated <0.1

E 38285 gRNA Synthesized, unmodified RNA, 2-part complex <0.1

F 38285 gRNA Synthesized, modified RNA (end-blocked, 2′OMe, PS 
linkages), 2-part complex

<0.1

G 38285 sgRNA In vitro-transcribed RNA (with 5′-triphosphate) <0.1

H 38285 sgRNA In vitro-transcribed RNA, phosphatase-treated <0.1

I NA ssDNA Alt-R® Cas9 Electroporation Enhancer <0.1

J NA – Duplex Buffer (100 mM potassium acetate, 30 mM 
HEPES, pH 7.5)

<0.1

*
– of 100 μM stock; sgRNA-single-guide RNA; ssDNA-single-stranded DNA; gRNA-guide RNA; HPRT-hypoxanthine-guanine 

phosphoribosyltransferase; 2′-OMeoxy-methyl modification added to the 2′ hydroxyl of the ribose moiety; PS-phosphorothioate modification of 
the backbone; HEPES – (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) is a zwitterionic organic chemical buffering agent; LAL-Limulus 
amoebocyte lysate; EU-endotoxin units; mL-milliliter.
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