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Background: Patient derived xenografts (PDX) are generated by transplanting the original patient’s tumor tissue
into immune-deficient mice. Unlike xenograft models derived from cell lines, PDX models can better preserve the
histopathology from the original patient and molecular pathways. High-grade serous carcinoma (HGSC) is a deadly
form of ovarian/fallopian tube cancer whose response to current chemotherapies varies widely due to patient
variability. Therefore, a PDX model can provide a valuable tool to study and test treatment options for each

Methods: In this study, over 200 PDX tumors from nine HGSC were analyzed to investigate the nature and
behavior of PDX tumors originating from HGSC. PDX tumors were serially passaged (from PO to P4) and tumors
were grafted orthotopically under the ovarian bursa or subcutaneously.

Results: Comparative analysis of the histology and molecular markers of tumors from over 200 PDX tumor-bearing
mice, revealed that the tumors maintained similar histologies, stem cell populations, and expression for the majority of
the tested oncogenic markers, compared to the primary tumors. However, a significant loss of steroid hormone
receptors and altered expression of immunoresponsive genes in PDX tumors were also noted.

Conclusion: Our findings provide substantial new information about PDX tumor characteristics from HGSC which will
be valuable towards the development of personalized therapy and new drug development for HGSC.

Keywords: High-grade serous carcinoma, Patient-derived xenograft, Intrabursal engraft histology,

Background

Epithelial ovarian cancer (EOC) has a disproportionately
high mortality rate in comparison to other female malig-
nancies [1]. According to the American Cancer Society,
21,290 women will be newly diagnosed with EOC and
14,180 women will succumb to this disease in 2015 [2]. Of
all EOC, high-grade serous ovarian carcinoma (HGSC) is
the most lethal ovarian cancer histotype [3], which
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accounts for nearly 75 % of all EOC-related mortality.
Most HGSC respond to combined paclitaxel and carbo-
platin (Tax/Carp) chemotherapy after surgical treatment.
However, almost all HGSC relapse and eventually become
chemoresistant. Long-term treatments for HGSC remain
a challenge, and the overall survival rate has not been sig-
nificantly improved in the past several decades.
Traditionally, the assessment of experimental cancer
therapies using the established ovarian cancer cell lines
have many limitations and cannot truly reflect the com-
plexity and interpatient variation of ovarian cancer.
Patient-derived xenograft (PDX) or a xenopatient is a
system in which a portion of a patient’s tumor, obtained
either by surgical resection or biopsy, is transplanted in
immunodeficient mice and allowed to propagate without
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any in vitro manipulation. Tumors can be engrafted het-
erotopically or orthotopically [4], and both have been
found to mimic the human tumors [5, 6], thus allowing
for better prediction of a patient’s response to chemo-
therapy [7]. A recent study reporting the largest PDX
collection to date, revealed that subcutaneous (SC) PDX
were reliable in predicting for clinical activity [6]. Al-
though the impact and degree of genetic alterations that
occur with each tumor passage remains unclear [4],
PDX models mostly retain the principal histologic and
major genetic characteristics of their donor tumor and
have been used for preclinical drug evaluation, bio-
marker identification, biologic studies, and personalized
medicine strategies [8].

EOC tumors are highly heterogeneous, with variable
responses to standard chemotherapies emphasizing the
need for PDX models to study EOC diversity and aid in
novel therapeutical development [9]. It is also important
to establish the preservation of PDX tumor characteris-
tics from the primary tumor. In this study, we examined
and compared primary HGSC with serial passages of
PDX tumors with regard to histology, stem cells, and
expression of molecular markers.

Methods

Tissue samples

Fresh primary ovarian carcinoma tissues were obtained
from chemotherapy naive ovarian cancer after resection
at the Prentice Women’s Hospital of Northwestern
University from September 2013 to June 2014. Prior to
surgery, written informed consent for tissue acquisition
was obtained and nine consecutive cases of HGSC were
collected. All tumors were collected and engrafted within
2 h post resection. Normal fallopian tube tissues were
collected as normal control. Each case was reviewed by
pathologists to confirm the diagnosis. The collection of
human tissue specimens and the PDX mouse protocol
were approved by the Institutional Review Board and
Institutional Animal Care and Use Committee at
Northwestern University. The clinical and pathological
features of patients are summarized in Table 1.

Microarray analysis

Total RNA was isolated using the Trizol reagent
(Invitrogen) and PureLink RNA Mini Kit (Ambion) ac-
cording to manufacturer’s instructions. RNA quantity was
assessed by NanoDrop 1000 spectrophotometer, Agilent
2100 bioanalyzer, and PCR bioanalysis and samples with
an RNA integrity number (RIN) that scored higher than
8.0 were used. Expression profiling was performed using a
HumanHT-12 v4 Expression Beadchip (Illumina) at the
Northwestern Genomic Core Facility. Expression data
were normalized using the median normalization. After
normalization, significant differentially expressed mRNAs
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Table 1 Main clinical and pathological characteristics of tumor

tissues

Case ID Subtype  Stage  Surgical procedure  Tumor size (cm)
OVCA4 HGSC T3C TAHBSO 7
OVCAS5 HGSC T3C TAHBSO 5
OVCA6 HGSC T3C TAHBSO 14
OVCA7 HGSC T3B TAHBSO 13.1
OVCA8 HGSC T3C TAHBSO 5
OVCA9 HGSC T3C TAHBSO 12
OVCA10  HGSC T3A TAHBSO 9
OVCA12  HGSC T3C BSO 14
OVCA13  HGSC T3C TAHBSO 6

HGSC high grade serous carcinoma, TAH total abdominal hysterectomy, BSO
bilateral salpingo-oophorectomy

were identified through volcano plot filtering. Finally, hier-
archical clustering was performed to show distinguishable
mRNA expression profiling among samples.

DNA extraction and P53 mutation analysis

The genomic DNA of nine primary cases was extracted
and purified using the QIAamp DNA FFPE Tissue Kit
(QIAGEN) according to the manual. P53 exon4-9 muta-
tion analysis was conducted as previously described [10].
In brief, 50 ng genomic DNA was amplified by PCR with
HotStarTaq Master Mix (QIAGEN). PCR products were
purified using the Gel Extraction and PCR Clean-Up Kit
(Clontech). DNA sequencing of the purified DNA prod-
ucts was performed in the NU core facility by the ABI
3730 High-Throughput DNA Sequencer (Applied Bio-
systems) at the Genomic Core Facility. The mutations
and variations were analyzed using DNASTAR Laser-
gene 9 software. Detailed information of primers used for
the amplification and sequencing are listed in Additional
file 1: Table S1.

RNA isolation and quantitative real-time PCR

RNA isolation and quantitative real-time PCR (qPCR)
was conducted similarly as before [11]. Briefly, total
RNA was extracted from fresh tissues with Trizol re-
agent (Invitrogen). The reverse transcription reaction
was performed using Mir-X™ miRNA First-Strand Syn-
thesis Kit (Clontech). QPCR was performed with Fast
SYBR® Green Master Mix (Invitrogen) with StepOne
Plus Real-Time PCR System (Applied Biosystems).

Xenograft of tumor tissues

Eight-to-twelve-week-old female adult non-obese dia-
betic (NOD)-scid IL2Ry"“" or NSG mice (The Jackson
Laboratory) were used. Mice were maintained in laminar
flow rooms, maintaining consistent temperature and hu-
midity and were given free access to water and a normal
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diet. Mice were housed for 14 h light and 10 h dark
cycle. Experiments were approved by the Institutional
Animal Care and Use Committee of Northwestern
University. Xenografted tissues were labeled as passage 0
(PO), P1, P2, etc. depending on the number of passages
from the initial tumor.

Subcutaneous (SC) xenograft

For the first generation (P1) of xenografted, fresh tumor
tissues (P0O) collected from patients were cut into small
(~3x3x2 mm) fragments, and then two tissue frag-
ments were subcutaneously xenografted to each dorsal?
flank of a NSG mouse.

For other generations (>P2), tumor tissues were cut
into small pieces (~2 x 2 x 2 mm). Then, two to four tis-
sue fragments were subcutaneously xenografted into two
dorsal? flanks of NSG mice. First, mice were anesthe-
tized by intraperitoneal injection of ketamine/xylazine
(90/8 mg/kg), and the mice were shaved on the back
where the surgery would occur, and the site was disin-
fected with providone iodine prep pads and alcohol swab
(70 % isopropyl alcohol). An one cm in length incision
was made in the skin at the midline of the mouse back,
and four separate tumor fragments were put into the
upper left, upper right, lower left, and lower right of
back, accordingly. After implantation, the skin was
sutured, and mice were revived.

Intrabursa (IB) xenograft

Tumor tissues were cut into small pieces (~1x1x
1 mm) and grafted onto the left side of the ovarian intra-
bursa of adult female NSG mouse hosts. The procedure
of implantation for IB xenograft is the same as previ-
ously described [12]. Mice were anesthetized by intraper-
itoneal injection of ketamine/xylazine (90/8 mg/kg) and
the mice were shaved on the back where the surgery
would occur, and the site was disinfected with providone
iodine prep pads and alcohol swab. A 1 cm in length in-
cision was made in the skin just laterally to the midline
of the lower back, and the ovary was visible under the
muscle layer. After pulling out the left ovary, the ovarian
bursa would be identified. A tiny hole was made under
the surgical microscope, and the tumor fragment was
grafted into the intrabursa. The ovary was put back in
place, and if no bleeding was noted, the incision on the
muscle layer and body wall was closed separately. Mice
were given analgesics (meloxicam) for pain management
for 2 days post-surgery.

Necropsy

Mice were sacrificed when the tumor size reached
1.5 cm in diameter or ascites emerged. Body weight was
measured, and mice were sacrificed by intraperitoneal
injection of ketamine/xylazine (90/8 mg/kg).

Page 3 of 11

After dissection of the tumors, tumor size was docu-
mented by measuring tumor diameters. Then, tumor
volume was calculated according to the formula TV
(mm3) =a x b x cx A/6, where a is the length, b is the
width, and c is the height. All organs in the peritoneal,
pelvic, thoracic, and cranial cavities were dissected out
and checked for possible metastasis. Numbers of metas-
tasis was documented and images of metastasis were
photographed. Female reproductive tissues including the
bilateral ovaries and uterus were isolated and fixed in
modified Davidson’s fixative. The other organs including
brain, heart, lungs, liver, pancreas, spleen, kidneys, stom-
ach, intestine, cecum, rectum, omentum, and diaphragm
were also collected and fixed in modified Davidson’s fixa-
tive. All fixed tissues were processed, embedded in paraf-
fin, and sectioned and then hematoxylin and eosin (H&E)
staining was performed for histologic examination.

Subcutaneous tumor growth

Four tumor fragments were subcutaneously xenografted
into two mice. Tumor growth was monitored by mea-
suring tumor diameter every 2 weeks. Tumor volume was
calculated according to the formula TV (mm3)=a x
b* x 11/6, where a is the longest diameter, and b is the
shortest diameter. Mouse was euthanized when a tumor
reached 1.5 cm in diameter.

Tissue microarray and immunohistochemistry

Tissue cores were collected from tumors for tissue
microarray and represented in duplicate. Tissue microar-
rays were sectioned at 4 pm in thickness. Tissue micro-
array slides were deparaffinized in xylene and rehydrated
in a graded series of ethanol. After antigen retrieval, all
immunohistochemical staining was performed on a
Ventana Nexus automated system. In brief, endogenous
peroxidase activity was blocked with 3 % hydrogen per-
oxide. After blocking in 1.5 % normal goat serum for
30 min at room temperature, slides were then incubated
overnight at 4 °C with primary antibodies in a humid
chamber. Staining was detected with I-View 3,3'-diami-
nobenzidine (DAB) detection system.

Semiquantative immunointensity was scored as 0
(negative), 1 (weak), 2 (moderate) and 3 (strong) and
percentage was showed as %. Immunoreactivity for
HMGA?2, MTSS1 and P16 was scored for intensity only.
Immunoreactivity for Ki67, P53, P21, ER, PR, ALDHI,
CD24, and CD133 was scored for percentage only. Anti-
bodies used for this study were listed in Additional file 1:
Table S2.

Statistical analysis

The software SPSS V20.0 was used for statistical ana-
lysis. All data were presented as means and standard er-
rors. Student’s ¢ test and one-way ANOVA analysis were
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used to determine significance. P < 0.05 was considered
statistically significant.

Results

Strategy for establishment of patient derived xenografts
(PDX) for HGSC

In this study, we designed a standard for workflow to es-
tablish PDX for HGSC and to evaluate the PDX tumor
biology (Fig. 1). A frozen section evaluation was per-
formed to confirm the histologic type of HGSC and to
define viable tumor tissue for xenografting. All evaluated
primary tumor tissues were divided into three aliquots:
(defined as PO) (i) PDX, (ii) freezing for molecular studies,
and (iii) histology by formalin-fixation and paraffin-
embedding (FFPE). The frozen tissues were used to ex-
tract DNA and RNA for P53 status analysis. All nine cases
had p53 mutations and the frequency of mutations at spe-
cific codons is shown in Fig. 2a. For PDX, small (~3 x 3 x
2 mm) fragments of tumor tissues were implanted sub-
cutaneously (SQ) in two mice as P1. After the tumors
reached a size of 1.0 to 1.5 cm, they were removed and
reevaluated by frozen section (Fig. 3b). Tumor fragments
(2x2x2 mm) were then implanted SQ for a serial pas-
sage of tumors (P2-P4). As shown in Fig. 2b, PDX tumors
became smaller at 2 to 4 weeks and then grew steadily
from 6 to 12 weeks. Global gene profiling analysis was
done in PO and P2 tumors to compare the primary and
xenograft tumors. All PDX tumors were prepared for
FFPE and examined histologically and portions of PO and

Page 4 of 11

P1-4 PDX tumors were collected to prepare a tissue
microarray (TMA) for immunohistochemistry analysis
(Additional file 1: Figure S1). The specific focus was on
how the biomarkers of HGSC related to tumor signature,
proliferation and invasion, and tumor stem cells (Fig. 4
and Additional file 1: Table S4).

Establishment of intrabursa (IB) PDX

IB implantation of epithelial ovarian cancer has been per-
formed successfully in our lab using ovarian cancer cell
lines [12]. The bursa provides the ovarian microenviron-
ment for the primary HGSC. The IB implantation of tu-
mors resulted in the growth of the PDX tumors, ascites
accumulation, and wide spread metastasis to the repro-
ductive organs, pelvic wall, and other abdominal organs
including the liver, pancreas, spleen, kidney, omentum,
and diaphragm (Fig. 3¢, d) which were similar to that of
human HGSC. Histological examination showed that
PDX tumors maintained similar morphology and growth
pattern to the original tumors (Fig. 3b).

Histologic analysis of different passages of PDX HGSC
tumors

The success of engraftment (SOE) for primary ovarian
cancer has not been defined. Based on a recent study of
241 cases, 12 months was the cutoff and an overall 74 %
engraft rate was observed [13]. Our current study on
HGSC showed a slightly higher SOE at P1 (Fig. 5a),
most likely due to the pre-evaluation of tumors using

High-grade serous carcinoma
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Fig. 1 A Sketch diagram illustrating the work flow for PDX for human HGSC. HGSC tissue were collected from patients (defined as P0) and
divided into three aliquots for PDX (small (~3 x 3 x 2 mm) fragments of tissues for subcutaneous (SQ) xenograft as P1), for snap frozen (for later
DNA and RNA extraction) and for formalin-fixed and paraffin-embedded (FFPE) preparation (for TMA and immunohistochemistry (IHC) analysis).
The extended passages (P2-P4) of tumor xenografts were established for gene profiling analysis and further histological and molecular analysis
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frozen sections before grafting (Fig. 2b). Of the nine
cases, only one case (OVCA12) did not generate palp-
able tumors by SC at P1. In our study, SOE reached
90 % at P2 and even higher in P3 and P4 (Fig. 5a).

All PO to P4 HGSC were collected and subjected to
histologic evaluation (Fig. 4a, Additional file 1: Table
S3). Growth pattern, nuclear grade, nuclear cytoplasmic
ratio (N/C ratio), tumor stroma, mitotic index, and
tumor necrosis were analyzed for the eight cases that
were successfully engrafted at all passages (Fig. 5b, Add-
itional file 1: Table S3). Four cases with four passages
(P4) were further analyzed (Fig. 5¢c—f). The mitotic index
varied widely among primary HGSC tumors (Fig. 5a). By
P4, the mitotic index stabilized to approximately 20—30
mitosis/10 HPF (Fig. 5c). N/C ratio varied from case to
case, but each of them maintained a similar ratio
throughout PO to P4 (Fig. 5d). The stroma content re-
duced with passage in the PDX tumors (Fig. 5f). Primary
tumors (PO) consisted of about 25 % of stroma and by
P4, stroma made up 10 % of the tumor. Tumor necrosis
was present in all passages. The nucleus pleomorphism
and grade in P2 were slightly higher than in PO but
returned in P4 (Fig. 5e).

Molecular analysis of HGSC in original and PDX tumors

To evaluate the molecular differences of primary and
engrafted tumors, we prepared a TMA to include all
engrafted tumors (124 tumors) generated from eight
cases (Additional file 1: Figure S1) and examined the
biomarkers which were relevant to HGSC, including
tumor signature markers (ER, PR, P53, P16), tumor prolif-
eration (Ki-67, P21, P16), invasion (HMGA2), and stem

Fig. 3 The patterns of tumor growth and metastasis in intrabursal engrafting of HGSC. a. Photomicrographs illustrate gross appearance of
intrabursal engrafting of HGSC at the end of experiment (left) and hematoxylin/eosin stained section (right). b Photomicrographs of frozen
sections for a side-by-side comparison of primary and xenograft tumors (H/E stain). ¢, d Photomacrographs illustrate examples of ascites (c) and
metastasis (d) in mice with intrabursal engrafting of HGSC. b Photomicrographs show histologic and cytological similarity of primary and engrafted
HGSC performed by onsite frozen section and hematoxylin and eosin stain
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Fig. 4 Histology and immunohistochemistry analysis of primary (P0) and PDX HGSC (P1-4). a Photomicrographs of tissue sections from primary
(P0), passage 1 (P1) and passage 2 (P2) in each of nine high grade serous ovarian carcinoma (Ovca 4-13). b Photomicrographs illustrate an
example of immunoreactivity for estrogen receptor (ER), progesterone receptor (PR) and Ki-67 (cell proliferation marker) in primary (P0) and
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cells (ALDH1, CD24, CD133) (Fig. 6a-f and Additional file
1: Table S4). Cell proliferation was measured by Ki-67
index (Fig. 6d). As shown in Figs. 4b and 6a, b, there was a
steady decrease of ER and PR expression from P1 to P4.
The immunopercentage of ER was close to 80 % at PO, it
dropped to below 50 % at P4. Similarly, the immunoper-
centage of PR ranged 5-10 % in P1 and P2 but disap-
peared in P4. Immunoreactivity for HMGA2 was high in
PO, slightly reduced in P1 and P2, and restored in P3 and
P4 engrafts (Fig. 6¢).

It has been shown that tumor stem cells contribute to
the tumors’ growth and resistance to therapy in HGSC
[14]. In this study, we examined three stem cell bio-
markers (ALDH1, CD24 and CD133) in PO to P4 HGSC
(Fig. 6e and f). ALDH1 had very low immunoreactivity
in most PO to P4 tumors, and it was not informative for
further evaluation (data not shown). Based on semiquan-
titative analysis of CD24 and CD133, we observed a high
level of immunoreactivity for CD24/CD133 in all cases.
No significant change of CD24/CD133 cell population in

primary and engrafted tumors was observed. This sug-
gests that HGSC may have a stable number of stem cells
in both primary and xenograft tumors.

To further evaluate the difference of gene expression
between primary and engrafted HGSC, we conducted
the global gene profile analysis in PO and P2. The differ-
ence of the gene expression between PO and P2 may rep-
resent the true barrier/bottleneck for the development
of future therapeutic strategy. A total of 130 genes were
differentially expressed between PO and P2 tumors
(>twofold, ANOVA p <0.05) (Fig. 6g). Pathway analysis
revealed that three major pathways were altered in the
engrafted tumors: (1) immune modulated pathways for
autoimmune system, graft-versus-host disease (GVHD),
allograft rejection; (2) extra-cellular matrix interaction;
and (3) cell adhesion molecules (CAMs) (Fig. 6h and Add-
itional file 1: Table S5). This finding implies that dysregu-
lated genes are mostly related to the engrafted
microenvironment. No significant change in genes relating
to oncogenic properties of HGSC was found.
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and standard errors (small t-bars)

Discussion

Attempts for PDX in ovarian cancer have existed for
decades. In 1977, Davy et al. was the first to conduct
subcutaneous (SQ) heterotransplants of ovarian cancer
tissue into nude mice [15]. In 1984, Stratton et al. ap-
plied a subrenal (SR) xenograft model for ovarian cancer
cells from ascites cells with better success rates [16].
Several years later, Ward et al. established xenografts in
nude mice by intraperitoneal (IP) injections of fresh
primary tumor slurries or of small tumor refractions
derived from patient specimens [17]. Several attempts
for testing orthotopic ovarian cancer models were also
reported, including intrabursal (IB) [18] and an intra-
gonadal fat pad of mice [19]. Since then, many studies
using ovarian cancer PDX models were reported [20—24],

including serous carcinoma [22, 23, 25-28], clear cell
ovarian cancer models [29, 30], mucinous and an endome-
trioid ovarian cancer model [19]. Lee et al. established
ovarian cancer PDX models that included almost all epi-
thelial ovarian cancers [31]. The largest known living
tumor bank of PDX for ovarian cancer involved 241 cases
of patients, including ovarian, peritoneal, and fallopian
tube cancer [13]. The model resulted in a 74 % engraft
rate in SCID mice. The success rate in establishing PDX
varied, depending on tumor type, tissue quality, site of
transplantation, and strain of mouse [32]. Overall, the
engrafting rate in NOD/SCID or NSG models is higher
than other strains [8]. It seems that those successfully
engrafted tumors may have an aggressive clinical course
[13, 33]. In this study, we observed an average of 70 %
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engrafted rate of HGSC in P1 and 90-100 % engrafted
rate in P2-4. Apparently, with the proper techniques and
freshly collected tumor tissue, PDX for HGSC can be
readily used as a reliable model for PDX. However, for
many cases, they take months to grow visible tumors, and
this is a major obstacle for the urgent needs for clinical
trials and therapeutical purposes.

IP and orthotopic models can mimic the patients of
the metastasis pattern or ascites formation [19, 34]. The
tumors could metastasize to the ovaries, bowel, omen-
tum, liver, mesentery, spleen, pancreas, and diaphragm
[13, 35]. In this study, we engrafted P1 tumors SQ and

let them grow to sizable tumor masses and then we
engrafted P2 tumors intrabursally as described in the
methods and result. In such intrabursa engrafts, we ob-
served “primary” and “metastatic” tumors which are
similar to the growth patterns seen in human ovarian
cancer (Fig. 3). This valuable model can be potentially
used for evaluating tumor growth behavior in early and
later stage disease by responding to the therapeutic
modality.

PDX of ovarian cancer can be passaged and retrans-
planted for up to six generations [15, 20, 36], and some
of the tumors by IP injection were passaged to 24
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generations [37]. All these studies indicate a reliable
model of PDX for ovarian cancer. In this study, we used
the NSG strain, and we found the engrafting rate in P1
was about 70 % and in P2 was 90 %. Failure rate in P3
and P4 was even lower (Fig. 5a). P2 could be the best
tumor model for potential therapeutical purposes as it
has a high rate of engraft success, shorter engraft time,
and comparable histology and tumor related markers to
primary tumors (Figs. 5 and 6).

One essential determinate of the validity of the PDX
tumors is the maintenance of similar histologic and mo-
lecular characteristics of the repeated passages of PDX
tumors to primary tumors. Several studies suggested that
ovarian cancer PDX can maintain similar architectures
and growth pattern as primary tumors [20, 25, 31, 37,
38], but specific details were lacking. Our current study
provides a comprehensive analysis for each of the spe-
cific histologic features, such as nuclear grade, nuclear
cytoplasmic ratio, mitotic index, tumor necrosis, and
tumor/stromal ratio between the primary and passaged
tumors of HGSC. Our quantitative analysis and assess-
ment of these histologic features can be a valuable base-
line for our understanding of the nature of the HGSC
PDX tumors. Of note, our data further supports that
HGSC PDX tumors (P1-P4) maintain similar but more
uniform histologic features than primary tumors (Figs. 4,
5, and 6).

The published data suggested that both primary and
PDX tumors maintained a similar molecular expression
pattern [35, 38]. To test whether these findings apply to
HGSC, we compared the gene expression between PO
and P2. Among 11 selected markers that are relevant to
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HGSC, a significant down-regulation of ER and PR
expression was noted in P2 PDX tumors in comparison
to PO (Figs. 4 and 6). This change may have an impact
on some anti-steroid hormonal therapies. Global gene
profiling analysis revealed that the genes involving auto-
immune, cell adhesion, and the extracellular matrix were
significantly dysregulated in P2 PDX tumors (Fig. 6).
These findings suggest that the graft microenvironment
can influence the immune modulation, cell-cell inter-
action, and stromal reaction. The latter may result in dif-
ferent responses to immune therapies between PDX and
primary tumors. No significant change of oncogenic
pathways commonly dysregulated in HGSC was seen
and the findings may be ideal for targeted therapies for
oncogenic or tumor suppressor pathways.

Proliferation and mitotic index seem to be higher in
PDX tumors than primary ones [31]. We found that the
cell proliferation and mitotic index varied widely among
different cases, but there was a tendency to be synchro-
nized to a relatively stable proliferation index in P2-P4
tumors (Fig. 5). Ovarian cancer stem cells (CSC) in PDX
tumors were examined in several studies [21, 23, 39].
Due to different techniques and markers selected, the
interpretation of CSC remains controversial. Based on
semiquantitative analysis of CD24 and CD133, we found
that both primary and PDX tumors in HGSC maintained
relatively similar numbers or ratios of CSC populations
(Fig. 5, Additional file 1: Table S4).

It seems that current chemotherapies used in the clinic
may be as effective in treating PDX tumors as primary
ovarian cancer [13, 22]. For example, PDX tumors re-
spond to cisplatin or carboplatin similar to primary

Table 2 Biomedical and pathology comparison of most recent studies in ovarian cancer PDX models

Ricci et al. Weroha et al. Dobbin et al. Topp et al. Current study
(2014) [35] (2014) [13] (2014) [20] (2014) [22]
No. cases 34 168 34 12 9
Tumor types All EOC types All EOC types All EOC types High-grade serous High-grade serous
Implantation site SQ Yes No Yes Yes Yes
1P Yes Yes Yes No No
1B Yes No No Yes Yes
Take rate (%) 25 74 85.3 (SC), 22.2 (IP) 83 >90
Passage time (weeks) Average Not mentioned Not mentioned 10 weeks Not mentioned 612 weeks
Passage attempts P1->6 P1 P1-6 P1 P1-4
Stem cell analysis No No ALDHT1, CD44,CD133 No ALDH1, CD44,CD133
Histology comparison Yes Yes No No Yes
Immunohistochemistry ER/PR No No No Yes Yes
analysis Ki67 No Yes Yes Yes Yes
Mutation analysis P53 Yes No No Yes Yes
Gene profile PO Yes Yes No No Yes
P1-x Yes P1 No No P2

EOC epithelial ovarian cancer
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tumors [13, 25, 35, 40]. Primary human platinum-
resistant HGSC were also established as PDX, and novel
agents such as notch signaling pathway inhibitor [26],
PARP inhibitor olaparib (AZD2281) [41], and the DNA
minor groove binder lurbinectedin [25] have been tested
[29, 42]. To achieve the goal for the clinical usage of
PDX, thorough evaluation of PDX tumors, including
tumor growth behavior, histology, molecular alterations,
and stem cell dynamics will provide basic parameters for
its potential application to existing or new therapeutic
targets.

There are several published data on ovarian cancer
PDX models, but the results vary widely among studies
due to different histologic subtypes, implantation site,
and passage and analysis platforms. To use PDX as a
tool for potential therapeutical purposes, it is very
important to compare the histologic and molecular dif-
ference, stem cell change, and growth behavior in differ-
ent microenvironments between primary and engrafting
tumors. Therefore, an in-depth analysis of PDX tumors
should include the engrafting site, passage time and
level, microenvironment, and primary and metastatic tu-
mors. To this end, we compared five of the most recent
and similar studies and the results are summarized in
Table 2 [13, 20, 22, 35]. We listed the major parameters
and findings which are necessary for the evaluation of PDX
tumors. This check list may aid in future studies and for
potential clinical applications. Through thorough evaluation
of histologic and molecular differences between primary
and xenograft tumors, PDX models may provide a novel
approach and angle for the evaluation of HGSC tumors’ be-
havior and biologic features. The findings may further
benefit towards designing optimal passages of PDX tumors
to meet the needs for personalized medical treatments.

Conclusions

In summary, we established the heterotopic and orthoto-
pic PDX for HGSC in this study. The histological and
molecular analysis provided valuable information for the
future use of HGSC PDX. Our findings support the
complexity of ovarian tumor histology, stem cells, and
molecular characteristics, indicating a need for a PDX
model in order to develop personalized medical treat-
ments for this deadly disease.
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