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BACKGROUND: We examine the potential value of a series of clinically relevant PI3K-mTOR inhibitors alone, or in combination with
histone deacetylase inhibitors, in a model of head and neck squamous cell carcinoma (HNSCC).
METHODS: Head and neck squamous cell carcinoma cell lines, human keratinocyte and HNSCC xenograft models were treated with
histone deacetylase inhibitors (HDACIs) and new generation PI3K and dual PI3K-mTOR inhibitors either alone or in combination.
Cell and tumour tissue viability and proliferation were then determined in vitro and in vivo.
RESULTS: Phosphatidylinositol-3-phosphate kinase, AKT and dual PI3K-mTOR inhibitors caused marked in vitro enhancement of
cytotoxicity induced by HDACIs in HNSCC cancer cells. This effect correlates with AKT inhibition and is attenuated by expression of
constitutively active AKT. Histone deacetylase inhibitor and phosphatidylinositol-3-phosphate kinase inhibitors (PI3KIs) inhibited
tumour growth in xenograft models of HNSCC. Importantly, we observed intratumoural HDAC inhibition and PI3K inhibition as
assessed by histone H3 acetylation status and phospho-AKT staining, respectively. However, we saw no evidence of improved
efficacy with an HDACI/PI3KI combination.
INTERPRETATION: That PI3K and dual PI3K-mTOR inhibitors possess antitumour effect against HNSCC in vivo.
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Head and neck squamous cell carcinoma (HNSCC) is the sixth
most common cancer in the developed world with an annual
incidence of 4500 000 cases worldwide, representing 3.2% of all
newly diagnosed cancers in the United States alone (Jemal et al,
2004; Mao et al, 2004). Although important advances in the surgical
and radiological treatment of HNSCC have occurred in the last
decades, these tumours are still associated with severe disease- and
treatment-related morbidity and have a 5-year survival rate of B50%
(Haddad and Shin, 2008). These figures indicate the need for
new therapeutic approaches. In this regard, two new classes of
anticancer agent, namely, histone deacetylase inhibitors (HDACIs)
and phosphatidylinositol-3-phosphate kinase inhibitors (PI3KIs),
may have potential as therapies for HNSCC.

Head and neck squamous cell carcinoma, like all cancers, are
associated with multiple genetic defects, which have been linked to
dysregulation of basic biological processes (Forastiere et al, 2001;
Serewko et al, 2002; Wong et al, 2005; Haddad and Shin, 2008;
Endo-Munoz et al, 2009). In particular, dysregulation of signal
transduction is a common feature of these tumours. For example,
aberrant signalling in HNSCCs involving the MAPK and PI3K-AKT
pathways is well described (Amornphimoltham et al, 2004, 2005;

Van Baal et al, 2006; Bussink et al, 2008). AKT activation
frequently occurs in HNSCC because of PIK3CA mutations and
AKT2 amplification (Pedrero et al, 2005). AKT activation is an
early event in HNSCC progression and represents an independent
prognostic marker of poor clinical outcome in tongue and
oropharyngeal HNSCC (Massarelli et al, 2005; Yu et al, 2007a, b).
These data highlight the potential significance of targeting the
PI3K/AKT signalling pathways in HNSCC (Van Baal et al, 2006;
Bussink et al, 2008; Haddad and Shin, 2008).

Histone deacetylase inhibitors have shown promise as anti-
cancer agents and are synergistic or additive with other
antineoplastic treatments including radiation, chemotherapy,
differentiation agents, epigenetic therapy and new targeted agents
(Dowdy et al, 2006; Shen et al, 2007; Erlich et al, 2008). Of
particular note, it was previously shown that HDACIs might
modulate the PI3K and MAPK pathways (Rahmani et al, 2003a,
2005; Yu et al, 2005; Gao et al, 2006). Earlier studies from our
laboratory and other groups indicated that a variety of HDACIs
exhibit anticancer properties against squamous cell carcinomas
(SCC) in vitro suggesting they may have use in a clinical setting
(Saunders et al, 1999a, b; Brinkmann et al, 2001; Gillenwater et al,
2007; Erlich et al, 2008). However, recent patient trials have shown
that, as monotherapies, HDACIs had limited clinical potential for
the treatment of HNSCC (Blumenschein et al, 2008; Erlich et al,
2008). Although it is possible to improve the therapeutic effects of
HDACIs by combining them with other anticancer agents such as
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chemotherapy, irradiation, proteasome inhibitors, death receptor
agonists and kinase inhibitors (reviewed in Frew et al, 2009) the
potential of new therapeutic regimens for HNSCC based on the
combination of HDACIs and targeted agents remains poorly
investigated. In the present study we examine whether selective
targeting of the PI3K-AKT and MAPK signalling pathways can
improve the therapeutic potential of HDACIs in HNSCC cell lines
and xenograft HNSCC models.

MATERIALS AND METHODS

Chemicals

SAHA (Vorinostat) was provided by Merck (Whitehouse Station,
NJ, USA). LBH589 (Panobinostat), BEZ235, BKM120, BGT226 were
all provided by Novartis (Basel, Switzerland). Valproic acid and
a-tocopherol were purchased from Sigma (Sydney, NSW, Aus-
tralia). Depsipeptide was obtained from Gloucester Pharmaceu-
ticals (Cambridge, MA, USA). U0126, LY294002, wortmannin and
AKT VIII were purchased from Cell Signalling (Danvers, MA,
USA). ZVAD-fmk was purchased from Alexis Biochemicals
(Exeter, UK). Cisplatin was purchased from DBL (Rowville, VIC,
Australia). Some of the drug preparations were made in cell
culture-grade dimethylsulphoxide (DMSO). The final concentra-
tions of DMSO in the culture medium in all experiments were a
maximum of 0.2% (v/v). Polyclonal antibodies recognising total
AKT, phosphorylated AKT (Ser 473), phosphorylated p44/p42
MAPK, phosphorylated GSK3b and a/b tubulin were obtained
from Cell Signalling. Polyclonal antibody recognising Erk2 was
purchased from Santa Cruz (Santa Cruz, CA, USA). Polyclonal
antibody recognising Myc was purchased from Upstate (Waltham,
MA, USA). Peroxidase-conjugated anti-rabbit IgG secondary
antibody was purchased from GE Healthcare (Chalfont, Bucks,
UK). Chemicals and reagents were analytical grade or better.

Treatments

In co-treatment assays, kinase inhibitors were added 10 min before
the histone deacetylase inhibitors. Vitamin E and ZVAD-fmk were
added 30 min before other treatments.

Western blotting

Protein extractions and western blot assays were performed as
previously described (Erlich et al, 2008). Membranes were
incubated with the following primary antibodies: phospho-Erk
1 : 1000, phospho-AKT (S473) 1 : 1000, phospho-GSK3b 1 : 1000,
Erk2 1 : 8000, AKT 1 : 5000, myc 1 : 2000, a/b tubulin 1 : 1000 and
actin 1 : 8000.

Maintenance of cells

Normal human keratinocytes (HKs) were isolated and cultured
from neonatal foreskins following circumcision as previously
described (Jones et al, 1997). SCC9, SCC25 and Cal27 tumour cell
lines were grown and maintained as previously described (Erlich
et al, 2008). Cell line validation has been previously reported (Poth
et al, 2010).

Single clone isolation

Single cell clones were prepared as previously described (Poth
et al, 2010).

Proliferation assays

BrDU incorporation measurements were performed with the Cell
Proliferation assay kit (Roche, Nutley, NJ, USA, no. 11647229001)
according to the manufacturer’s protocol.

Reactive oxygen species measurement

Cells were plated in six-well plates at 2.5� 105 cells per well. After
distinct treatments, cells were harvested, washed twice with PBS,
suspended in PBS with CM-H2DCFDA to a final concentration of
10mM, and incubated at 371C for 20 min. ROS accumulation was
measured by fluorescence intensity (FL-1, 530 nm) of 10 000
cells using a FACS Calibur flow cytometer (Becton Dickinson,
North Ryde, NSW, Australia). Mean fluorescence intensity was
obtained by histogram statistics using the CellQuest software
(BD Biosciences, San Jose, CA, USA).

Cytotoxicity and viability assays

Measurement of lactate dehydrogenase (LDH) release was
performed with the CytoTox 96 Non-Radioactive Cytotoxicity
Assay kit (Promega, Madison, WI, USA, no. G1780) according to
manufacturer’s protocol. Viability was assessed with the CellTiter
96 Aqueous Solution assay kit (Promega, no. G3580) according to
manufacturer’s protocol.

Transfections

SCC25 cells were transfected using FuGENE 6 (Roche) according to
manufacturer’s protocol.

Tumour immunohistochemistry

Avidin-biotin peroxidise procedure was used for immunostaining
as previously described (Cameron et al, 2010). Primary antibodies
used were as follows: phospho-AKT (1 : 100; Abcam, Cambridge,
MA, USA), acetyl-histone H3 (1 : 2000), cleaved caspase 3 (1 : 250)
or BrdU (1 : 100).

BrdU and caspase 3 labelling quantification

For each experimental group, the percentage of BrdU-stained and active
caspase 3-stained cells were assessed in several random areas using the
NIS-Elements Br 3.1 software (Nikon, Melville, NY, USA). A minimum
of 22 fields (area 142049.28mm2) were counted for each group.

In vivo tumour studies

All animal experiments were approved by the Institutional
Animal Ethics Committee. Six-week old female NOD-SCID mice
were injected s.c. in the neck scruff with 2.5� 105 Cal27 or
SCC25 cells. Groups of four mice received the following
treatments when tumours were of approximately 0.4 cm3 volume:
(i) vehicle only, (ii) LBH589 (30 mg kg�1 day�1 i.p.), (iii) BEZ235
(30 mg kg�1 day�1 p.o.), (iv) BGT226 (10 mg kg�1 day�1 p.o.), (v) BKM120
(7.5 mg kg�1 day�1 p.o), (vi) LBH589 (30 mg kg�1 day�1 i.p.)þBEZ235
(30 mg kg�1 day�1 p.o.), (vii) LBH589 (30 mg kg�1 day�1 i.p.)þBGT226
(10 mg kg�1 day�1 p.o.), (viii) LBH589 (30 mg kg�1 day�1 i.p.)þBKM120
(7.5 mg kg�1 day�1 p.o.). Stocks of LBH589 were prepared in
DMSO (180 mM) and injectable solutions were prepared from this
stock before injection. Stocks (stable for 1 week at 41C) of BEZ235,
BGT226 and BKM120 were prepared in 1-methyl-2-pyrrolidone
(NMP, Fluka no. 69118, Castle Hill, NSW, Australia). Immediately
before use, the stocks were diluted in PEG300 (Fluka no. 81160)
(9 : 1 PEG:NMP) and administered by feeding tube (Becton
Dickinson). Mice received daily treatments for 5 days per week
over a 3-week treatment period. Tumour growth and animal
weights were monitored for a period of up to 12 weeks.
Animals were killed if tumour volumes exceeded 1 cm3. Three
hours before killing the mice, they were administered the
final dose and were injected (i.p.) with 20 ml g�1 of a 10 mM stock
BrdU.
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Statistical analysis

Data were analysed by Student’s t-test when two groups are
compared or ANOVA followed by post-hoc comparisons (Tukey’s
test) when multiple groups are compared.

RESULTS

Vorinostat induces squamous cell carcinoma selective
cytotoxicity

Following a 24-h treatment period, increasing concentrations of
vorinostat (1–10 mM) were able to inhibit proliferation of HNSCC
cell lines and HKs in a dose-dependent manner (Figure 1A).
Similarly, lactate dehydrogenase release assays showed that
vorinostat induced cell death in a dose- and cell type-dependent
manner in all tested cancer cell lines (Figure 1B). Importantly,
vorinostat did not induce cell death in HKs even at 10 mM

(Figure 1B).
In contrast to the strong cytostatic effect observed in all cancer

cell lines and HKs, the proportion of cancer cells affected by the
cytocidal effects of vorinostat was much smaller. LDH release and
PI staining assays showed that at maximal cytocidal doses (5 mM)
vorinostat induced cell death in no more than 30% of the SCC25
cell line (Figure 1C and D).

Enhancement of vorinostat-induced cytotoxicity by PI3K
inhibitors is associated with a persistent AKT inhibition

MEK/ERK and PI3K/AKT pathways are deregulated in the majority
of HNSCCs and HNSCC cell lines (Amornphimoltham et al, 2005;
Massarelli et al, 2005; Pedrero et al, 2005; Van Baal et al, 2006;
Yu et al, 2007a, b; Bussink et al, 2008). Hence, we tested if inhibition
of PI3K or MEK by LY294002 (LY) or U0126 (U0), respectively,
would enhance the cytotoxicity of vorinostat. SCC25 cells were
treated for 24 h with a maximal cytocidal dose of vorinostat (5 mM)
alone or in combination with LY (10 mM) or U0 (10 mM).

Co-treatment with LY induced a marked increase in vorinostat-
induced cytotoxicity (Figure 2A). In contrast, U0 co-treatment did
not affect vorinostat-induced cytocidal effects. Treatment with
LY or U0 alone did not induce cell death as compared with
untreated cells (Figure 2A). Western blots of total lysates from
SCC25 cells treated for 10 min with LY or UO alone or in
combination with vorinostat and probed against phospho-AKT
(S473) or phospho-p42/44 antibodies confirmed that LY and
U0 selectively inhibited AKT and ERK activities, respectively
(Supplementary Figure 1A).

We examined the activation status of AKT and ERK following
exposure to vorinostat, LY, U0 or the combination following 24 h
treatments (Figure 2B). Although prolonged treatment with
vorinostat or the inhibitors alone caused a small inhibition of
AKT and ERK activities, vorinostat treatment in combination with
LY or U0 induced a pronounced inhibition of AKT and ERK,
respectively. Therefore, we investigated the dynamics of AKT
phosphorylation at distinct time points during the 24 h treatment
(Figure 2C). In contrast to the effect of treatments with vorinostat
or LY alone, AKT inhibition induced by the vorinostat/LY
combination persisted throughout the 24 h of treatment. These
data suggest that the enhancement of vorinostat cytotoxicity
induced by co-treatment with LY correlates with a strong and
persistent inhibition of AKT (S473) phosphorylation. An interest-
ing observation was the ability of HDACI treatment to reduce AKT
activity (Figure 2C). This has not been reported before but was
consistent throughout our studies. The molecular basis for this
observation is currently under investigation.

Similar to the SCC25 cells, we found that Cal 27 cells were
sensitive to vorinostat-induced cell death and this effect was
significantly increased by co-treatment with LY, but not U0
(Figure 2D). In addition, we treated SCC25 cells with cytocidal
doses of the structurally dissimilar HDACIs, valproic acid or
depsipeptide alone or in combination with LY. Similar to the effect
observed with vorinostat co-treatments, cytotoxicity mediated by
valproic acid and depsipeptide was markedly increased by LY
co-treatment (Figure 2E). These data indicate that LY can enhance
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the cytotoxicity of a broad range of structurally unrelated HDACIs
and these effects are conserved between different HNSCC cell lines.

To confirm that inhibition of AKT activity contributed to the
enhanced cytocidal response induced by the HDACI/PI3K
inhibitor combination, we generated stable transfectants of
SCC25 cells with a constitutively active myc-tagged myristoylated
AKT (myr-AKT), or with the corresponding ‘empty vector’.
Expression of myr-AKT caused a significant attenuation of
cytotoxicity induced by the combination treatment (Figure 2F).
Western blot analysis of total lysates confirmed expression of

myr-AKT and hyperactivation of the AKT pathway in transfected
SCC25 cells as measured by GSK3b phosphorylation status, a well-
established AKT target (Figure 2G). Next, we examined the effects
of vorinostat in combination with Wortmannin, a PI3K inhibitor
structurally unrelated to LY294002, or with an isoform-specific
AKT 1/2 inhibitor (AKT VIII). Both combination treatments
caused a significant increase in cell death and caused a persistent
inhibition of S473 AKT phosphorylation (Supplementary Figure 1B)
when compared with the effects of vorinostat alone. Treatment
with Wortmannin (Figure 2H) or AKT VIII (Figure 2I) alone did
not induce cell death in SCC25. These data indicate that inhibition
of the AKT pathway alone may not be sufficient to invoke a
complete cytotoxic response but may sensitise cells to a
subsequent cytotoxic stimulus.

Vorinostat/LY combination treatment does not induce cell
death in normal human keratinocytes

Cytotoxicity assays showed that none of the combination
treatments were able to induce substantial cell death in HKs
(Supplementary Figure 2A). Moreover, in contrast to cancer cells,
vorinostat/LY combination treatment for 24 h did not induce a
persisting inhibition of AKT activity in HKs (Supplementary
Figure 2B). The cyclin-dependent kinase inhibitor CDKN1A
(encoding p21WAF1/CIP1) is upregulated by vorinostat and other
HDACIs in several cancer cell lines, an effect that correlates with
cell cycle arrest and has been suggested to induce protection from
cell death mediated by HDACIs (Burgess et al, 2001, 2004).
Vorinostat treatment was able to induce expression of p21WAF1/CIP1

in both SCC25 cells as well as HKs (Supplementary Figure 2C)
indicating that vorinostat/LY treatment induces a cancer cell-
selective inhibition of the AKT pathway.

ROS generation correlates with enhanced
caspase-dependent cytotoxicity induced by vorinostat/LY
combination in SCC cells

Previous studies indicated that vorinostat and other HDACIs
induce ROS accumulation in several cell types, and that this effect
is relevant to vorinostat-induced cell death (Ruefli et al, 2001;
Xu et al, 2006; Yu et al, 2007a, b). In addition, PI3K inhibitors have
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been shown to potentiate peroxide accumulation induced by
chemotherapy (Ramos et al, 2005). Therefore, we investigated the
effect of LY treatment upon vorinostat-induced ROS accumulation.
Vorinostat treatment induced accumulation of ROS in SCC
cells and this effect was enhanced by co-treatment with LY
(Supplementary Figure 3A). Treatment of SCC25 cells with
LY alone resulted in little change in ROS levels. Pre-treatment
with the anti-oxidant a-tocopherol (vitamin E) (1 mM) ablated the
increase in ROS induced by vorinostat or vorinostat/LY treatments
(Supplementary Figure 3B). In addition, a-tocopherol inhibited
vorinostat or vorinostat/LY induced cytotoxicity in SCC25 cells
(Supplementary Figure 3C).

As it was previously shown that HDACIs can induce caspase-
dependent and -independent apoptosis as well as autophagy
(Garcia-Morales et al, 2005), we tested the effect of the pan-caspase
inhibitor ZVAD-FMK upon SCC25 cells treated with vorinostat or
the vorinostat/LY combination. Regardless of the treatment, pan-
caspase inhibition completely abrogated cell death (Supplementary
Figure 3D).

Clinically relevant PI3K-AKT-mTOR inhibitors enhance
cancer cell specific cytotoxicity induced by LBH589

We tested the effects of the HDACI, LBH589 (panobinostat) alone
or in combination with the dual PI3K-mTOR inhibitors, BEZ235
and BGT226, or the PI3K inhibitor, BKM120. These new generation
inhibitors have favourable pharmacokinetic profiles and are
currently undergoing phase I/II clinical trials (Engelman, 2009;
Tan et al, 2010). LBH589 causes a dose-dependent hyperacetyl-
ation of histone H3 in SCC25 cells and BEZ235, BGT226 or BKM120
caused a dose-dependent inhibition of AKT phosphorylation
(S473) (Supplementary Figure 4A– D). Furthermore, LBH589,
BEZ235, BGT226 or BKM120 caused a dose-dependent inhibition

of proliferation and viability in SCC25 and Cal27 cells (Supple-
mentary Figure 5). Similar to our earlier experiments, persistent
inhibition of AKT phosphorylation was evident in SCC25 cells
treated with the LBH589/PI3KI combinations (Figure 3A). Interesti-
ngly, LBH589 induced a persistent inhibition of phospho-AKT
whereas none of the PI3Ks alone did (Figure 3A). Confirming our
previous results, cytotoxicity induced by LBH589 was always
enhanced by co-treatment with PI3K inhibitors in SCC25 cells
(Figure 3B) and Cal27 cells (Supplementary Figure 6). Although
absolute drug responses differed between SCC25 cells (Figure 3B)
and Cal27 cells (Supplementary Figure 6) there was clear evidence
that the HDACI/PI3KI combination was more effective than the
drugs given individually. For example, the PI3K-specific inhibitor,
BKM120, was not sufficient to cause cytotoxicity alone in SCC25
cells, whereas the dual PI3K-mTOR inhibitors, BGT226 and
BEZ235, were able to induce cytotoxicity when given alone despite
the lack of persistent phospho-AKT inhibition (Figure 3B). In
contrast, the Cal27 cells responded equally well to all the PI3KIs
(Supplementary Figure 6). In addition, treatment of HKs with
LBH589 and BGT226 alone or LBH589 in combination with
BGT226 or BKM120 had no effect on phospho-AKT levels
(Figure 3C) and induced a small decrease in the viability of HKs
(Figure 3D), HNSCC cells were much more sensitive to the
cytocidal effects of these drugs alone or in combination (Figure 3D
and Supplementary Figure 6).

Antitumour properties of LBH589 and PI3K/AKT/mTOR
inhibitors in a xenotransplant model of HNSCC

The antitumour effect of the different LBH589/PI3K inhibitor
combinations was analysed in xenograft models in NOD/SCID
mice. Tumour growth was monitored until a mass of approxi-
mately 0.4 cm3 was palpable (28 and 48 days post tumour injection
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for Cal27 cells and SCC25 cells, respectively) at which time the
animals were sham-treated or treated with LBH589, BEZ235,
BGT226 and BKM120 alone or in combinations of LBH589 with
each of the inhibitors (Figure 4A– C and Supplementary Figure 7).
Tumour growth rate was reduced by treatment with the HDACI or
PI3KIs alone. PI3K inhibitors given as mono-therapies were more
effective than LBH589 alone in Cal27 tumours (Figure 4).
Consistent with the in vitro data (Figure 3B and Supplementary
Figure 6) the antitumour effect of the drugs and drug combina-
tions was less substantial in the SCC 25 cells (Supplementary

Figure 7) compared with Cal27 cells (Figure 4). The combination of
LBH589 with any of the PI3K inhibitors did not invoke greater
tumour growth control compared with the effects of BEZ235,
BGT226 or BKM120 alone (Figure 4 and Supplementary Figure 7).
We examined the pharmacodynamics of the HDACI and PI3KIs in
Cal27 tumours at the end of the study. BEZ235, BGT226 and
BKM120 reduced overall AKT phosphorylation levels (S473) and,
in particular reduced nuclear phospho-AKT levels in Cal27 cells
(Figure 5A). However, the PI3KIs did not cause complete
inhibition of AKT activity (Figure 5A). LBH589 treatment induced
an increase in histone H3 acetylation in the tumours (Figure 5B).
These data indicated that the HDACIs and PI3K inhibitors were
having the predicted pharmacological effect on the tumours. We
observed a 3– 5-fold increase in caspase 3 activation in tumour
tissue following treatment with PI3K inhibitors alone or in
combination with LBH589 (Figure 5C and D). BrdU incorporation
assays indicated a modest decrease in tumour proliferation
following the different treatments (Figure 5E). These data suggest
the major pharmacological action of the PI3KIs is cytotoxic rather
than cytostatic.

The in vitro and in vivo data suggest that total tumour ablation
may be compromised by the existence of PI3KI- or HDACI-
resistant subpopulations of cells in the various cell lines. This
would result in the expansion of drug-resistant clonal variants
during the 4-week drug treatment. Therefore, we examined the
effect of LBH589 or BEZ235 treatment on cell viability of clonal
variants of the Detroit 562 HNSCC cell line (Cameron et al, 2010;
Poth et al, 2010) (Figure 5F). The results indicate that some clones
are sensitive to BEZ235 whereas other clones are insensitive
(Figure 5F). We went on to show that the clone-specific sensitivity
also occurred with BGT226 in Detroit (Figure 5G) and Fadu
(Figure 5H) cells but could be overcome by increasing the dose of
PI3KI. In contrast, sensitivity to HDACI was similar between
variants of the Detroit 562 cells (Figure 5F) indicating that the
variation in PI3KI sensitivity between clonal variants of the
different SCC cell lines was selective and did not reflect a general
defect in cytotoxic response. These data indicate that clonal
variants exist, in vitro, within the Fadu and Detroit 562 cell lines
that differ in their sensitivity to PI3KIs.

DISCUSSION

In this manuscript we show that a series of PI3K inhibitors and an
HDAC inhibitor are pharmacologically active and display cancer
cell selective activity against xenotransplant models of HNSCC.
The in vitro and in vivo antitumour activity of the HDACIs and the
PI3KIs highlight several significant properties of these drugs.
Firstly, all the drugs reduced tumour growth and increased tumour
cell death when administered alone or in combination. Secondly,
the drug combination appeared to work via AKT-dependent and
AKT-independent pathways. Finally, we report that dose-depen-
dent insensitivity to PI3KIs is present in some clonal variants of
HNSCC in vitro.

The present study reports, for the first time, on the antitumour
effects of PI3KIs delivered as monotherapies or in combination
with HDACIs in models of HNSCC. HDACIs had modest
antitumour effects in vivo whereas the PI3KIs, as a class, displayed
encouraging antitumour activity. However, our in vitro and in vivo
studies also indicated that subpopulations of cells exist within
established HNSCC cell lines that differ in their sensitivity to
HDACIs or PI3KIs and could limit the curative potential of PI3KIs
or HDACIs as monotherapies. Significantly, our in vitro data
suggest that the biological basis for insensitivity to HDACIs and
PI3KIs differs. For example, analysis of clonal variants, in vitro,
indicates that sensitivity to HDACIs is shared by all clonal variants
within cell lines indicating that sensitivity is not dictated by
heritable genetic/epigenetic differences between variants but can

1.0

Control

LBH 589

BEZ 235

LBH 589+BEZ 235

0.5

Tu
m

ou
r 

vo
lu

m
e 

(c
m

3 )

0.0
0 10 20 30

Days after innocule
40 50 60

1.0

Control

LBH 589

BGT 226

LBH 589+BGT 226

0.5

Tu
m

ou
r 

vo
lu

m
e 

(c
m

3 )

0.0
0 10 20 30

Days after innocule
40 50 60

1.0

Control

LBH 589

BKM 120

LBH 589+BKM 120

0.5

Tu
m

ou
r 

vo
lu

m
e 

(c
m

3 )

0.0
0 10 20 30

Days after innocule
40 50 60

Figure 4 Antitumour properties of LBH589 and PI3K/mTOR/AKT
inhibitors in a xenotransplant model of HNSCC. (A–C) Six week old
NOD/SCID mice (groups of four) were injected with 2.5� 105 Cal27 cells
on day 0. 28 days after injection of cells mice were treated with (i) vehicle
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be attributed to physiological differences within the cell popula-
tions at any given time such as, cell cycle state or metabolic state.
In contrast, varying sensitivity to PI3KIs is determined by heritable
genetic/epigenetic differences between clonal variants within
established cell lines. It is noteworthy that all HNSCC clones were
sensitive to PI3KI at high doses. Had completely insensitive
variants existed it would have manifest as an accelerated
repopulation of the tumour following an initial treatment phase
as has been observed by the emergence of resistance to agents such
as the V600E-specific b-Raf inhibitors in melanoma (Villanueva
et al, 2010) or the EGFRvIII inhibitors in glioma (Sampson et al,
2010). However, we observed a generalised, yet incomplete,
antitumour response to PI3KI treatment, which would be

consistent with a submaximal dose of PI3KI being achieved
in vivo. With respect to the presence of clonal variants within
tumours, we have recently shown that HNSCC cell lines contain
clonal variants that differ in their transcriptomic signature, their
tumourogenic potential and their sensitivity to cisplatin (Cameron
et al, 2010; Poth et al, 2010). Significantly, we have also shown that
these clonal variants exist in human SCCs in situ (Cameron et al,
2010). Thus, there is evidence that clonal variants with
differing drug sensitivities may exist, which could impact on the
effectiveness of molecular targeted therapies.

It could be argued that HDACI’s are well tolerated in vivo and
hence it may be possible that improved therapeutic effects could be
seen with increased doses of HDACI. This would seem unlikely
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because our data clearly shows that the HDACI inhibits tumour
HDAC activity (Figure 5). Moreover, data from clinical trials indicates
that HDACIs have weak antitumour activity against solid tumours in
patients (Blumenschein et al, 2008; Erlich et al, 2008). Thus, the
in vitro and in vivo data would suggest that HDACIs have weak
antitumour activity in vivo against HNSCC cells. The molecular basis
for the resistance/sensitivity to HDACI remains unclear.

Although the PI3KIs showed marked antitumour activity in vivo
there was still evidence of evasion of the cytotoxic effects by some
tumour cells. Similar to HDACIs, the PI3KIs were being
administered at doses sufficient to cause pharmacological inhibi-
tion of AKT (Figure 5). However, it is likely that the dose achieved
was not sufficient to cause ablation of sensitive and insensitive
clonal variants within the tumour. The PI3KIs were already being
administered at the maximum tolerated dose (data not shown) and
therefore it would not be possible to increase pharmacological
activity of the PI3KIs in our xenotransplant model. Thus, it
remains likely that the dose-limiting metabolic toxicity of the pan-
PI3KIs prevented us from achieving maximal effective drug
concentration in the xenotransplants. This situation is unlikely
to occur in humans where the metabolic toxicities are likely to be
clinically manageable allowing higher dosing schedules.

It is important to note that PI3KI treatment of HNSCC cell lines
resulted in transient but complete inhibition of phospho-AKT
indicating that all the cells are sensitive to the PI3K inhibitory
activity. These data suggest that the differing degrees of sensitivity
to PI3KIs may be because of defects residing downstream of AKT
and/or because of parallel independent survival pathways that
antagonise the cytocidal effects of the PI3KI. Indeed, recent studies
have shown that cells with different mutations/amplifications in
key steps of the PI3K-AKT pathway display differing sensitivity to
BEZ235 (Brachmann et al, 2009). Thus, the overall sensitivity of
solid tumours will be dictated by the relative proportions of
variants in which sensitivity or insensitivity to the cytocidal/
cytostatic, effects of PI3KI exist. The selective loss of signalling
pathways within the SCC cell lines has been reported by us
previously with respect to TGFb1-mediated signalling and growth
inhibition (Dahler et al, 2001) and IFNg-mediated growth
inhibition and signalling (Saunders et al, 1999a, b).

Our in vitro studies indicate that the mechanistic basis for
HDACI and PI3KI action is likely to be tumour cell type-specific.
For instance, different combination treatments involving HDACIs
have been shown to modulate the PI3K-AKT and MAPK pathways
(Rahmani et al, 2003a, 2005; Yu et al, 2005; Gao et al, 2006).
Rahmani et al (2003b) demonstrated that inhibition of PI3K
sensitised human leukaemia cells to various HDACIs. Interestingly,
in this model HDACI treatment caused AKT activation and the

cytotoxic sensitisation caused by HDACI/LY combination treat-
ments were mediated through inactivation of MAPK, rather than
AKT inhibition. In contrast, in our experimental model, inhibition
of ERK activity following U0126 treatment in combination with
vorinostat did not induce cell death. Also, in contrast to leukaemia
cells, vorinostat did not cause activation of AKT in HNSCC cells
in vitro or in vivo. Thus, the mechanism of action of drugs such as
PI3KIs and HDACIs are likely to differ between tumour cell
models.

In the present study, we show that the cytocidal effects of
HDACIs and PI3KIs involve overlap between AKT-dependent and
AKT-independent pathways. With regards to AKT-dependent
cytotoxicity we showed that HDACIs induce cell death in HNSCC
cell lines that was associated with a modest downregulation of AKT
in SCC25 cells. Addition of a PI3KI to the HDACI enhanced
cytotoxicity markedly and resulted in a profound, persistent and
total ablation of AKT phosphorylation during the 24-h treatment
period. In contrast, HKs failed to show persistent inhibition of
AKT in response to PI3KIþHDACI and were insensitive to the
cytocidal actions of the combination. Finally, enforced expression
of constitutively active myr-AKT significantly attenuated cell death
induced by HDACI/PI3KI treatment in SCC25 cells indicating that
AKT inhibition contributes, at least in part, to the cytocidal action
of this combination.

Although AKT inhibition clearly contributes to the HDACI and
PI3KI-mediated cytotoxicity, it cannot explain all the cytocidal
effects observed in this study. For instance, increased cytotoxicity
was observed in response to HDACI or PI3KI treatment despite
them being used individually at maximal doses in vitro. This
indicates that the combination activates multiple independent
cytotoxic pathways and that AKT inhibition may be required, but
not sufficient, to invoke a complete cytotoxic response.
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