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Alum: an old dog with new tricks

Yumei Wen1 and Yan Shi2,3

Aluminum compounds (alum) are the most widely used adjuvants in veterinary and human vaccines. Alum was initially thought

to be a simple depot for antigen retention; however, our understanding of the mechanism by which it works has progressed

substantially in recent decades. Nonetheless, consensus regarding its roles in different aspects of immune regulation has not

been reached, and it remains a long-standing research subject in the field of vaccinology. This review, in chronological order,

discusses the various hypotheses proposed in mostly inadequate attempts to illuminate the mechanism by which alum works,

from the depot theory to the involvement of the NLRP3 inflammasome and from cell death-associated danger factors to crystalline

structure-mediated plasma membrane alteration. In addition, novel findings of unexpected beneficial effects of decreased HBV

(Hepatitis B virus) viral load and HBeAg seroconversion in chronically infected patients, as well as significant tumor suppression in

experimental mice following multiple alum-only injections are examined, revealing alum’s potential clinical applications beyond its use

as a simple tool in antigen preparation. With increasing threats of emerging microbes, originating from natural or man-made sources,

that pose significant health concerns at the population scale, the potential use of alum as a ‘first-aid’ vaccine is also discussed.
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INTRODUCTION

Aluminum compounds (alum) have been used as adjuvants for nearly
90 years in veterinary and human vaccines. Alum facilitates effective
and long-lasting protective immunity in hosts, mainly by inducing
antibody responses. Although human vaccine preparations have seen
considerable progress in recent years, alum remains the most widely
used adjuvant. The adjuvant effect of alum was first described
by Glenny et al.,1 who serendipitously found that in processing an
immunogen, diphtheria toxoid, by precipitation with potash (crude
KAl(SO4)2·12H2O), the resulting mixture induced a significantly
increased immune response against the toxoid. It was subsequently
found that protein preparations precipitated with alum were highly
heterogeneous, depending on which anions, such as bicarbonate,
sulfate or phosphate, were present at the time of precipitation.
To improve and optimize the protein–alum preparation, Maschmann
et al.2 used aluminum gels that could be preformed using a well-
defined method to adsorb protein antigens in aqueous solution,
representing a major step forward for standardizing the use of alum
as common adjuvants. Vaccine preparations based on this approach
are called aluminum-adsorbed vaccines, in contrast to alum-
precipitated vaccines used in earlier days. Starting in the late 1940s,
highly uniform aluminum hydroxide became available and was used as
an adjuvant in a large number of vaccines. Aluminum phosphate was
introduced somewhat later. For instance, for the preparation of active
diphtheria toxoid, equal molarities of aluminum chloride and
trisodium phosphate were used to yield pure aluminum phosphate
as the resulting adsorbent.3 Although hydroxide and phosphate salts

remain the primary choice, new adjuvants are being developed for
different immunization purposes.4–6 Despite its popularity in practice,
the mechanisms underlying the adjuvant functionality of alum are still
being discovered and represent an interesting topic in vaccinology.

MECHANISMS OF ALUM AS AN ADJUVANT

Challenges against the ‘depot theory’
The earliest idea regarding the immune regulatory activities of alum
was based on an observation by Glenny himself, who reported that
the precipitation of antigen onto insoluble particles of aluminum
potassium sulfate before immunization produced better antibody
responses than soluble antigen alone. He noted that the clearance of
alum-precipitated toxoid from the injection site was delayed in
comparison with plain toxoid in immunized guinea pigs. This
observation led him to believe that the association with an aluminum
salt served a ‘depot’ effect, which could enhance the immune response
via antigen retention, thus establishing a prolonged release phase from
the low solubility salt. This dogmatic explanation was rarely challenged
until the last two decades, when a number of scientists started to reveal
the multiple immunological roles played by alum.
It was shown that removal of the antigen-aluminum salt nodules

14 days after immunization had no effect on subsequent antibody
titers, indicating that alum preparations do not function simply
by providing a long-lived antigen depot.7 Furthermore, experiments
showed that immunization of rabbits with antigen plus alum induced
the appearance of B-cell lymphoblasts in the draining lymph nodes
within seven days and at the site of the granuloma by day 14. After
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three weeks, few B cell lymphoblasts remained in the draining lymph
nodes, inviting questions on the necessity of long-term antigen
presentation beyond two weeks.8 More recent studies further suggest
that alum admixed antigens appeared in draining lymph nodes within
several hours to a day, and their migration did not last beyond this
period. Interestingly, removal of the injection site (i.e., ear) 2 h after
antigen delivery had no effect on subsequent CD4+ T-cell activation or
division.9 In addition, alum’s adjuvanticity did not appear lessened in
mice lacking fibrinogen, which is essential for alum to form nodular
structures at the site of injection,10 again casting doubts on the idea
that antigen retention is the primary mechanism. More defined
biochemical analyses in recent years indicate that alum in other
forms, such as hydrogels, binds to antigens via weak interactions and
can be easily modified by biological fluids to lose adhesion. Some work
went further to suggest that the intensity of the association between
antigen and alum is inversely related to immunological outcomes.11–14

These results challenged the ‘depot theory’ and suggested other
mechanisms at work. Certainly, these discussions on the depot effect
started before the modern concept of antigen presentation. Current
models are necessary to incorporate an immunological understanding
of how alum mediates any facilitating effect in multiple steps from
antigen uptake to final B-cell antibody production.15

Role of the inflammasome
Although the depot theory has been discarded, the concept of adjuvant-
mediated enhanced antigen presentation by antigen-presenting cells is
now central to theories regarding adjuvant effects at large. Although
signaling via toll-like receptors is regarded as the essential pathway for
microbial pattern-based adjuvants,16 such as CPG (oligodeoxynucleo-
tides), lipopolysaccharide and its derivatives, two independent studies
showed that alum did not function through toll-like receptors.17,18

Another class of intracellular pattern recognition receptors, the NOD-
like receptors (NLRs), was also found to sense stimuli of microbial
origin and endogenous signs of cellular damage.19 These receptors,
upon activation, typically associate with an adapter molecule ASC
(apoptosis-associated speck-like protein containing a caspase recruit-
ment domain) and caspase-1 to form the oligomerized platform of an
inflammasome that results in the auto-proteolysis of procaspase-1 to a
generated active P10/20 dimer of activated caspase-1.20 The best-
characterized activity of the inflammasome/activated caspase-1, in
addition to mediating several forms of cell death, is the conversion of
several inflammatory cytokines from their immature precursors to their
active forms, including interleukin-1β (IL-1β), IL-18 and IL-33. Among
them, the NLRP3 inflammasome is known to respond to particulate
structures by producing IL-1β and IL-18.21 The exact signaling events
are not well established. It was initially suggested that the signaling
events derived from phagolysosomal destabilization; this proposal is
now under debate because subsequent reports did not reproduce the
same finding.22–24 Currently, Ca2+ influx, K+ efflux and mitochondria-
originated reactive oxygen species are competing proposals.24–28

The role of the NLRP3 inflammasome in alum’s adjuvanticity was
reported. Using genetic mutant mice, Eisenbarth et al.29 indicated that
antibody production induced by an alum/antigen mixture required
NLRP3 (called Nalp3 at the time), ASC and caspase-1, in line with the
established fact that macrophages and bone marrow-derived dendritic
cells (DCs) from mice deficient in NLRP3, ASC or caspase-1 failed to
produce IL-1β/IL-18 on stimulation with multiple types of aluminum
adjuvants. Antibody production was therefore linked to IL-1β production
or was thought to be critically dependent on an effector function
downstream of NLRP3 activation because alum did not induce the
production of IL-6 or tumor necrosis factor-α (TNFα) by primary

macrophages in vitro. These manifestations often result from NFκB
activation associated with microbial adjuvants.30,31 In a somewhat
unexpected finding immediately following Eisenbarth’s report, Tschopp’s
group suggested that while phagocyte activation, caspase−1 conversion
and IL-1β production were indeed observed in antigen-presenting cells
following alum treatment, the effect paradoxically reduced antibody
production of immunoglobulin G1 (IgG1) and IgG2c subclasses, with
only IgE production relying on the NLRP3 platform.32

This disparity observed in earlier days is increasingly leading toward
the consensus that NLRP3 is unlikely to be an indispensable
component of alum’s adjuvanticity, at least by the measurement of
antibody production. Franchi et al. reported that deficiency in NLRP3
did not affect the production of antigen-specific IgG, IgA or IgM in an
alum-based vaccination protocol.33 In addition, Marrack et al found
caspase-1-deficient mice to have a sufficient antibody response.
Importantly, in its absence, endogenous CD4 responses and their
Th2 bias remained comparable to the wild type.34 Flach et al.35 used
gene-deficient bone marrow DCs to show that while IL-1β production
was diminished in the absence of NLRP3/ASC, the expression of
TNFα and the co-stimulatory molecules CD80, CD86 and CD40 were
not affected, and antibody production was even slightly increased.
Collectively, evidence is increasingly dissociating the signaling cascade
of NLRP3 and its effector functions from critical regulatory events
leading to antibody production. The controversy may have resulted
from different experimental setups and variability in protocols,
preparation and other imperfectly controlled factors. In addition,
antigen production reveals only one aspect of adaptive immune
activation. The mere fact that alum is universally reported to trigger
NLRP3 inflammasome activation suggests that there are immuno-
logical consequences yet to be revealed in the future.

Roles of salts and crystals
In 2003, it was reported that uric acid is a principal endogenous
danger signal released from injured cells during an attempt to identify
a molecular base for the popular danger hypothesis.36,37 The report
noted that uric acid must crystalize to have any immune stimulatory
effect. From the days of discovery of antigen cross-presentation, the
immune regulatory functions of crystalline structures have been well
documented;38 even though aluminum salts frequently form only
amorphous clusters of small crystals, crystalline properties of alum
were found to be central to its adjuvanticity. Lima et al.39 suggested
that the primary result of crystal phagocytosis is the induction of cell
death. This observation, coupled with the lack of involvement of the
NLRP3 inflammasome, has led to two divergent theories regarding
alum’s mechanism of action. One theory suggests that alum adjuvan-
ticity is a consequence of cell death, which, due to the brutal rupture
of plasma membranes, is necrotic in nature and therefore
proinflammatory.40 The other theory relies on the possibility that
some cells may survive contact with alum and gain an increased ability
for antigen presentation, which may lead to antibody production.
Intriguingly, new evidence obtained in more recent years points

exactly in these two directions. Regarding the former, Marrack’s group
first reported that alum injection resulted in DNA release at the site,
presumably from dead cells.41 Noting a similar observation of DNA
release at the site of alum injection, Ishii’s group revealed mechanistic
insight into how the extracellular availability of DNA regulates
antibody production from two different routes. First, DNA triggers
IgG1 production. In parallel, DNA controls Th2 responses, promoting
IgE isotype switching through signaling via the Tbk1/Irf3 axis.42

The study did not address the involvement of additional pathways
regulated by DNA sensing; most prominent among them was AIM2
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inflammasome-based caspase-1 activation43,44 and STING/cGAS-
mediated type I interferon release.45–47 Although the former’s main
effector function identified so far is caspase-1 activation, which may
appear less attractive in light of controversies surrounding NLRP3’s
effector function, the latter is a direct activator of antigen-presenting
cells. Interestingly, a visit to the latter yielded some unexpected
intricacies.48 McKee et al.48 reported that in intramuscular immuniza-
tion, although STING-deficient mice had reduced antigen-specific
CD4+ T-cell activation and IgE production, IgG1 levels were not
affected, in sharp contrast with the dramatic reduction of alum’s
adjuvant effect in the presence of DNase. Because STING is upstream
of Tbk1/Irf3, the outcomes suggest that some other mechanisms
triggered by released DNA are responsible for IgG1 production. In the
same paper,48 the authors reported that removal of DNA did not alter
the arrival of antigen-containing cells in draining lymph nodes
but greatly reduced the steady contact between DCs and T cells,
which likely resulted from reduced antigen presentation following
DNA digestion. These effects indicate that the effects mediated by
alum-triggered DNA release are still incompletely understood.
An additional proposal coincidentally links alum to the very

production of uric acid. When aluminum salts and antigen were
intraperitoneally injected into mice, the local concentration of uric
acid was substantially increased.49 When mice were pre-treated with
uricase (i.e., an enzyme to digest uric acid to allantoin) to degrade uric
acid, CD4+ T-cell priming was inhibited. Here the adjuvant activity of
aluminum salts does not require either Myd88 or IL-1β/IL-1 receptor
engagement in vivo. This result is unexpected as uric acid crystals
promote cross-presentation that enhances CD8+ T-cell responses in
a seemingly opposing direction to CD4+ T-cell responses, which are
required to boost B-cell activation.37,50 A conceptual gap present in
these discussions is how crystal-mediated cross-presentation, mainly
a CD8+ T-cell phenomenon, turns on B-cell activation.51

In 2011, by means of atomic force microscopy, it was shown that
independent of the inflammasome and membrane proteins, alum crystals
bound to DC plasma membrane lipids with substantial force, subse-
quently activating an abortive phagocytic response that led to antigen
uptake. Such activated DCs, without further association with alum,
showed high affinity and stable binding to CD4+ T cells via the adhesion
molecules intercellular adhesion molecule-1 and lymphocyte function-
associated antigen-1. It was proposed that alum triggers DC responses by
altering membrane lipid structures leading to the immune potentiating
effects.35 This proposal attempts to address alum’s effect from a
biophysical point of view. How much this mechanism is of relevance
to the total effect of alum’s adjuvanticity requires further analyses.

ALUM IN INFECTION CONTROL AND TUMOR SUPPRESSION

Roles of alum in persistent infection
Thus far, studies on the functions of alum have only been conducted
in cell lines and mice. Because more defined assays are available in
these systems, theories regarding alum’s mechanism of action in
human vaccination are likely to be derived from these models.
However, human trials are not without their own surprises. Recently,
in a clinical trial employing HBV surface antigen (HBsAg)-human
anti-HBs immunoglobulin immune complex (YIC) as a therapeutic
vaccine for chronic hepatitis B virus (CHB) infection,52,53 alum was
used as an adjuvant and was inoculated alone as a negative control.
The results for the first time revealed immunological effects of bare alum
in humans. In the phase II B clinical trial, 74 CHB patients with a viral
load 4100 000 copies/mL and a serum ALT (alanine transaminase) of
two to ten times the upper limit of normal were injected with 1 mL
0.1% alum emulsion intramuscularly once every four weeks, for a total

of six injections. These patients were followed for 24 weeks after
completion of immunization. Although the results showed significant
differences between the YIC-immunized group and the alum immu-
nized group, the HBeAg seroconversion (a criterion used to measure
host response rates to immunization in clinical studies on viral hepatitis
B) in the alum immunized group was 9%, higher than the spontaneous
HBeAg seroconversion rate.53 When the number of injections increased
to 12 and occurred over a 24-week period, surprisingly, among the 108
CHB patients injected with alum, the HBeAg seroconversion rate
increased to 21%.54 To explore the possible mechanisms mediated by
multiple injections of alum, mice were injected six times with alum
alone or alum-adsorbed proteins (HBsAg-anti-HBs) at weekly
intervals. After four injections, Gr1+/CD11b+ cells in the spleen
were increased in both alum alone and alum/protein groups. After
six injections, Gr1+/CD11b+ cells in the spleen remained consis-
tently high in the alum alone-injected group, whereas Gr1+/CD11b
− cells decreased in the alum/protein group. Both groups showed
increased levels of TNFα, but only the alum alone mice showed
increased levels of IL-10. The histology of the liver tissues revealed
a higher number of spotty necrotic foci in the alum alone group
than in the controls.55 These outcomes reveal that alum alone
could induce potent inflammatory responses and a sustained
increase in cell-mediated immune responses. The underlying
immunological regulations are yet to be studied. Nonetheless,
these observations might promote using alum alone or in combi-
nation with other components even in the absence of overt
antigens to modulate responses to persistent infections.

Roles of alum in antitumor effects
Immunotherapies against existing cancers include active, passive
or immunomodulatory strategies. Active immunotherapies are aimed
to increase the ability of the patient’s own immune system to mount
a response to recognize tumor-associated antigens and eliminate
malignant cells, whereas passive immunotherapy involves administra-
tion of exogenously produced components, such as lymphocytes or
antibodies, to mediate an immune response. Immunomodulatory
agents are not targeted at specific antigens but are intended to enhance
general responsiveness and amplify anticancer immunity.56 Because
alum has been shown to induce both inflammatory responses and
trigger cell-mediated immune responses, Wang et al.57 explored
whether alum has any effects on tumors. After multiple trials, a
specific protocol to induce antitumor effects by alum-only therapy was
identified. Balb/c mice with established H22 hepatocarcinoma were
immunized with multiple intraperitoneal injections of alum after five,
seven or ten days. Interestingly, only when alum treatment was
initiated five days (5 DPI) after the establishment of the tumor was
significant growth reduction detected; the differences became more
distinct over time.57 Cytokine profiles in peritoneal lavage and tumor
homogenate were followed; they showed that IL-1β and TNFα were
increased in the alum-treated groups, suggesting that the presence of
particulate or crystalline structures can activate innate immune
responses, particularly as a consequence of interaction with phagocytes
associated with an enhanced inflammatory response. To study whether
alum-mediated tumor suppression also requires adaptive immunity,
nude mice were used in a similar study, and the benefit of alum was
completely lost. The authors further studied the roles played by
infiltrating neutrophils, CD4+ and CD8+ T cells, and chemokines.
It was found that CD8+ T cells were essential to alum-associated
tumor suppression. In this pilot study, it was not clear why the alum-
only treatment was effective only at 5 DPI in this tumor model, and it
was postulated that the lack of effect at the other immunization times
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suggests that the alum 5 DPI treatment captured a window in tumor
establishment when it was penetrable to immune surveillance, which
disappeared at later time points. This result suggests that each
individual immunotherapy may have an effective time point to be
employed. Because immunotherapy works more effectively in perso-
nalized medicine, studies regarding each type of immunotherapy
should be fully explored in this regard.

SUMMARY AND PERSPECTIVES

Alum has long been used as an adjuvant, and its efficacy and safety
are proven. It has been shown to enhance antibody responses as
well as to stimulate innate immunity; for example, it induces the
conversion of macrophages to antigen-presenting dendritic cells.58

A number of proinflammatory cytokines and chemokines are
induced at the site of injection, and different types of cells
including neutrophils, natural killer cells, natural killer T cells,
eosinophils and DCs are recruited locally. Alum was found to
induce endogenous CD4+ T cells and antibody production as well
as to induce priming of CD8+ T cells. These effects are shown to be
independent of the inflammasome. Furthermore, the direct inter-
action between alum and the cell surface lipids makes the functions
of alum in hosts even more complex and interesting.
Although new adjuvants such as MF59 (ref. 59) and liquid crystals60

are evolving, alum, as the oldest adjuvant, has shown certain new
effects yet to be explored. Using alum as a nonspecific stimulus to
modulate host immune responses in persistent infections is an
interesting frontier for future study. The novel finding of functions
of alum in cancer therapy also needs further analysis. Currently, while
facing multiple emerging infectious agents and diseases and the risk of
bio-attack by terrorists, the world should be prepared to develop ‘first
aid immunological regulators’ or ‘nonconventional first aid vaccines’
to address these unpredictable challenges. The idea is that when the
emerging infectious agent has not yet been identified but the
population urgently needs protection, a nonspecific immune stimulat-
ing substance, mimicking the ‘first aid’ measures taken in clinical
medicine, should be prepared and ready for use. Alum, with its low
cost, stability, safety and stimulatory effects on the immune response,
might be optimized and developed as one of the candidates for a
future ‘nonconventional first aid vaccine’.
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