

Role of Support Oxygen Vacancies in the Gas Phase Hydrogenation of Furfural over Gold

Maoshuai Li¹ · Laura Collado¹ · Fernando Cárdenas-Lizana¹ · Mark A. Keane¹

Received: 17 August 2017 / Accepted: 9 October 2017 / Published online: 23 October 2017 © The Author(s) 2017. This article is an open access publication

Abstract We have examined the role of support oxygen vacancies in the gas phase hydrogenation of furfural over Au/TiO₂ and Au/CeO₂ prepared by deposition–precipitation. Both catalysts exhibited a similar Au particle size distribution (1-6 nm) and mean (2.8-3.2 nm). Excess H₂ consumption during TPR is indicative of partial support reduction, which was confirmed by O₂ titration. Gold on CeO₂ with a higher redox potential exhibited a greater oxygen vacancy density. A lower furfural turnover frequency (TOF) was recorded over Au/CeO₂ than Au/TiO₂ and is linked to suppressed H₂ chemisorption capacity and strong -C=O interaction at oxygen vacancies that inhibited activity. Gold on non-reducible Al_2O_3 as benchmark exhibited greater H_2 uptake and delivered the highest furfural TOF. Full selectivity to the target furfuryl alcohol was achieved over Au/ TiO₂ and Au/Al₂O₃ at 413 K and over Au/CeO₂ at 473 K with hydrogenolysis to 2-methylfuran at higher reaction temperature (523 K). A surface reaction mechanism is proposed to account for the activity/selectivity response.

Graphical Abstract

Mark A. Keane M.A.Keane@hw.ac.uk **Keywords** Selective hydrogenation · Furfural · Furfuryl alcohol · Oxygen vacancies · Supported Au

1 Introduction

Oxygen vacancies in metal oxides (e.g. titanium, cerium, iron and vanadium oxides) are defects generated by the loss of lattice oxygen as a result of high temperature (≥ 673 K) annealing in ultra-high vacuum [1], chemical reduction (by H_2 or CO) [2] and/or electron irradiation [3]. The formation and properties of these vacancies have been the subject of theoretical (DFT) and experimental (UPS, XPS, EELS, IR, EPR, STM) work [4–6]. Contributions due to oxygen vacancies have been established in catalytic water-gas shift [7], steam reforming of oxygenates [8], CO oxidation [9] and hydrodeoxygenation [10]. Moreover, the presence of these defects can modify the electronic characteristics (via electron transfer) [11], particle size (by stabilisation at vacancy sites) [12] and chemical properties (metal-support interaction) [13] of the supported metal phase (Pt [7], Ag [11], Au [13] and Pd [14]), which impact on reactant adsorption/ activation. Hydrogenation is a key process in the food, petrochemical, pharmaceutical and agrochemical sectors [15]. The effect of surface oxygen vacancies in catalytic hydrogenation is still a subject of debate. Enhanced activity and (-C=O reduction) selectivity reported for Pt/CeO₂ [16] and Au/Fe_2O_3 [17] in the hydrogenation of crotonaldehyde and benzalacetone was attributed to facilitated activation of the carbonyl function at oxygen vacancies and/or electronrich metal nano-particles. On the other hand, a (threefold) decrease in crotonaldehyde hydrogenation activity was observed following incorporation of CeO₂ (by impregnation with $Ce(NO_3)_3$) on Ru/Al₂O₃ and ascribed to strong -C=O interaction with oxygen deficient sites [18]. Tian

¹ Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, UK

et al. [19] studying the hydrogenation of cinnamaldehyde over Au/CeO₂ suggested a preferential -C=C- adsorption on Au^{$\delta+$} (resulting from electron transfer to support defects) to explain lower selectivity in terms of -C=O reduction. In the hydrogenation of *p*-chloronitrobenzene, unwanted hydrodechlorination was reported for Au/Ce_{0.62}Zr_{0.38}O₂ and ascribed to -C-Cl scission at vacancy sites [20]. In this study, we consider the role of oxygen vacancies (on reducible TiO₂ and CeO₂) in determining the catalytic performance of supported Au in gas phase hydrogenation of -C=O using furfural as model reactant. Gold on non-reducible alumina serves as a benchmark catalyst.

2 Experimental

2.1 Materials and Catalyst Preparation

Commercial TiO₂ (P25, Degussa) and CeO₂ (Sigma-Aldrich) were used as received. The supported Au catalysts were prepared by deposition-precipitation using urea (100-fold excess, Riedel-de Haën, 99%) with HAuCl₄ $(1.5 \times 10^{-3} - 3.0 \times 10^{-3} \text{ M}, 400 \text{ cm}^3, \text{ Sigma-Aldrich}, 99\%).$ A suspension containing the oxide carrier (10 g) was heated to 353 K (2 K min⁻¹) where the pH progressively increased to *ca*. 7 after 3–4 h as a result of urea decomposition [21]. The solid obtained was separated by filtration, washed with distilled water until chlorine free (from AgNO₃ test) and dried in He (45 cm³ min⁻¹) at 373 K (2 K min⁻¹) for 5 h. The resultant sample was sieved (ATM fine test sieves) to mean particle diameter = 75 μ m, activated at 2 K min⁻¹ to 523 K in 60 cm³ min⁻¹ H₂, cooled to ambient temperature and passivated in 1% v/v O2/He for 1 h for ex situ characterisation. Synthesis and activation of the benchmark Au/Al₂O₃ catalyst is described in detail elsewhere [22].

2.2 Catalyst Characterisation

The Au content was measured by atomic absorption spectroscopy (Shimadzu AA-6650 spectrometer with an airacetylene flame) from the diluted extract in aqua regia (25% v/v HNO₃/HCl). Temperature programmed reduction (TPR), H₂ and O₂ chemisorption measurements were conducted on the CHEM-BET 3000 (Quantachrome Instrument) unit with data acquisition/manipulation using the TPR WinTM software. Samples were loaded into a U-shaped Pyrex glass cell (3.76 mm i.d.) and heated in 17 cm³ min⁻¹ (Brooks mass flow controlled) 5% v/v H₂/N₂ to 523 K at 2 K min⁻¹. The effluent gas passed through a liquid N₂ trap and H₂ consumption was monitored by a thermal conductivity detector (TCD). The activated samples were swept with 65 cm³ min⁻¹ N₂ for 1.5 h, cooled to 413 K and subjected to H₂ chemisorption by pulse (10 µl) titration. In blank tests,

there was no measurable H₂ uptake on the oxide supports alone. Oxygen chemisorption post-TPR was employed to determine the extent of support reduction [23], where the samples were reduced as described above, swept with $65 \text{ cm}^3 \text{min}^{-1}$ He for 1.5 h, cooled to 413 K with pulse (50 μ l) O₂ titration. It has been demonstrated previously that Au contribution to total O_2 adsorbed is negligible [24]. Nitrogen physisorption was performed using the commercial Micromeritics Gemini 2390p system. Samples were outgassed at 423 K for 1 h prior to analysis. Total specific surface area (SSA) was calculated using the standard single point BET method. X-ray diffractograms (XRD) were recorded on a Bruker/Siemens D500 incident X-ray diffractometer using Cu Kα radiation, scanning at 0.02° per step over the range $20^{\circ} \le 2\theta \le 80^{\circ}$. The diffractograms were identified against the JCPDS-ICDD reference standards, i.e. Au (04-0784), anatase-TiO₂ (21-1272), rutile-TiO₂ (21-1276), CeO₂ (43-1002) and Ce₂O₃ (23-1048). Gold particle morphology was examined by scanning transmission electron microscopy (STEM, JEOL 2200FS field emission gunequipped unit), employing Gatan Digital Micrograph 1.82 for data acquisition/manipulation. Samples for analysis were prepared by dispersion in acetone and deposited on a holey carbon/Cu grid (300 Mesh). The surface area weighted mean Au particle size (d) was based on a count of at least 300 particles, according to

$$d = \frac{\sum_{i}^{n} n_i d_i^3}{\sum_{i}^{n} n_i d_i^2} \tag{1}$$

where n_i is the number of particles of diameter d_i .

2.3 Catalyst Testing

Hydrogenation of furfural (Sigma-Aldrich, 99%) was carried out at atmospheric pressure and 413-523 K in situ after activation in a continuous flow fixed bed tubular reactor (15 mm i.d.). Reactions were conducted under operating conditions that ensured negligible mass/heat transport limitations. A layer of borosilicate glass beads served as preheating zone, ensuring that the furfural reactant was vaporised and reached reaction temperature before contacting the catalyst. Isothermal conditions $(\pm 1 \text{ K})$ were ensured by diluting the catalyst bed with ground glass (75 μ m), which was mixed thoroughly with catalyst before loading into the reactor. Reaction temperature was continuously monitored by a thermocouple inserted in a thermowell within the catalyst bed. Furfural was delivered as *n*-butanolic (Sigma-Aldrich, >99%) solutions to the reactor via a glass/Teflon air-tight syringe and Teflon line using a microprocessor controlled infusion pump (Model 100 kd Scientific) at a fixed calibrated flow

rate. A co-current flow of furfural and H₂ was adjusted to $GHSV = 1 \times 10^4 \text{ h}^{-1}$. The molar Au to inlet reactant molar feed rate (n/F) spanned the range 4×10^{-3} - 30×10^{-3} h. Passage of furfural in a stream of H₂ through the empty reactor or over support alone did not result in any detectable conversion. The reactor effluent was condensed in a liquid N₂ trap for subsequent analysis using a Perkin-Elmer Auto System XL gas chromatograph equipped with a programmed split/ splitless injector and a flame ionisation detector, employing a DB-1 (50 m×0.33 mm i.d., 0.20 µm film thickness) capillary column (J&W Scientific). Data acquisition and manipulation were performed using the TurboChrom Workstation Version 6.3.2 (for Windows) chromatography data system. Furfuryl alcohol and 2-methylfuran were used as supplied (Sigma-Aldrich, 99%) for product identification/analysis. All gases (O₂, H₂, N₂ and He) were of high purity (BOC, >99.98%). Furfural fractional conversion (X) is defined by

$$X = \frac{[furfural]in - [furfural]out}{[furfural]in}$$
(2)

and selectivity (S) to product (j) is given by

$$S_{j}(\%) = \frac{[product]j, \text{ out}}{[furfural]in - [furfural]out} \times 100$$
(3)

where the subscripts "in" and "out" refer to the inlet and outlet gas streams. Turnover frequency (*TOF*, rate per active site) was calculated using Au dispersion measurements from STEM as described elsewhere [25]. Repeated reactions with different samples from the same batch of catalyst delivered raw data reproducibility and carbon mass balances that were within $\pm 5\%$.

3 Results and Discussion

3.1 Catalyst Characterisation

The physicochemical characteristics of Au/TiO₂ and Au/ CeO₂ are given in Table 1; the values for Au/Al₂O₃ are taken from a prior publication [22]. The samples contained a similar Au loading (0.6–0.8 mol%) where the SSA match values reported for TiO₂ (50 m² g⁻¹) [26] and CeO₂ (36–67 m² g⁻¹) [11] supported group IB metal catalysts. XRD analysis (Fig. 1) of Au/TiO₂ (I) revealed a mixture of tetragonal anatase [20=25.3°, 37.8°, 48.1° and 62.8°, (III)] and rutile [20=27.4°, 36.1°, 41.2°, 54.3°, 56.6°, 69.0° and 69.8°, (IV)] phases with an anatase : rutile ratio (5:1) consistent with Degussa P25 [27]. The XRD pattern of Au/CeO₂ (II) presents principal peaks (at 20=28.6°, 33.1°, 47.5°, 56.4° and 59.1°) characteristic of CeO₂ (V). In both cases, there were no diffraction peaks due to Au (principal peak 20 = 38.1°; JCPDS-ICDD card 04-0784), diagnostic of a well

Table 1 Gold loading, specific surface area (SSA), mean Au particle size from STEM analysis (*d*), H₂ consumption during TPR, H₂ and O₂ uptake and support standard redox potential (E_{redox}) for the supported Au catalysts

Catalyst	Au/TiO ₂	Au/CeO ₂	Au/Al ₂ O ₃ ^a
Au loading (mol%)	0.8	0.7	0.6
$SSA (m^2 g^{-1})$	52	64	166
d (nm)	3.2	2.8	4.3
TPR H_2 consumption (µmol g ⁻¹)	174 ^b /147 ^c	495 ^b /61 ^c	87 ^b /84 ^c
H_2 chemisorption (µmol $g_{Au}^{-1})^d$	146	87	318
$E_{\rm redox} ({\rm V})^{\rm e}$	-0.6	1.6	-1.7
O_2 chemisorption (µmol g ⁻¹) ^d	8	90	1

^aData from [22]

^bExperimental measurements

^cH₂ required for Au³⁺ \rightarrow Au⁰

^dMeasured at 413 K

^eTaken from [30]

Fig. 1 XRD patterns for (*I*) Au/TiO₂ and (*II*) Au/CeO₂ with JCPDS-ICDD reference diffractograms for (*III*) anatase-TiO₂ (21-1272), (*IV*) rutile-TiO₂ (21-1276) and (*V*) CeO₂ (43-1002)

dispersed (<5 nm) metal phase [24]. This was confirmed by STEM analysis (Fig. 2) where both samples exhibited quasispherical Au nanoparticles (IA, IB) with similar size range (1–6 nm) and mean [(II); Table 1]. The TPR profile of Au/ TiO₂ (Fig. 2IIIA) shows a single peak (T_{max} = 376 K) with an associated H₂ consumption that exceeded the amount required for the formation of Au⁰ (Table 1) but far lower than that (6200 µmol g⁻¹) required for Ti⁴⁺ \rightarrow Ti³⁺. This suggests a partial reduction of the support, notably at the Au-support interface [28]. Reduction of Au/CeO₂ (Fig. 2IIIB) exhibited H₂ consumption at higher T_{max} (418 K). Liu and Yang [29] reported a dependency of Au³⁺ reducibility on support redox properties where weaker interactions with TiO₂ compared with CeO₂ rendered the Au³⁺ component more susceptible to reduction. In the TPR of Au/CeO₂, H₂ consumed was Fig. 2 (I) Representative STEM images with (II) associated Au particle size distribution histograms and (III) temperature programmed reduction (TPR) profiles for A Au/TiO₂ (solid bars) and B Au/ CeO₂ (hatched bars)

greater than the requirements for Au precursor reduction but considerably less than bulk $Ce^{4+} \rightarrow Ce^{3+}$ transformation (2900 µmol g⁻¹). There were no signals due to Ce_2O_3 (main peak $2\theta = 29.5^{\circ}$; JCPDS-ICDD card 23-1048) in the XRD pattern. Increased H₂ uptake during activation of Au/ CeO₂ relative to Au/TiO₂ suggests a greater degree of support reduction. This agrees with the higher redox potential [30] of CeO₂ (E_{redox} , Table 1). In contrast, TPR analysis of benchmark Al₂O₃ (with the lowest E_{redox}) supported Au (d=4.3 nm) generated an equivalent H₂ consumption to the theoretical value for Au³⁺ \rightarrow Au⁰, confirming support nonreducibility (Table 1).

The number of surface oxygen vacancies can be quantified by oxygen titration [23, 31]. Oxygen chemisorption post-TPR was employed to determine the extent of support reduction; the values are given in Table 1. Decreasing O_2 uptake (Au/CeO₂ > Au/TiO₂ > Au/Al₂O₃) matched the sequence of decreasing support redox potential and H₂ consumption during TPR. Oxygen vacancy formation in TiO₂ has been established by *in situ* EPR following reduction (in H₂) over 573–1073 K [32]. Boccuzzi et al. [33] using FTIR spectroscopy demonstrated H₂ dissociation on Au sites supported on TiO₂ (reduced at 523 K) with spillover that resulted in surface reduction. It has been established (by DFT calculation and STM) that bare ceria surfaces can be reduced ($Ce^{4+} \rightarrow Ce^{3+}$) to generate oxygen defects postactivation in H₂ at 400-900 K [34, 35]. Addition of Au to ceria facilitates support reduction (273-573 K) during TPR [36]. The performance of supported Au catalysts in hydrogenation is determined by the capacity for H₂ adsorption/dissociation [24]. Hydrogen chemisorption (at 413 K, Table 1) on Au/TiO₂ was measurably higher than Au/CeO₂. Gold particle size and support interactions impact on H_2 adsorption [37–39]. Corner and edge sites associated with smaller Au particles (<10 nm) have been identified as active for H_2 dissociation [37]. Mean Au size is close for the three catalysts (Table 1). The order of decreasing H₂ uptake (Au/ $Al_2O_3 > Au/TiO_2 > Au/CeO_2$) matches that of increasing O_2 chemisorption (Table 1). Lower uptake on Au/TiO₂ and Au/ CeO₂ can be linked to metal encapsulation due to surface Au diffusion into the bulk (573-673 K) that is facilitated by oxygen vacancies on reducible oxides [40, 41], an effect more pronounced for Au/CeO₂ with higher vacancy density.

The characterisation results demonstrate the generation of nano-scale Au particles on TiO_2 and CeO_2 with a greater density of surface oxygen vacancies and lower H₂ uptake on

Au/CeO₂. Gold on non-reducible Al_2O_3 with similar metal size is a suitable candidate to evaluate the effect of oxygen vacancies on furfural hydrogenation over supported Au.

3.2 Catalytic Response

A search through the literature did not produce any reported application of TiO₂ or CeO₂ supported Au catalysts in furfural hydrogenation. We can flag the work of Ohyama et al. [42] on high pressure (38 atm) liquid phase hydrogenation of 2-hydroxylmethyl-5-furfural where reaction over Au/TiO₂ resulted in furan ring opening and Au/CeO₂ promoted carbonyl group reduction at a (tenfold) lower activity. No explanation was given for the observed differences in selectivity or activity. Gas phase furfural hydrogenation at 413 K over Au/TiO₂ generated the target furfuryl alcohol as sole product (Fig. 3I). Reaction over Au/Al₂O₃ delivered an appreciably higher selective turnover frequency (TOF) and Au/ CeO_2 was inactive (Fig. 3II). This activity response can be linked to differences in H_2 chemisorption capacity (Table 1, in the order $Au/Al_2O_3 > Au/TiO_2 > Au/CeO_2$) under reaction conditions. Zanella et al. [43] identified H₂ dissociation as rate-determining in the chemoselective hydrogenation of aldehydes over supported Au. In this study, the TOF normalised with respect to H₂ chemisorption capacity was lower for Au on reducible supports (notably Au/CeO₂) relative to Au/ Al₂O₃. This suggests a contribution due to furfural adsorption at surface oxygen vacancies. These vacancies can act as sites for strong binding of oxygenated reactants [34, 44]. The higher density of oxygen vacancies on Au/CeO₂ (Table 1) can act to stabilise surface adsorbed furfural, resulting in lower reaction rates. The action of oxygen vacancies to inhibit -C=O reduction is in line with the lower activity recorded for cinnamaldehyde hydrogenation (to cinnamyl alcohol) over Au/CeO₂ relative to Au/MgO-Al₂O₃ reported by Tian et al. [19] though this possibility was not proposed by the authors. An increase in temperature (\geq 473 K) (i) elevated TOF where Au/CeO₂ consistently delivered lower

rates (Fig. 3II) and (ii) resulted in a switch in selectivity from furfuryl alcohol to 2-methylfuran. Reaction over Au/ TiO₂ and Au/Al₂O₃ at 523 K generated 2-methylfuran as principal product (S > 91%). In the case of Au/CeO₂, a higher reaction temperature (473 K) resulted in the selective transformation of furfural to furfuryl alcohol while a further increase (to 523 K) generated 2-methylfuran as by-product. These results suggest that elevated temperatures favour activation of -C=O for hydrogenolytic cleavage, which finds agreement in results reported for Cu/MgO [45].

Ceria supported Au with a greater oxygen vacancy density exhibited a distinct catalytic response compared with Au/TiO₂ and Au/Al₂O₃. We propose a reaction mechanism that involves direct participation of surface vacancies where the carbonyl group of furfural can be "anchored" to a vacancy (Ce^{3+}) site (see Fig. 4I), forming a covalent Ce-O bond with a high energy of interaction [46] that stabilises the surface reactant and lowers reactivity. The (stabilised) carbonyl group can be activated for reaction at higher temperature (523 K) where hydrogenolysis to 2-methylfuran results from hydrogen scission of -C=O. The surface Ce^{3+} sites are oxidised by the abstracted oxygen from the carbonyl group. Oxygen vacancies can be regenerated by H₂ dissociated on Au sites that spills over to the support, resulting in a continuous creation/ consumption/regeneration of these vacancies. Another possible adsorption mode is through the furan ring oxygen that interacts with the electron-rich vacancy site [47] (Fig. 4II). The energy barrier for reaction is lower relative to the covalent -C=O "anchoring" at vacancies. In this case, the carbonyl group is attacked by reactive hydrogen to form the target furfuryl alcohol with subsequent desorption. Oxygen defects are also present on Au/TiO₂ but at a lower density with a consequent higher conversion to furfuryl alcohol at lower reaction temperature. Interaction of -C=O with Lewis acid sites (Al³⁺) on non-reducible Al_2O_3 facilitates -C=O activation [27] and results in greater reactivity and higher TOF.

Fig. 3 Variation of I furfuryl alcohol selectivity ($S_{Furfuryl alcohol}$) at an equivalent fractional furfural conversion and II turnover frequency (*TOF*) with temperature for reaction over Au/TiO₂ (solid bars), Au/CeO₂ (hatched bars) and Au/Al₂O₃ (grey bars). *Reaction conditions:* P=1 atm; T=413-523 K

Fig. 4 Proposed surface furfural adsorption/activation and reaction for Au on reducible supports (CeO₂) at oxygen vacancies via (I) the carbonyl group (grey arrows) or (II) furan ring (black arrows)

4 Conclusion

We have established structure sensitivity in the gas phase hydrogenation of furfural over (0.7–0.8 mol%) Au/TiO₂ and Au/CeO₂ (mean Au particle size = 2.8-3.2 nm). A surface reaction mechanism is proposed to explain the role of surface oxygen vacancies in determining hydrogenation activity and selectivity. Reaction over Au/CeO₂ delivered lower furfural TOF, which can be linked to inhibited H₂ chemisorption capacity. The greater oxygen vacancy density on CeO₂ (with higher redox potential) post-TPR served to stabilise the -C=O function and lower reactivity. Full selectivity to the alcohol was achieved over Au/TiO₂ (at 413 K) and Au/CeO₂ (at 473 K) where hydrogenolysis to 2-methylfuran was promoted at 523 K. Reaction over Au on non-reducible Al_2O_3 delivered higher furfural TOF (at 413 K) to furfuryl alcohol with 2-methylfuran formation at $T \ge 473$ K.

Acknowledgements We thank Dr. X. Wang for his contribution to this study. The work was supported in part by the Engineering & Physical Sciences Research Council (Grant EP/M029476/1). Financial support to Dr. M. Li through the Overseas Research Students Award Scheme (ORSAS) is also acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

- Setvín M, Aschauer U, Scheiber P, Li Y-F, Hou W, Schmid M, Selloni A, Diebold U (2013) Science 341:988
- 2. Su J, Zou X, Chen J-S (2014) RSC Adv 4:13979
- Ganduglia-Pirovano MV, Hofmann A, Sauer J (2007) Surf Sci Rep 62:219
- 4. Mullins DR (2015) Surf Sci Rep 70:42
- Pan X, Yang M-Q, Fu X, Zhang N, Xu Y-J (2013) Nanoscale 5:3601
- Weaver JF, Zhang F, Pan L, Li T, Asthagiri A (2015) Acc Chem Res 48:1515
- Vecchietti J, Bonivardi A, Xu W, Stacchiola D, Delgado JJ, Calatayud M, Collins SE (2014) ACS Catal 4:2088
- Oemar U, Ang ML, Chin YC, Hidajat K, Kawi S (2015) Catal Sci Technol 5:3585
- 9. Yu Y-Y, Gong X-Q (2015) ACS Catal 5:2042
- Thibodeau TJ, Canney AS, DeSisto WJ, Wheeler MC, Amar FG, Frederick BG (2010) Appl Catal A 388:86
- 11. Chang S, Li M, Hua Q, Zhang L, Ma Y, Ye B, Huang W (2012) J Catal 293:195
- Ta N, Liu J, Chenna S, Crozier PA, Li Y, Chen A, Shen W (2012) J Am Chem Soc 134:20585
- 13. Maeda Y, Iizuka Y, Kohyama M (2013) J Am Chem Soc 135:906
- 14. Ge J, Zeng Z, Liao F, Zheng W, Hong X, Tsang SCE (2013) Green Chem 15:2064
- 15. Wang D, Astruc D (2015) Chem Rev 115:6621
- Sepúlveda-Escribano A, Coloma F, Rodríguez-Reinoso F (1998) J Catal 178:649
- Milone C, Ingoglia R, Schipilliti L, Crisafulli C, Neri G, Galvagno S (2005) J Catal 236:80
- Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2001) Appl Catal A 205:227
- 19. Tian Z, Xiang X, Xie L, Li F (2013) Ind Eng Chem Res 52:288
- Wang X, Perret N, Delgado JJ, Blanco G, Chen X, Olmos CM, Bernal S, Keane MA (2013) J Phys Chem C 117:994
- 21. Wang X, Perret N, Keane MA (2012) Chem Eng J 210:103
- Li M, Hao Y, Cárdenas-Lizana F, Keane MA (2015) Catal Commun 69:119
- 23. Salasc S, Perrichon V, Primet M, Mouaddib-Moral N (2002) J Catal 206:82
- Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London
- 25. Li M, Wang X, Perret N, Keane MA (2014) Catal Commun 46:187
- Jovic V, Chen W-T, Sun-Waterhouse D, Blackford MG, Idriss H, Waterhouse GIN (2013) J Catal 305:307
- 27. Perret N, Wang X, Onfroy T, Calers C, Keane MA (2014) J Catal 309:333
- Ousmane M, Liotta LF, Carlo GD, Pantaleo G, Venezia AM, Deganello G, Retailleau L, Boreave A, Giroir-Fendler A (2011) Appl Catal B 101:629
- 29. Liu SY, Yang SM (2008) Appl Catal A 334:92
- Haffad D, Kameswari U, Bettahar MM, Chambellan A, Lavalley JC (1997) J Catal 172:85

- 31. Salasc S, Perrichon V, Primet M, Chevrier M, Mouaddib-Moral N (2000) J Catal 189:401
- 32. Liu H, Ma HT, Li XZ, Li WZ, Wu M, Bao XH (2003) Chemosphere 50:39
- Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) J Catal 188:176
- 34. Campbell CT, Peden CHF (2005) Science 309:713
- 35. Popa C, Ganduglia-Pirovano MV, Sauer J (2011) J Phys Chem C 115:7399
- Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935
- Manzoli M, Chiorino A, Vindigni F, Boccuzzi F (2012) Catal Today 181:62
- Nakamura I, Mantoku H, Furukawa T, Fujitani T (2011) J Phys Chem C 115:16074

- Nakamura I, Mantoku H, Furukawa T, Takahashi A, Fujitani T (2012) Surf Sci 606:1581
- Akita T, Okumura M, Tanaka K, Kohyama M, Haruta M (2005) J Mater Sci 40:3101
- 41. Campo B, Volpe M, Ivanova S, Touroude R (2006) J Catal 242:162
- 42. Ohyama J, Esaki A, Yamamoto Y, Arai S, Satsuma A (2013) RSC Adv 3:1033
- 43. Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328
- 44. Paier J, Penschke C, Sauer J (2013) Chem Rev 113:3949
- 45. Nagaraja BM, Padmasri AH, Raju BD, Rao KSR (2007) J Mol Catal A 265:90
- Kennedy G, Baker LR, Somorjai GA (2014) Angew Chem Int Ed 53:3405
- 47. Badawi M, Cristol S, Paul J-F, Payen E (2009) C R Chimie 12:754