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The European rabbit (Oryctolagus cuniculus) was the first animal model used to

understand human diseases like rabies and syphilis. Nowadays, the rabbit is still

used to study several human infectious diseases like syphilis, HIV and

papillomavirus. However, due to several mainly practical reasons, it has been

replaced as an animal model by mice (Mus musculus). The rabbit and mouse

share a recent common ancestor and are classified in the superorder Glires

which arose at approximately 82 million years ago (mya). These species

diverged from the Primates’ ancestor at around 92 million years ago and, as

such, one expects the rabbit-human and mouse-human genetic distances to

be very similar. To evaluate this hypothesis, we developed a set of tools for

automatic data extraction, sequence alignment and similarity study, and a web

application for visualization of the resulting data. We aligned and calculated the

genetic distances for 2793 innate immune system genes from human, rabbit

and mouse using sequences available in the NCBI database. The obtained

results show that the rabbit-human genetic distance is lower than the mouse-

human genetic distance for 88% of these genes. Furthermore, when we

considered only genes with a difference in genetic distance higher than 0.05,

this figure increase to 93%. These results can be explained by the increase of

the mutation rates in themouse lineage suggested by some authors and clearly

show that, at least looking to the genetic distance to human genes, the

European rabbit is a better model to study innate immune system genes than

the mouse.
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1 Introduction

The purpose of developing animal models for scientific

research is to establish an experimental system that can be

reproduced in humans and or in veterinary research. The

European rabbit (Oryctolagus cuniculus) was one of the first

animal models used in immunological studies and was essential,

for example, for the development of the rabies vaccine by Louis

Pasteur in 1811 (1, 2). Furthermore, the study of rabbit

immunoglobulins allowed us to understand much of what is

known about the structure, function and expression of

antibodies [reviewed in (3, 4)]. Anti-allotype antisera obtained

in rabbit contributed to understanding of B cell development

and revealed that individual B cells expressed only one of two

alleles (allelic exclusion) [reviewed in (5)]. In addition,

demonstration that genetic recombination occurred between

immunoglobulin heavy chain variable regions (IGHV) and

immunoglobulin heavy chain constant regions (IGHC) genes

was an early indicator that immunoglobulins were encoded by

more than one genetic unit (6).

Although the rabbit was one of the main animal models used

in molecular immunology in the late 1980s, rabbits have been

largely replaced by the house mouse (Mus musculus). The

increase in the use of mice has found ground in their reduced

maintenance costs, small size, ease of breeding with a short

reproductive cycle and high number of progeny, wide availability

of commercial immunological reagents and availability of inbred

strains, knockouts (KO) and transgenic models (reviewed in

(7)). The use of rabbits has, however, several advantages over the

use of mice. Rabbits have a longer life span than mice and their

size, bigger than mice, allows the sampling of blood and access to

many cells and tissues from a single animal. Additionally, rabbits

are reservoirs of several pathogens that cause zoonotic diseases.

(reviewed in (7)). As such, the rabbit is still a reliable disease

model for development of therapeutics and vaccines and studies

of the cellular and molecular mechanisms underlying many

human diseases, like syphilis, tuberculosis, HIV-AIDS, acute

hepatic failure and diseases caused by noroviruses, poxvirus,

herpes simplex virus, and papillomaviruses [reviewed in (7, 8)].

Furthermore, the rabbit is an excellent model to study the

immune system evolution because it has unique features, like the

use of mainly only one variable heavy chain (VH) gene in the

antibody rearrangement (9) or having at least 15

immunoglobulin’s A (IgA) (10) with different hinge regions

that show different resistances against bacterial proteases activity

(11). These observations are amazing examples of immune

system adaptations most likely driven by pathogen interaction.

Despite these uniquenesses, in the innate immune system genes

rabbit and other lagomorphs share with primates some

peculiarities: a high selective pressure in the PRYSPRY domain

of TRIM5 (12, 13), a gene conversion in the second extracellular

loop of CCR5 (14, 15) and high mutation rate in the CD4
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molecule (16). These are some examples that make the rabbit an

excellent model to study human immune system genes.

Finally, rabbit and mouse are related species that share a

recent common ancestor. Both species are grouped in the super

order Glires which arose at approximately 82 million years ago

(mya), but each is classified in a different order, the rabbit is a

lagomorph and the mouse is a rodent (17). These species

diverged from the Primates’ ancestor at around 92 million

years ago (17) and, as such, one expects the rabbit-human and

mouse-human genetic distances to be very similar. Interestingly,

some evolutionary studies on immune system genes suggested

that the genetic divergence between humans and rabbits was

smaller than between mice and humans (18–20). These studies,

however, focused on a very small number of immune

system genes.

In this study, we tested the hypothesis that since the rabbit

and mouse diverged from the human ancestor at the same time,

they will have a similar genetic distance to human. To do so, we

used a subset of the innate immune system gene repertoire of

InnateDB [21] (https://www.innatedb.com/), a publicly available

database of genes, proteins, experimentally-verified interactions

and signaling pathways involved in the innate immune response

to identify the largest number of innate immune system genes

represented for humans and other species. From the subset of

4723 genes names (available in https://www.innatedb.com/

redirect.do?go=resourcesGeneLists under the Immport label),

we searched for available annotated sequences for the three

species (i.e., human, mouse and rabbit), using NCBI’s Gene and

Nuccore databases (https://www.ncbi.nlm.nih.gov/), resulting in

a set of 3580 mRNA and CDS sequences. Finally, for each gene

we compared the rabbit-human and mouse-human genetic

distances based on the aligned CDS sequences for

orthologous genes.
2 Materials and methods

For this study we developed a set of tools for automatic data

extraction, sequence alignment and similarity study, and a web

application for visualization of the resulting data.
2.1 Data extraction

For the data extraction process we designed a tool that, given

a set of gene names and a set of species names downloads the

mRNA gene sequences and corresponding CDS sequences of

known resulting products available in the NCBI’s Annotated

Genomes, for each gene and species combination, as presented

in Figure 1. In cases where more than one resulting product is

available (i.e., multiple mRNA and CDS sequences for the same

gene of the same species), the X1 isoforms were selected.
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This tool was implemented in Python and the NCBI

database was used as a data source (using the Entrez

Programming Utilities (E-utilities) API). For each gene name

and species name combination, a gene search was conducted (on

the Gene NCBI database), using the corresponding URL and the

respective arguments. This returned the gene identifiers of the

different genes. For each gene identifier, the corresponding gene

report was downloaded in XML format (again, using the Gene

NCBI database) and parsed to extract the set of mRNA

Reference Sequences (RefSeq) identifiers.

For each RefSeq identifier, the corresponding GenBank data

was downloaded, in XML format (using the Nuccore NCBI

database). From the resulting data the mRNA sequence and the

corresponding CDS sequences were extracted.

2.2 Alignment and similarity

For the sequence alignment and similarity process we

designed a tool that, given a set of gene names, a set of
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species names, and reference species name aligns the

CDS sequences and measures their similarity against the

given reference, as presented in Figure 2. This tool was

implemented in Python, and uses the data resulting from the

Data Extraction process as input.

For each gene name, the CDS sequences from each species

(including reference species) was selected. The sequences are

then aligned against the reference sequence, using Python’s

Biopython library. For the alignment, a local pairwise

alignment strategy was selected using the match score and gap

penalty parameters similar to the ones used in NCBI’s Blast tool

(i.e., 2, -3, -5, -2 for matching, mismatching, gap opening and

gap extension respectively). The similarity score was calculated

by counting the number of equal base pairs and dividing it by the

difference between the length and the number of indels of the

aligned sequence.

The final relative similarity data set was constructed by

measuring, for each gene, the difference between the similarity

score for the different species against the reference one.
FIGURE 2

Data processing pipeline.
FIGURE 1

Data extraction pipeline.
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2.3 Visualization

For the visualization process we designed a web application

for visualizing the similarity scores obtained from the Alignment

and Similarity process. This was implemented in HTML and

javascript, using NodeJS and Express for the back-end Web

service, and HTML, Bootstrap and Chart.js for the front-end.

The application (available in https://warm-plains-91813.

herokuapp.com/) allows the user to visualize the relative similarity

from the set of genes common among the different species.

Additionally, it allows users to select specific genes and visualize

the respective information (including Gene Bank and Nuccore

data) as well as the similarity results and resulting alignments.
2.4 Workflow

We now describe the workflow for the data extraction,

processing and visualizing processes used in our study, as

presented in Figure 3.

The set of gene names [available in InnateDB (21)] and the set

of species names (Homo sapiens, Mus musculus and Oryctolagus

cuniculus) was used as input to the Data Extraction pipeline. The

resulting data from this process was a dataset of gene names,

species names, mRNA and CDS sequences available for each

orthologous gene of the three species.

This dataset, in conjunction with the set of gene names, the

set of species names and the reference species name was then

used as input to the Alignment and Similarity process. The

resulting data from this process was a dataset of gene names,

species names, aligned CDS sequences and similarity scores

between the aligned sequences.
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The visualization process uses the dataset produced by the

Alignment and Similarity process from calculating and

displaying the relative similarities for each orthologous gene of

the three species.
2.5 Genetic comparison of some key
immune system genes between human,
rabbit and mouse

The phylogenetic relationships and genetic distances,

nucleotide and amino acid, between human, rabbit and mouse

were obtained for four key innate immune system genes: CD4,

ABCB11, IL2 and MYO1E. The full CDS sequences for these genes

were obtained from Genbank (accession numbers for the sequebces

used are given in Figure 5) and aligned using CLUSTAL W (22) as

implemented in BioEdit v7.2.5 (23), and corrected manually as

necessary. MEGA version X software (24) was used to construct a

Maximum likelihood (ML) phylogenetic tree and to calculate

genetic distances. The phylogenetic tree was constructed using

the GTR model of nucleotide substitution. This software was also

used to calculate the nucleotide and amino acid distances using the

p-distance method and pairwise deletion of gaps options.
3 Results obtained comparing the
genetic differences between
human-mouse and human-rabbit

From the 3580 gene sequences studied, we selected sequence

alignments with more than 150 bp resulting in 2793 genes. The

rational for this selection was to avoid partial match sequences
FIGURE 3

Process workflow.
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or small matches that can happen by chance (without

biological meaning).

From the 2793 genes, 320 (12%) showed a genetic distance

between mouse and human lower than the obtained between rabbit

and human, 2468 (88%) showed a genetic distance between mouse

and human higher than the obtained between rabbit and human

and in 5 genes we observed identical genetic distance between

mouse and human and rabbit and human (see Figure 4).

Furthermore, when we selected only genes that showed at least

0.05 of difference between the mouse-human and rabbit-human

distances, the ratio increased to 429 (93%) genes showing a genetic

distance between mouse and human higher than the obtained

between rabbit and human and only 30 genes (7%) showing a

genetic distance between mouse and human lower than the

obtained between rabbit and human, despite the decrease in the

number of genes to 460. To further explore the differences between

the human-mouse and human-rabbit genetic distances we selected

some key innate immune system genes and using the complete

CDS we compared the genetic similarity between these species

using phylogenetic trees and nucleotide and amino acid distances.

The four selected genes were: 1) CD4 that acts as a coreceptor with

the T-cell receptor on the T lymphocyte to recognize antigens and it

is also a primary receptor for entry of the HIV; 2) Interleukin-2

(IL2) that encodes a secreted cytokine produced by activated CD4+

and CD8+ T lymphocytes, that is important for the proliferation of
Frontiers in Immunology 05
T and B lymphocytes; 3) ATP binding cassette subfamily Bmember

11 (ABCB11) that transport various molecules across extra- and

intra-cellular membranes. It is a member of the MDR/TAP

subfamily that are involved in multidrug resistance. The protein

encoded by this gene is the major canalicular bile salt export pump

in man; and 4) myosin IE (MYO1E) encodes a member of the

nonmuscle class I myosins which are a subgroup of the

unconventional myosin protein family. This protein localizes to

the cytoplasm and may be involved in intracellular movement and

membrane trafficking. For each gene, both nucleotide and amino

acid genetic distances were smaller between rabbit and human than

mouse and human, as presented in Figure 5.
4 Discussion

The increase in the number and quality of entire genomes in

the last years allows us to get a better picture of the number and

the variability of genes between species. Taking advantage of the

high-quality genomes available for human, rabbit and mouse, we

tested our hypothesis that since the rabbit and mouse shared a

recent common ancestor and diverged from human ancestor at

the same time, they will have a similar genetic distance to

human. To test this hypothesis we compared the genetic

variability of 2793 innate immunity genes.
FIGURE 4

Genetic distance differences between rabbit and human and mouse and human. Positive values represent genes in which the genetic distances
between mouse and human is greater than the genetic distances between rabbit and human. Light blue regions represent the expected relative
gene distances between the similarities between rabbit and human and mouse and human. Dark blue regions represent the relative distances in
which gene similarity between rabbit and human is higher than between mouse and human. Violet regions represent the relative distances in
which gene similarity between rabbit and human is lower than between mouse and human. The pie chart represents the percentage of genes
for which the genetic distances between rabbit and human are lower than mouse and human (in dark blue) and for which the genetic distances
between mouse and human are lower than rabbit and human (in violet).
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The results obtained showed that the genetic diversity

between rabbit and human is clearly lower than that between

mouse and human. These results are in line with previous

observation obtained with some immune genes (18–20). The

most likely explanation for the observed difference in the mouse-

human and rabbit-human genetic distances is the increase of the

mutation rate in the rodent lineage that has already been

suggested by other authors [e.g (25, 26)]. The obtained results

clearly show that, at least looking at the genetic distance to

human genes, the European rabbit is a better model to study

innate immune system genes that the mouse.
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