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Predicting Disability after ischemic 
stroke Based on comorbidity index 
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on Behalf of the VISTA-Acute Collaborators

Stroke Unit, Monash Health and Stroke and Aging Research Group, Monash University, Melbourne, VIC, Australia

Background and aim: The availability and access of hospital administrative data  
[coding for Charlson comorbidity index (CCI)] in large data form has resulted in a surge 
of interest in using this information to predict mortality from stroke. The aims of this study 
were to determine the minimum clinical data set to be included in models for predicting 
disability after ischemic stroke adjusting for CCI and clinical variables and to evaluate the 
impact of CCI on prediction of outcome.

Method: We leverage anonymized clinical trial data in the Virtual International Stroke 
Trials Archive. This repository contains prospective data on stroke severity and outcome. 
The inclusion criteria were patients with available stroke severity score such as National 
Institutes of Health Stroke Scale (NIHSS), imaging data, and outcome disability score such 
as 90-day Rankin Scale. We calculate CCI based on comorbidity data in this data set. For 
logistic regression, we used  these calibration statistics: Nagelkerke generalised R2 and Brier 
score; and for discrimination we used: area under the receiver operating characteristics 
curve (AUC) and integrated discrimination improvement (IDI). The IDI was used to evaluate 
improvement in disability prediction above baseline model containing age, sex, and CCI.

results: The clinical data among 5,206 patients (55% males) were as follows: mean age 
69 ± 13 years, CCI 4.2 ± 0.8, and median NIHSS of 12 (IQR 8, 17) on admission and 9 
(IQR 5, 15) at 24 h. In Model 2, adding admission NIHSS to the baseline model improved 
AUC from 0.67 (95% CI 0.65–0.68) to 0.79 (95% CI 0.78–0.81). In Model 3, adding 
24-h NIHSS to the baseline model resulted in substantial improvement in AUC to 0.90 
(95% CI 0.89–0.91) and increased IDI by 0.23 (95% CI 0.22–0.24). Adding the variable 
recombinant tissue plasminogen activator did not result in a further change in AUC or 
IDI to this regression model. In Model 3, the variable NIHSS at 24 h explains 87.3% of 
the variance of Model 3, follow by age (8.5%), comorbidity (3.7%), and male sex (0.5%).

conclusion: Our results suggest that prediction of disability after ischemic stroke should 
at least include 24-h NIHSS and age. The variable CCI is less important for prediction of 
disability in this data set.

Keywords: stroke, disability evaluation, charlson comorbidity score, prediction, national institutes of health 
stroke scale scores
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inTrODUcTiOn

Stroke is a leading cause of disability worldwide and results in 
significant economic and societal cost. Data from Global Burden 
of Disease 2015 show that stroke and ischemic heart disease 
accounted for 15.2 million deaths worldwide or approximately 
85.1% (84.7–85.5) of all deaths due to cardiovascular disease 
(1). Hospital administrators across the world (2), international 
consortium (3), the media, and the publics (4) (http://www.
abc.net.au/news/2013-12-05/new-report-highlights-hospital-
mortality-rates/5135858) are concerned about hospital per-
formance with regards to outcome after stroke. Various groups 
including those from health-care information company, Dr 
Foster, have considered the Charlson comorbidity index (CCI) 
as a way to measure hospital performance. This has been done in 
the hope that better measurements would lead to improvement 
in care (2, 5, 6). The CCI acted as a weight in the calculation of 
the standardized hospital mortality rate. Within Australia, there 
are several groups that used comorbidity index for monitoring 
hospital performance (7). Some Australian hospitals have been 
named for “higher than expected mortality rate” for stroke 
and heart attacks (http://www.abc.net.au/news/2013-12-05/
new-report-highlights-hospital-mortality-rates/5135858).

The CCI was conceived as a method for classifying prognostic 
comorbidity in longitudinal studies (8). It is a weighted index 
of comorbid conditions and is extracted from data entered into 
hospital medical records (9). This action is usually performed by 
administrative rather than clinical staff. Investigators have also 
developed method to collect CCI from electronic medical records 
(10). The earlier optimism of different types of comorbidity indi-
ces, as risk adjustment for the prediction of mortality after stroke 
(11, 12), has been recently questioned by several investigators 
(13–15) including the team from Dr Foster in 2016 (16). This 
may have occurred because CCI captures comorbid conditions 
in general but contains only a small component for capturing the 
effects of stroke.

The value of the covariate CCI in the prediction of disability 
after ischemic stroke is less well understood and is the subject 
of this study. Previous investigators have described that patients 
with low CCI had better outcome at discharge than those with 
high CCI (17, 18). However, these authors had not adjusted for 
stroke severity or other variables such as thrombolytic therapy 
with recombinant tissue plasminogen activator (rTPA). In a small 
study (n = 133), investigators have suggested that women with 
higher CCI have greater disability after stroke after adjusting 
for stroke severity (19). Findings from this study (20) and the 
earlier study, from the same group, (18) on CCI had been recently 
incorporated into a proposed a neuroeconomic approach 
towards decision making on rTPA therapy (21). In light of the 
multiple uses of CCI, the aims of this study were to determine 
the minimum clinical data set to be included in model predicting 
disability after ischemic stroke after adjusting for CCI and clini-
cal variables and to evaluate the impact of CCI on prediction of 
disability outcome. To achieve this purpose, we have identified 
clinical trial repository such as the Virtual International Stroke 
Trials Archive (VISTA) (21) as having data on stroke deficit, 
comorbidity, and outcome.

MaTerials anD MeThODs

This study used data from the VISTA archives of stroke clinical 
trials (21). The methods used for this study have been described 
in a related paper on prediction of mortality from stroke (15). 
The following terms were used to search the repository for this 
data set: imaging data—Alberta Stroke Program Early CT Score 
(ASPECTS) on CT scan (the ASPECTS assesses the extent of 
ischemia over 10 regions of the middle cerebral artery territory); 
stroke deficit—National Institutes of Health Stroke Scale (NIHSS) 
on admission and at 24 h; physiological variables on admission 
(systolic blood pressure, blood glucose level); demographic data 
(age, sex); stroke risk factors and comorbidities (including but 
not limited to hypertension, diabetes, atrial fibrillation, degree 
of liver impairment, degree of renal impairment); thrombolysis 
treatment with rTPA (22); and outcome data—modified Rankin 
outcome within 90 days of stroke. Rankin scale of 0 signifies no 
symptom and 6 signifies death. The modified Rankin scale (mRS) 
of 2 equates to mild disability and mRS 3 equates to moderate dis-
ability. In this study, the primary outcome is disability at 90 days. 
We defined disability as mRS between 3 and 6.

charlson comorbidity coding in VisTa
The CCI is calculated from administrative coding of medical 
record (9). Variables given weight of 1 in CCI included myocar-
dial infarct, congestive heart failure, peripheral vascular disease, 
cerebrovascular disease, dementia, chronic pulmonary disease, 
connective tissue disease, ulcer disease, mild liver disease, and 
diabetes. Variables given weight of 2 in CCI included hemiplegia, 
moderate or severe renal disease, diabetes with end-organ dam-
age, any tumor, leukemia, and lymphoma. Variables given weight 
of 3 in CCI included moderate or severe liver disease. Variables 
given weight of 4 in CCI included metastatic solid tumor and 
advanced immunodeficiency syndrome.

The variable diabetes in the CCI was assigned a coding of 2 
because stroke can be considered to represent “diabetes with end 
organ damage.” To code motor deficit, we used NIHSS ≥ 6 (the 
minimum NIHSS in this VISTA data set was 6). For the purpose 
of analysis, the combined score of comorbid conditions was used.

statistical analysis
Correlation between stroke severity and CCI was performed 
using Spearman method. The optimal was derived by successively 
adding variables to the logistic regression models. Statistics for 
measuring model performance (model discrimination and cali-
bration) are described below.

  Model 1 = age + sex + CCI.
  Model 2 = Model 1 + NIHSS on admission (baseline).
  Model 3 = Model 1 + NIHSS at 24 h (removing NIHSS on 

admission).
  Model 4 = Model 3 + rTPA.
  Model 5 = Model 2 + rTPA.
  Model 6  =  Model 3  +  rTPA  +  physiological variables, risk 

factor, and imaging data, including systolic blood pressure, 
serum glucose level, hypertension, atrial fibrillation, and 
ASPECTS score.
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FigUre 1 | receiver operating characteristic (rOc) curves for models of disability.
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assessing Model Discrimination
The ability of the model to discriminate between those with 
and without disability at 90 days after stroke was performed by 
measuring the areas under the receiver operating characteristic 
(ROC, see Figure  1) curve (AUC). Measurement of model 
discrimination is different from model calibration (expanded 
below). Investigators have pointed out that it is not possible to 
achieve perfection in both calibration and discrimination. A 
model can have excellent discrimination between two groups but 
poor calibration (23).

Model calibration
Model calibration refers to methods that measure distance 
between predicted and observed probability, with the minimal 
distance between the two points describing close matching 
between predicted and observed probability. We performed 
calibration by using several complementary methods, namely 
the Brier score (24) and Nagelkerke generalized R2 (25). The 
Brier score is a cost function that measures the mean square 
difference between the predicted probability and the observed 
binary outcome. The Nagelkerke generalized R2 has often been 
taken to have same meaning as the R2 in ordinary least square 
regression (variance of the model explained by the predictors), 
but the derivation of generalized R2 is rather different from that 
for R2. The generalized R2 is formulated as the fraction of the 
log likelihood explained by the predictors (adjusted between 0 
and 1). A well-calibrated model has low Brier score and a high 
generalized R2 value.

Measuring improvement in regression 
Models
The AUC is good at discrimination but is not as well suited to 
detecting difference in discrimination between models due to 
its low sensitivity for detecting such change (26). With this in 
mind, the net reclassification improvement (NRI) and integrated 
discrimination improvement (IDI) have been proposed to detect 
difference in model discrimination (27). The NRI is the percent-
age reclassification for the risk categories and included both up 
and down. The maximal value of NRI is 200%. The IDI is the 
mean difference in predicted probabilities between new and 
old regression models (constructed from cases with disease and 
without disease). The NRI and IDI are expressed here as fractions 
and can be converted to percentage by multiplying 100. The AUC, 
continuous NRI, and IDI were performed using PredictABEL (R 
Statistical Foundation, version 3.2.0) (28).

hierarchical Partition
Once we have obtained the optimal model, we used hierarchical 
partition method to find the contribution of important predic-
tors to that model (see Figure 2) (29). The hierarchical partition 
method attempts to partition the goodness of fit of the models 
(hier.part package, R Statistical Foundation, version 3.2.0).

resUlTs

This study consists of 5,206 patients with mean age 68.8 ± 12.5 
with 55% male sex, 54.5% ever-smokers, 73.6% with hypertension, 
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FigUre 2 | contribution of variables in Model 3 to prediction. National Institutes of Health Stroke Scale (NIHSS) at 24 h made the greatest contribution toward 
the pseudo R2 for Model 3, followed by age, comorbidity, and male sex.
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23% with diabetes, and 26% with atrial fibrillation. The median 
NIHSS at baseline was 12 (IQR 8, 17) and at 24 h was 9 (IQR 
5, 15). The comorbidity score (based on admission NIHSS ≥ 6) 
was 4.2 ± 0.84. The proportion of patients with modified Rankin 
disability scale >2 at 90 days was 45%. The mortality at day 90 
was 15%. In this analysis, 1,807 patients had ASPECTS score 
recorded. The mean ASPECTS score was 9.8  ±  0.8 (a score of 
10 indicates no ischemic involvement of the MCA territory, and 
score of 0 indicates total involvement).

Univariable analyses showed statistically significant relation-
ships between disability and NIHSS at admission and at 24 h, age, 
systolic blood pressure, atrial fibrillation, and the use of rTPA. 
The correlation between comorbidity and baseline NIHSS was 
0.09 (p < 0.001) and between comorbidity and 24 h NIHSS was 
0.11 (p < 0.001). The multivariable models for disability and their 
associated AUC, Brier score, and generalized R2 are displayed 
in Table  1. The baseline model (Model 1: age, male sex, and 
comorbidity index) had an AUC of 0.67 (95% CI 0.65–0.68); 
Model 2 (Model 1 and NIHSS on admission) had AUC 0.79 (95% 
CI 0.78–0.81); Model 3 (Model 1 and NIHSS at 24 h) had AUC 
0.90 (95% CI 0.89–0.91); and Model 4 (Model 3 and rTPA) had 
AUC 0.90 (95% CI 0.89–0.91). When physiological variables were 
added to the multivariable analyses, systolic blood pressure and 
presence of atrial fibrillation did not remain in the model, and 
Model 6 consisted of 24-h NIHSS, age, rTPA and serum glucose, 
and AUC 0.90 (95% CI 0.89–0.91). The plots of these ROC curves 
are displayed in Figure 1.

Model 2 was an improvement on Model 1 with NRI 0.82 
(95% CI 0.77–0.87) and IDI 0.17 (95% CI 0.16–0.18) (Table 1). 
There was statistically significant difference between Models 3 
and 2 with NRI [1.16 (95% CI 1.12–1.21)] and IDI [0.23 (95% CI 
0.22–0.24)]. There was statistically significant difference between 
Model 4 and 3, but the small difference in NRI [0.07 (95% CI 

0.01–0.12)] and IDI [0.001 (95% CI 0.00–0.002)] suggest that this 
was not clinically significant. Model 5 (Model 2 and rTPA) was 
inferior to Model 3 in terms of AUC [0.80 (95% CI 0.79–0.81)], 
NRI [1.09 (95% CI −1.14 to −1.04)] and IDI [−0.21 (95% CI 
−0.22 to −0.19)]. In terms of calibration, the increased general-
ized R2 and decreased Brier score values paralleled improvement 
in AUC from Model 1 to Model 3. The calibration metric for 
Model 5 was lower than for Model 3.

Our results suggest that the Model 3 was the optimal model 
with the minimum variables to be collected in addition to CCI 
(age, sex, and 24-h NIHSS). Next, we used hierarchical partition 
method to explore the key drivers of Model 3 (Figure 2). The vari-
able NIHSS explains 87.3% of the variance, follow by age (8.5%), 
comorbidity (3.7%), and male sex (0.5%). By using this analysis, 
we repeat a modification to Model 3 with covariates NIHSS at 
24 h and age but without the covariates CCI and male sex. The 
new Model 3 is comparable to the original Model 3 (see Table 1).

DiscUssiOn

The key findings in this study were the importance of a stroke 
severity score measured at 24  h in prediction of disability fol-
lowing ischemic stroke. This covariate is superior to the baseline 
NIHSS if the aim of the prediction model is to define outcome 
after the initial phase of stroke (16). The covariate, CCI, made 
a very small contribution to prediction models when used in 
conjunction with stroke severity as covariate. By systematically 
evaluating the clinical variables, our study was able to put a limit 
on the minimum set of variables needed for valid prediction of 
disability following ischemic stroke. Our study cautions the use 
of CCI as the main variable for predicting disability following 
ischemic stroke, monitoring outcome (3), or making decision on 
acute therapy (20).
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In earlier exploration on CCI and stroke, investigators did not 
adjust for stroke severity as we have done here. This was the case 
in the Veteran Affairs study (n = 960) (17). Along with comorbid-
ity, stroke severity was included in the model in a smaller study 
(n = 133) (19). These studies did not explore the impact on the 
model using different statistics of model fit and calibration as we 
have done here. There are two other studies that included stroke 
severity in the model for disability; these studies had sample sizes 
less than 614 (16, 30). Stroke severity was defined in those studies 
according to the baseline NIHSS (16) and Scandinavian Stroke 
Scale (30). The timing of the assessment of the Scandinavian 
Stroke Scale was uncertain in the latter study. As such, those stud-
ies could not provide contrast between baseline and have 24-h 
stroke severity data. On its own, CCI discriminates disability after 
stroke poorly in this study. We took this further by exploring the 
key drivers within each model with hierarchical partition of the 
variables. This type of analysis showed that the covariate, CCI, 
contributed little to the model relative to the covariate, NIHSS at 
24 h. The model only discriminates well when the covariate, CCI, 
was used in conjunction with stroke severity measured at 24 h. 
This result is consistent with the dynamic concept of the ischemic 
penumbra. In some cases, reperfusion therapy or delayed spon-
taneous spectacular shrinking deficit (reperfusion) may lead to 
good clinical outcome (31, 32). Consequently, measuring stroke 
severity after therapeutic or spontaneous reperfusion provides a 
better indicator of final outcome.

We acknowledge that the use of data at 24  h is not helpful 
for making therapeutic decision on drug such as rTPA. The 
intention of developing prediction models based on 24-h data is 
to help the patient and family regarding prognostication on the 
disability outcome and monitoring of outcome. Our finding that 
the variable rTPA does not remain in the model when the 24-h 
NIHSS is used should not be misinterpreted as demonstrating 
that rTPA is not a predictor of outcome. This model is performed 
using information at 24 h after stroke onset and after drugs such 
as rTPA have done their job in rescuing ischemic tissue. This 
argument on the importance of rTPA is based on the difference 
between Model 5 and Model 2, where rTPA remains in the model 
when the baseline NIHSS is used instead of the 24-h NIHSS.

The strength of our study was the use of different statistics for 
measuring model performance. These metrics for discrimination 
and calibration provide different evaluation of model perfor-
mance (23). This effect can be seen in the comparison between 
Models 2 and 1. These metrics show that a large number of cases 
(79.0%) would be reclassified if stroke severity is added to the 
baseline model. Models 3, 4, and 6 have equivalent discrimina-
tion and would be classified as having outstanding discrimination 
(AUC  ≥  0.90) using the guidelines of Hosmer and Lemeshow 
(33). Model 4 was not preferred as it differed from Model 3 
based on NRI but not IDI. As such we considered Models 3 
and 4 to be equivalent. When Models 6 and 3 are compared, a 
small number of cases (10.7%) would be reclassified based on 
NRI. The IDI between Models 6 and 3 was small, and thus we 
considered that a very small gain would be obtained by having a 
more complex model or in practical terms collecting more data. 
Our finding reaffirmed previous findings on the role of these 
physiological variables in outcome prediction (34). However, the 
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difference between these two models was small based on the IDI 
(35). We can propose that the minimum data set would include 
comorbidity, age, sex, and stroke severity at 24 h (Model 3). Since 
stroke severity score is not routinely available in administrative 
data sets, such a model would require prospective recording of 
stroke severity score in a separate column (of the administrative 
data set) for extraction. While Model 6 is marginally better than 
Model 3, its use would require extraction of clinical information 
beyond those available in routine administrative data.

Our approaches have several limitations. The sample used 
here come from clinical trial repository and as such does not 
fully reflect the range of patients seen in hospitals. For example, 
patients with mild and very severe stroke were not included in 
this study. Patients with the most severe strokes and dementia are 
important as they may have multiple comorbidity and are likely 
to be discharged to nursing home. A potential criticism is that 
patients who died within 24  h are not included because those 
patients do not have 24-h NIHSS. The number of those cases with 
such scenario was reassuringly only five cases. With respect to the 
real world data, the NIHSS on admission of the patients in this 
cohort was slightly higher than observational studies by the Get 
With The Guidelines (13) and Global Comparator Stroke GOAL 
investigators (16).

The estimation of the comorbidity index in our analysis 
is also not identical with that derived from usual hospital 
administrative data sets. It is true that patients in stroke clinical 
trials do not have significant complex comorbidities such as 
severe liver failure, terminal malignancy, dementia, or advance 
immunodeficiency syndrome (9). The exclusion criteria used 
in stroke trials would have excluded them. On the other hand, 
patients involved in acute stroke trials are more likely to come 
from tertiary hospitals where cases with higher stroke severity 
score are preferentially treated compared to small community 
hospitals. These limitations could have impacted on the con-
tribution of comorbidities to the prediction of disability in this 
study. We believe that this is less likely since the comorbidity 
in our cohort is similar to those in the Veteran Affairs study 
(17) and Tennessee’s statewide Medicaid managed care pro-
gram (36). In spite of these limitations, the VISTA data set has 
several advantages above hospital registry data. Coding of data 
in hospital administrative data sets may be plagued by inac-
curacy in coding of comorbidity (37). To obtain clinical data 
on stroke severity, several hospitals that participated in the 
Global Comparators Stroke GOAL (internal project facilitated 
by Dr Foster) measured NIHSS at baseline for 2 months (16). 
The measurement of stroke severity score for only 2 months was 
likely to be due to cost associated with long-term prospective 
collection of such data. One potential criticism of using NIHSS 

and CCI in this analysis is that both metrics measured motor 
deficits. However, all patients received the same motor score in 
the CCI as such there was no redundancy in the data. We have 
also analyzed the correlation between these variables and found 
them to be low. Finally, we have used the term prediction in 
this article rather loosely. Strictly, it should be used when we 
validate it in an independent data set. We are not aware of other 
prospectively collected data set with available information on 
both baseline and 24-h stroke severity score. We would welcome 
any such collaboration to validate the model.

conclusion
We have applied a systematic approach to finding the minimum 
clinical data set for reliably determining disability following 
ischemic stroke onset. The CCI should not be used as it con-
tributes only a small part of logistic model. By contrast, stroke 
severity score at 24 h is the most important variable.
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