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Osteoarthritis is a common and debilitating joint disease that affects up to 30 million Americans, leading to significant disability,
reduction in quality of life, and costing the United States tens of billions of dollars annually. Classically, osteoarthritis has been
characterized as a degenerative, wear-and-tear disease, but recent research has identified it as an immunopathological disease
on a spectrum between healthy condition and rheumatoid arthritis. A systematic literature review demonstrates that the disease
pathogenesis is driven by an early innate immune response which progressively catalyzes degenerative changes that ultimately lead
to an altered joint microenvironment. It is feasible to detect this infiltration of cells in the early, and presumably asymptomatic,
phase of the disease through noninvasive imaging techniques. This screening can serve to aid clinicians in potentially identifying
high-risk patients, hopefully leading to early effective management, vast improvements in quality of life, and significant reductions
in disability, morbidity, and cost related to osteoarthritis. Although the diagnosis and treatment of osteoarthritis routinely utilize
both invasive and non-invasive strategies, imaging techniques specific to inflammatory cells are not commonly employed for these
purposes. This review discusses this paradigm and aims to shift the focus of future osteoarthritis-related research towards early
diagnosis of the disease process.

1. Introduction

Osteoarthritis (OA) is a painful and debilitative joint disease
that commonly affects the hand, hip, and knee joints of aging
adults. Disease progression is a leading cause of hospitaliza-
tion and ultimately requires joint replacement surgery which
costs the US healthcare industry over $42 billion in 2009 for
the hip and knee joints alone [1]. Clinical OA affects up to
30 million Americans including one-third of seniors aged 65
or older and 13.9% of all adults at least 25 years of age [2].
While disease-modifying antirheumatic drugs (DMARDs)
have been identified for rheumatoid arthritis (RA), an
inflammatory joint disease often studied and characterized
in comparison with OA, similar therapy for OA has yet to be
identified [3, 4].The classical definition of OA as a wear-and-
tear, noninflammatory disease has recently transitioned to an
inflammatory disease lying on a spectrum between normal
control and RA. Despite the fact that the immune system
plays a significant role in both diseases, DMARDs effective

in the treatment of RA, including tumor necrosis factor 𝛼
(TNF𝛼) and interleukin-1 (IL-1) inhibitors, have so far proven
unsuccessful in slowing disease progression and clinical
deterioration of OA patients. This paper will characterize
the key players in OA pathogenesis and identify disease-
modifying therapeutic strategies which could be reasonably
accommodated in the setting of a prevalent, high-morbidity,
and costly disease in the United States of America.

Recent research has established that multiple cells, cy-
tokines, chemokines, complement, and other aspects of the
immune system are involved in the pathogenesis of OA,
with the roles of integral cells and proteins summarized in
Tables 1 and 2, respectively. There exists a continuum of
inflammation along the spectrum of normal, OA, and RA,
with progressive increases in cytokines and other mediators
of inflammation along with leukocyte infiltration [5]. OA
pathogenesis is multifactorial and complex with evidence
pointing towards unique phenotypes and seemingly discrete
stages: early, intermediate, and late. Numerous pathways exist
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and not all may be implicated in specific joints or individuals,
but all eventually lead to the endpoint of joint degeneration.

2. Immune Response

2.1. Early Innate Response. Both the innate and adaptive
immune systems have been implicated in OA pathogenesis,
but of particular interest is the role of the innate immune sys-
tem in earlyOA. Pathogenesis beginswith trauma to the joint,
which may constitute repetitive microtrauma accumulated
throughout a lifetime or amajor traumatic event such as artic-
ular fracture. Trauma to the joint is absorbed by subchondral
bone [6] and joint-associated fat pads [7], respectively. Sub-
chondral bone releases cytokines while the fat pads release
adipokines such as leptin, resistin, adiponectin, visfatin, and
chemerin [7]. Although the role of adipokines in OA remains
to be conclusively elucidated, many studies have implied that
they may act as chemokines and increase matrix-degrading
enzymes matrix metalloproteinase (MMP) and a disinte-
grin and metalloproteinase with thrombospondin motifs
(ADAMTS) [7–9], nitric oxide synthase (NOS) [10], Toll-like
receptor (TLR) [7], and other cytokine production [7, 11].
Additionally, joint-associated fat pads are innervated by C-
fiber neurons which release substance P, thereby increasing
pain sensitivity, proinflammatory cytokine production, and
vascular permeability [12, 13].This series of events leads to the
release of damage-associated molecular patterns (DAMPs),
or alarmins, from the extracellular matrix (ECM) by both
direct trauma and the action of MMPs and ADAMTS, as
well as from neutrophils and monocytes. DAMPs stimulate
TLRs on macrophages and chondrocytes, inducing a strong
upregulation of catabolic markers (MMPs 1, 3, 9, and 13, IL-
6, IL-8, and monocyte chemotactic protein 1) and cytokines
TNF𝛼 and IL-1𝛽 by way of NF𝜅B activation, which is the
master regulator in immune response [14–16]. This chronic
activation of TLRs leads to their upregulation in chondro-
cytes [15] and increased sensitivity [16].

The actions of complement are further demonstrating the
significant role played by the innate immune system in early
OA. Wang et al. reported that complement expression and
activation were abnormally high in OA synovium, especially
in early OA, seen in Figure 1. Additionally, the membrane
attack complex (MAC, C5b-9) was present surrounding
chondrocytes in late OA [17]. MAC directly damages the
cell membrane but also stimulates MMP, ADAMTS, and
chemokine production in chondrocytes, leading to increased
chondrocyte destruction, catabolism of cartilage, and leuko-
cyte infiltration.MMPs release components of the extracellu-
lar matrix, such as fibromodulin and aggrecan, which further
induce MAC formation. To further assess the role of com-
plement, Wang et al. knocked out C5 in mice and observed
that, compared to C5+ controls, the C5− mice showed no
significant synovitis or cartilage loss 8–12 weeks status post
(s/p) medial meniscectomy, a surgery that can induce OA.
Furthermore, C6− mice developed about half the synovial
degeneration as C6+ mice s/p medial meniscectomy. CD59,
a MAC inhibitor, was also knocked out in another mouse
model, and these mice developed more severe OA compared
to controls [17]. In another study, Busby Jr. et al. found that
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Figure 1: Complement synovial infiltration in the early pathogene-
sis of OA. ELISA quantification of C3a des-arginine in synovial fluid
of healthy (𝑛 = 14), early-stage OA (𝑛 = 52), and end-stage OA
(𝑛 = 69) patients. C3a des-arginine is a carboxypeptidase-cleaved,
stable form of C3a that is generated fromC3 during activation of the
complement cascade. ∗∗𝑃 ≤ 0.01 by one-way analysis of variance
(ANOVA) and Dunnett’s post hoc test (reproduction of image with
permission and modified caption fromWang et al. [17]).

inhibiting C1s, a serine protease involved in the initiation
of the classic activation pathway, promoted favorable joint
architecture in dogs. One mechanism by which C1s exerts its
effects is by cleaving chondroprotective IGFBP-5 [18].

Other innate immune cells have also been found to
play a role in pathogenesis. NK cells have been found in
the synovium of OA patients, in one study exhibiting a
CD16+CD56+ phenotype both with and without granzymes
A and B [19]. Granzyme A and B expression correlates
with cytolytic potency in vitro [19]. In another study, NK
cells were identified within OA synovia with a CD16−CD56+
phenotype without granzyme expression. Additionally, these
cells demonstrated poor production of interferon 𝛾 (IFN𝛾),
a cytokine central to osteoclastogenesis, upon stimulation in
vitro [20]. In yet another study, granzymes A and B could
be identified in the synovia from OA, RA, and reactive
arthritis patients [21]. These findings imply that, in OA
joints, NK cells can be of an active, cytolytic phenotype, or
of an exhaustive, postactivation versus immunoregulatory
phenotype. Granzymes A and B, exclusively produced by
cytolytic lymphocytes, were identified both intracellularly in
NK cells and in the synovia of OA patients [19, 21]. While
granzyme presence in the synovium could be explained by
T cells, the exclusiveness of this is unlikely. The production
and release of granzymes [19, 21] support the notion of
an activation/postactivation phenotype theory of NK cell
involvement [20]. Of note, Huss et al., who identified mostly
CD16−CD56+ NK cells negative for granzymes and suggested
that NK cells are of the immunoregulatory phenotype [20],
performed their analysis on patients undergoing primary or
revision joint replacement, indicative of late OA patients.
Concordantly, IFN𝛾 production and degranulation of NK
cells were significantly lower after in vitro stimulation of
synovial tissue taken from revision versus primary joint
replacement patients (degranulation of 2% and 7%, resp.,
𝑃 < 0.05) [20]. The decreased sensitivity of synovial NK cells
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to stimulation in revision versus primary joint replacement
patients demonstrates evidence for an exhaustive NK cell
phenotype in late OA. Most likely there is a combination of
both activating and immunoregulatory roles played by NK
cells in OA pathogenesis.

Mast cells have been identified in the synovium of OA
patients [22–24], and in one study their counts were found to
have a positive correlation with total cellular infiltrate (𝑟

𝑠

=

0.82, 𝑃 = 0.0141) [19]. Interestingly, no correlation between
ESR and mast cell count or total cellular infiltrate was found,
suggesting only local effects in the joint microenvironment
inconsistent with markers of systemic inflammation or dis-
ease process [22]. This point is a major barrier to diagnosing
and monitoring OA and is expounded upon in later sections.
Mast cells are a potent regulator of vascular permeability,
and they may play a crucial role in leukocyte recruitment
to OA joints. Degranulated mast cells have been found in
OA synovium [23], and Buckley et al. discovered a selective
expansion and higher ratio of mast cell tryptase phenotype
in OA synovium, a phenotype consistent with degranulation
[24].

While the significance of neutrophils in synovial disease
is well characterized in RA, the role of neutrophils in OA is
relatively unknown. Neutrophils are found in varying levels
in the synovium of OA patients but generally are found
only in small numbers if present at all [5]. However, human
neutrophil peptides 1–3 (HNP1–3), 𝛼-defensins, were found
in the synovial tissue of both OA and RA patients in one
study [25]. Interestingly, stimulation with TNF𝛼 led to the
inhibition of HNP1–3 levels in the synovium of OA patients
but not RApatients.The authors concluded that this wasmost
likely due to desensitization of TNF receptors in RA synovia.
Paired with the finding that HNP1–3 stimulates macrophages
to release TNF𝛼 [26], the authors concluded that TNF forms a
negative feedback loop with HNP1–3 [25]. If HNP1–3 release
does precede the actions of TNF𝛼, this would suggest that
neutrophils play a role in early OA pathogenesis, as TNF𝛼
is a central mediator of the disease process. In another
study, neutrophil gelatinase-associated lipocalin (NGAL)was
found in complex with MMP-9 in OA synovia. NGAL
served to decrease degradation of MMP-9 [27], found to
be the predominant gelatinase in actively resorbing cartilage
[28]. In the presence of NGAL-MMP-9, increased levels of
glycosaminoglycan were released from cartilage explants in
vitro [27]. The role of the innate immune response in early
OA pathogenesis is summarized in a stepwise fashion below.

(I) Trauma to the joint is absorbed by subchondral bone
and fat pads.

(II) Cytokines, MMPs, and ADAMTS are released.

(III) Direct trauma and MMP/ADAMTS activity release
DAMPs which stimulate TLRs.

(IV) TLR activation stimulates NF𝜅B, the release of cytok-
ines (mainly TNF𝛼 and IL-1𝛽), macrophages, com-
plement, catabolic pathways in chondrocytes, other
innate immune cells, and ultimately the adaptive
immune response.

(V) Chronic cascading increases TLR expression and
receptor sensitivity, further increasing inflammation.

2.2. Adaptive Response. Actions of the innate immune sys-
tem inevitably lead to activation of the adaptive immune
system, increasing inflammation and damage to the joints.
TNF𝛼 and IL-1𝛽 are the dominant and most abundant
cytokines implicated in OA [5]. They act independently of
each other and additively to shift synovial tissue homeosta-
sis towards catabolism [29, 30]. Mechanisms of this shift
include increased resorption and inhibition of proteogly-
cans in cartilage, production of MMPs and chemokines,
endothelium activation, and induction of apoptosis in chon-
drocytes [31, 32]. This leads to increased macrophage and
CD4+ T cell infiltration, blood vessel formation by increased
vascular endothelial growth factor (VEGF), and increased
cyclooxygenase-2 level [33]. Macrophages and T cells, specif-
ically of the CD4+ Th1 subtype [34, 35], are the most
abundant cell types found in the synovium of OA patients
[5, 36]. Their activation initiates a repetitive cascade of
events, activating both the innate and adaptive immune sys-
tems, and this propagating inflammation destroys increasing
amounts of cartilage, decreasing function and increasing
morbidity. T cells are responsible for enhanced stimulation of
macrophages and the activation of B cells. Autoreactive B cells
further damage cellular integrity and increase inflammation
by producing autoantibodies specific for cartilage cell surface
proteins such as osteopontin and collagen. Elevated titers of
these autoantibodies were found in the sera fromOApatients
compared to controls [31]. The adaptive immune response is
summarized in stepwise fashion below.

(I) Cytokine release and increased vascular permeability
lead to T-cell infiltration.

(II) T cells release chemokines and cytokines including
IFN𝛾, further stimulating macrophages.

(III) Antigen presentation activates B cells.
(IV) B cells release IL-6, increasing acute phase reactants,

and produce autoantibodies causing direct damage to
cartilage.

(V) Lymphocyte and macrophage activation in the joint
microenvironment lead to a chronic, relapsing course
of inflammation.

3. Early Diagnosis and Treatment

3.1. Imaging Techniques. Anatomic imaging techniques, such
as radiography and magnetic resonance imaging (MRI), are
currently used for epidemiological studies and clinical trials
[37, 38]. Plain radiography is the traditional approach to
monitoring progression of disease by clinicians; however,
the drawbacks of this approach are apparent: insensitivity to
change, nonspecificity, susceptibility to measurement error
due to change in positioning, and inability to detect early
stages of disease [39, 40]. MRI is regarded as sensitive, valid,
and reproducible in that it can assess abnormalities of the
whole-joint structure including cartilage degeneration [41],
subchondral bone marrow lesions [42, 43], meniscal defects
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Figure 2: In vivo imaging of inflammation with two cFLFLF-derived probes in the rat knee joints treated with (right knee) or without (left
knee) monoiodoacetate (MIA). (a) CFLFLF-PEG-Cy 7 probe with animal back down, at day 5 after MIA injection; (b) cFLFLF-PEG-DOTA-
64Cu with animal back up, at day 5 after MIA injection (upper column: micro-CT; middle column: micro-PET; lower column: fused).

[44], and joint effusion and synovitis [45]. However, even
MRI is not sensitive enough to detect the early immune cell
infiltration of joints in OA, as inflammation far precedes
cartilage destruction marked by radiographic change [46].

There is a substantial need to develop imaging techniques
that can visualize the activity of the disease process itself,
rather than measure structural changes that are a result of
the disease process [47]. In this regard, a few reports have
been published on the use of functional nuclear imaging
techniques, such as positron emission tomography (PET)
and planar or single-photon emission computed tomography
(SPECT), for monitoring the inflammatory process of OA
[48]. 18F-2-Fluoro-2-deoxy-D-glucose and 111In-diethylene
triamine pentaacetic acid-folates have been explored as
imaging tracers for OA because of respective increased
metabolism of glucoses and elevated expression of folate
receptors in activated immune cells [49]. Although these
tracers have demonstrated some promise in clinical trials as
well as in experimental OA models, they are likely not in
use due to the lack of an inflammation-specific window of
opportunity for imaging.

Alternatively, formyl peptide receptor (FPR) is primar-
ily expressed on activated leukocytes as a defense mecha-
nism to detect and trigger an immune cell response to
inflammation caused by infections in a time and con-
centration dependent manner [50]. In the past years,
based on a FPR-specific binding peptide, cFLFLF, we have
successfully utilized the cFLFLF-PEG modules to build
PET (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-
64Cu, also known as DOTA-64Cu), SPECT (99mTc), and opti-
cal (cyanine-5 and cyanine-7) imaging probes and exhibited

excellent imaging in a variety of animal inflammationmodels
[51–55]. The cFLFLFK-Cy-7 probe is now commercially
available (Kerafast, Inc.) and cFLFLF-based probes have been
developed enthusiastically for animal imaging by the broader
research community [56–58].

We are currently exploring if a cFLFLF-based SPECT
imaging approach is feasible tomonitor aseptic inflammation
with a particular interest in OA. To this end, an acute model
was created by intra-articular injection of monoiodoacetate
for near-infrared fluorescence (NIRF) or PET imaging of
inflammatory cells duringOAdevelopment in rat knee joints.
As shown in Figure 2, the inflamed joints were well imaged by
either aNIRF probe cFLFLF-PEG-Cy 7 (Figure 2(a)) or a PET
probe cFLFLF-PEG-DOTA-64Cu (Figure 2(b)). If available in
the clinic, use of this SPECT technique can facilitate early
detection and monitoring of the recruitment of innate leuko-
cytes during OA development, allow correct characterization
and diagnosis to direct early appropriate intervention, and
improve long-term outcomes in OA patients [59].

As a caveat, FPR expression in fibroblasts and mes-
enchymal stem cells (MSCs) has been demonstrated [60, 61].
However, these MSCs and fibroblasts likely serve to repair
tissue, initiate tissue remodeling, andmediate leukocyte infil-
tration in response to the acute chemotactic stimuli of formyl
peptide, thereby still reflecting early changes on imaging.The
actions of fibroblasts are noted in Tables 1 and 2, respectively.
MSCs decrease inflammation, and overexpression of FPR in
these cells is currently being studied as potential therapy in
chronic disease such as cystic fibrosis [61]. Additionally, FPR
ligands have been shown to decrease inflammation in joints
and have even been suggested as potential therapies for RA
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Table 3: Probes for mediators of inflammation in modern imaging
techniques.

Cell type or protein Probe
Macrophage (i) 18F-FDG (PET) [98, 99]

CD4+ T cell (i) 64Cu-PTSM (PET) [100]
(ii) 18F-FB-IL-2 (PET) [99]

B cell (i) 124I-rituximab (PET) [101]

Neutrophil (i) cFLFLF-PEG-Cy 7 (NIRF)
(ii) cFLFLF-PEG-DOTA-64Cu (PET)

Mast cell (i) Ligand 1 (in vitro) [102]
TNF𝛼 (i) 64Cu-DOTA-etanercept (PET) [103]

Complement (i) USPIO-conjugated anti-C3mab
(T2-MRI) [104]

MMP (i) 124I-HO-MPI (CGS 27023A) (PET)
[105]

[62]. Regarding the utilization of FPR as an imaging target in
early OA, the actions of MSCs, fibroblasts, and FPR ligands,
while noteworthy, should have little to no effect or have not
yet been discovered. Probes formany cell types andmediators
of inflammation mentioned in this paper are displayed in
Table 3 and Figure 3.

3.2. Biomarkers. To date, many barriers exist in identifying
biomarkers reflective of OA severity; histochemical find-
ings have yet to be linked to clinical traits such as pain
and function. Foremost, as evidenced in the next section,
inflammation in OA is not only local but also systemic,
making standard systemic measurements from individual
to individual difficult. The confounding factors in systemic
inflammation are immeasurable: age, genetics, diet, activity,
kidney function, liver function, weight, and other comorbidi-
ties to name a few [63]. Numerous biomarkers have been
thought to show promise in recent studies, such as serum
cartilage oligomeric matrix protein and urine C-terminal
cross-linked telopeptide type II collagen levels, but these are
nonspecific to cartilage [63, 64]. Complicating the lack in
specificity of inflammatory biomarkers is that measurements
in OA patients are drawn once disease is already established.
The ability is compromised to determine baseline patient
values, cut-off values distinguishing normal from abnormal,
and markers that are pathological rather than released nat-
urally or concurrently. Another major barrier limiting the
identification of both biomarkers and effective treatment is
the unfortunate discrepancy between in vitro and in vivo
studies. Decreasing specific mediators of inflammation has
thus far not led to improved pain score or prognosis in vivo.

For these reasons testing biomarker levels in synovial
fluid seems appropriate. However, the natural microenvi-
ronment between individual joints varies, making standard
measurements difficult to implement [63]. This is evidenced
by the unique infrapatellar fat pad of the knee, which
greatly contributes to OA pathogenesis by way of adipokine
release. Additionally, extracting synovial fluid is restricted to
the larger joints and carries risks as compared to drawing
blood. Finally, different phenotypes of disease presumably
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Figure 3: Inflammatory biomarkers in PET imaging (reproduced
with permission fromWu et al. [99]).

involve diverse biomarkers, pathways, and sequelae [63]. As
evidenced by Table 1, T cells [34, 65] and NK cells [19, 20, 66]
have been shown to possess exhaustive and chronic pheno-
types, respectively, in late versus early disease, demonstrating
that early disease is the primary mechanism responsible
for changes in the joint microenvironment, underlining the
importance of identifying these changes.

3.3. Hurdles to Treatment. The significance of the innate
immune system in early OA becomes evident, as it leads
to direct chondrocyte and cartilage destruction as well as
NF𝜅B activation with pronounced redundancy and perpet-
uation. As stated previously, NF𝜅B is the master regulator
of the immune response. It is involved in the activation of
complement, defensins, adhesions, and caspase-1, as well as
the production of cytokines, reactive oxygen species (ROS),
and NO. Despite the attractiveness of targeting NF𝜅B in
disease-modifying therapy, it is an unreliable target in large
part due to its universal role in normal cellular signaling.
Its modulation has a significant side effect profile; however
natural health products such as those found in grapes and
green tea have shown promise but need further study [67].

The difficulty in treating OA is that once local and
systemic inflammation is established, debilitative changes in
affected joints are difficult to control. OA is both affected
by and contributing to a baseline proinflammatory state,
such as that seen in senescence, metabolic syndrome, and
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Systemic effects of OA-derived
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Figure 4: Model for role of systemic proinflammatory state and OA. Inflammatory mediators released into blood enter the joint exacerbating
OA, which releases its own mediators of inflammation leading to increased systemic inflammation (reproduced with permission from
Berenbaum [6]).

Alzheimer’s disease amongst others (Figure 4) [4]. For exam-
ple, Berenbaum et al. found that a high fat diet increased
inflammation in the acute phase of OA [7]. In another
study, Kyrkanides et al. found that inducing OA in mice
genetically susceptible to Alzheimer’s disease exacerbated
and accelerated neuroinflammation, increasing the number
and size of amyloid plaques [68]. Many therapies, includ-
ing anti-TNF𝛼 and anti-IL-1𝛽 therapy, have been shown
to decrease inflammation but fail to significantly improve
function or prognosis in established OA patients [3, 4]. Pain
levels have been shown to have a statistically significant
correlation with level of change in synovitis (𝑟 = 0.21,
𝑃 = 0.0003), but not cartilage destruction or baseline level
of synovitis [69]. This correlation is only modest and does
nothing but supporting the notion that a relative increase
in inflammation will increase perception of pain. There
is a disconnection between biomarkers of disease, radio-
graphic change, and symptomology, complicating treatment.
Degenerative change in OA can occur under two months
following trauma [70], and epigenetics has been shown to
play a role in mediating the acute inflammatory changes
driven by the altered joint microenvironment [71]. It is
for these reasons that we hypothesize that addressing early
inflammatory change in the synovium consistent with OA
is crucial in modulating disease progression and therefore
patient disability. Therapies that have failed to show benefit
to date may be effective when implemented at an appropriate
stage of disease. Future research should be targeted toward
identifying at-risk patients and early intervention.

4. Perspectives

Pharmacological treatment to date has had varying effects on
symptomology, but diseasemodulation has yet to be attained.
Commonmodalities include NSAIDS, corticosteroids, chon-
droitin sulfate, and glucosamine [72]. These treatments are

variably effective on an individual basis and often only
provide temporary relief and are needed to be repeated
chronically. Trials of anti-TNF𝛼 and anti-IL-1𝛽 therapy for
disease modulation have been unsuccessful despite the dom-
inance of TNF𝛼 and IL-1𝛽 in pathogenesis [4]. Chevalier
et al. concluded that IL-1𝛽 antagonism may benefit patients
with baseline high levels of pain if administered in low,
frequent intra-articular (IA) injections to avoid neutropenia
and serious infection [73]. One in vivo study revealed that
IA injection of lubricin up to two weeks after injury reduced
severity of OA in mice, while local antioxidants such as N-
acetylcysteine after injury showed promise in vitro [74, 75].
The proposed benefit of these treatments administered soon
after injury in injury-induced OA underlines the significance
of early intervention in OA pathogenesis. Treatment with
fibroblast growth factor 18, which is specific for the anabolic
FGFR-3 versus the catabolic FGFR-1, is currently on trial [71].

We believe that regular screening is needed and is justified
as OA is ubiquitous in seniors aged over 65, is clinically
present in 13.9% of US adults aged 25 or above, and is a
leading cause of disability and hospitalization in the USA
[1, 2, 72]. However, further studies are needed in order
to establish guidelines for screening. We recommend that
regular screening for OA be implemented on an outpatient
basis. Special attention should be given to patients of 65 years
or above and patients with metabolic syndrome, Alzheimer’s
disease, or other systemic proinflammatory states. Candidate
markers for screening should continue to be researched
with particular attention paid to local articular levels. IL-
6, complement, and ratio of FGFR-3/FGFR-1 should be
considered.

Additionally, the role of physical, imaging, or combi-
nation diagnostic paradigms must be considered. Contrast-
enhanced MRI and power Doppler ultrasound are the
leading imaging modalities for synovitis [46]. Identifying
early and specific changes in OA may best be visualized
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using PET, NIRF, or SPECT imaging. Many probes for
cells and proteins involved in OA pathogenesis are listed
in Table 3 and Figure 3. We are currently developing a
Tc99m-cFLFLF/SPECT technique to visualize early leuko-
cyte recruitment in OA joints based on a preliminary in vivo
study (Figure 2). While our probe is not 100% specific for
leukocytes, we are currently in the process of identifyingmore
specific receptors.

As changes in the joint consistent with OA can occur
rapidly following injury and are associated with inflam-
mation, intervention should be aimed at the early reactive
phase of OA pathogenesis [70]. Importantly, past thera-
peutic trials may have failed due to attempted intervention
at irreversible stages of disease. Wang et al. showed that
knocking out components of the complement cascade greatly
reduced incidence of OA in mice [17] and this strategy
for treatment management should be further researched. A
study assessing whether there is an increased relative risk
of OA diagnosis and severity in patients with paroxysmal
nocturnal hemoglobinuria could be beneficial in this regard.
Anticomplement therapy should initially be attempted locally
to narrow the focus of treatment and lower the incidence of
potential severe infection.

While disease modification in OA still eludes the medical
community, recent advances in pathogenesis and under-
standing of the disease process beseech hope to solving
the riddle of a ubiquitous, costly disease that significantly
diminishes quality of life in millions of patients. With guided
further research and international collaboration, we believe
that early detection and intervention in OA are possible. Due
to the lack of success and discrepancy of disease modulation
between in vivo and in vitro studies, the significance of
identifying patients in the early phase of disease becomes
paramount in experimenting with detection and treatment of
the disease process. Screening must be implemented in high-
risk patients, and early, aggressive treatment is necessary and
mandated to avoid substantial morbidity.
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