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Although oxygen (O2) is essential for aerobic life, it can also be an important source of

cellular damage. Supra-physiological levels of O2 determine toxicity due to exacerbated

reactive oxygen species (ROS) production, impairing the homeostatic balance of several

cellular processes. Furthermore, injured cells activate inflammation cascades, amplifying

the tissue damage. The lung is the first (but not the only) organ affected by this

condition. Critically ill patients are often exposed to several insults, such as mechanical

ventilation, infections, hypo-perfusion, systemic inflammation, and drug toxicity. In

this scenario, it is not easy to dissect the effect of oxygen toxicity. Translational

investigations with animal models are essential to explore injuring stimuli in controlled

experimental conditions, and are milestones in understanding pathological mechanisms

and developing therapeutic strategies. Animal models can resemble what happens in

critical care or anesthesia patients under mechanical ventilation and hyperoxia, but are

also critical to explore the effect of O2 on lung development and the role of hyperoxic

damage on bronchopulmonary dysplasia. Here, we set out to review the hyperoxia

effects on lung pathology, contributing to the field by describing and analyzing animal

experimentation’s main aspects and its implications on human lung diseases.

Keywords: hyperoxia, animal models, translational science, lung injury, hyperoxia acute lung injury

INTRODUCTION

Aerobic respiration is a vital process in mammalian cells in which adequate oxygen (O2)
delivery is essential. Nevertheless, supra-normal levels of O2 can damage cellular constituents
and thus trigger cell injury and death (1, 2). The lung is the first organ affected by
hyperoxia, but increasing evidence indicates that high blood concentration of O2 (hyperoxemia)
can also determine harmful systemic consequences (3). Acute lung injury is featured by
diffuse alveolar damage with interstitial and alveolar edema due to increased alveolar-capillary
permeability to liquid, proteins and inflammatory cells (4). Hyperoxia is a frequent iatrogenic
consequence of oxygen therapy, which can induce pulmonary damage and maximize mechanical
ventilation associated acute lung injury, leading to severe consequences on gas exchange
and respiratory mechanics (2, 5, 6). Moreover, in the last few years clinical reports have
shown an increased mortality in patients with hyperoxia in intensive care units (7, 8). The
lungs of critically ill patients are often exposed to several insults, such as mechanical stress,
infections, hypo-perfusion, systemic inflammation and drug toxicity. In these scenarios it
is not easy to clearly dissect the effect of oxygen toxicity. Translational investigations with
animal models are essential to exploring injuring stimuli in controlled experimental conditions,
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and are milestones in the understanding of pathological
mechanisms and the development therapeutic strategies. Here,
we set out to review the animal models used to investigate
hyperoxia and its effects on different pathological situations such
as acute lung injury, chronic respiratory diseases and impairment
of pulmonary development, among others.

METHODS

An electronic search of Pubmed was made to identify the
eligible studies, involving those published until 2020, combining
the following keywords: hyperoxia; lung injury; animal models.
All articles and cross-referenced studies were screened for
appropriate information and reviewed by the authors. Inclusion
criteria included original experimental and review articles.
Publications not written in English or Spanish were excluded.

OXYGEN TOXICITY MECHANISM

The homeostatic balance of cellular processes can be disrupted
when exposed to supra-physiological concentrations of O2, due
to exacerbated reactive oxygen species (ROS). Production of ROS
is directly proportional to tissue O2 concentration, as they are
intermediate metabolites produced during aerobic metabolism.
Mitochondrial ROS generation begins with superoxide anion
(O2

•−) the main sources of which are complex I and II
electron transfer. Further reactions lead to hydrogen peroxide
(H2O2), hydroxyl radical (OH•−) and peroxynitrite anion
(ONOO−) formation, all of which are highly reactive molecules
able to damage intracellular components, proteins, lipids and
nucleic acids. Antioxidant cell defense mechanisms, including
superoxide dismutase, catalase and peroxidase enzymes, and
non-enzymatic compounds (low molecular weight scavengers,
proteins, glutathione), are overwhelmed when mitochondrial
ROS production increases in the presence of hyperoxia (9–11).
Injured cells activate inflammation cascades and cytokines such
as interleukin-1, interleukin-6, and interleukin-8, which have an
important role on amplifying the tissue damage by attracting
and activating neutrophils, macrophages and other inflammatory
cells, causing increased vascular permeability and secondary
ROS production. After secondary injury, both endothelial and
epithelial cells are damaged, therefore alveolar-capillary barrier
integrity is lost, leading to interstitial edema (2, 12, 13).

ANIMAL MODELS

Since O2 was described by Lavoisier on 18th century, pioneer
investigators observed that animals breathing under high O2

atmosphere suffered severe lung inflammation and died within
a few hours. In an article published in 1849, Lorrain Smith
reported that hyperbaric hyperoxia on mice, rats, guinea pigs
and birds, resulted in convulsions and lung congestion leading
to death (14). During the 20th century, experiments on different
species (rabbits, cats, dogs, monkeys, mice and rats), reported
a lethal toxicity of oxygen. In general, these animals developed
progressive respiratory distress and died from respiratory failure

in between 3 and 6 days (12). The injury level and the exposure
time needed to induce death vary notably among animal species.
Mortality studies show that a fraction of 0.7 inspired O2 (FIO2)
was the upper limit beyond which toxic effects are clinically
relevant (15, 16).

Large Animal Models of Hyperoxic Acute
Lung Injury (HALI)
Primates were used to model human disease since they are
evolutionarily closer to humans than other mammals. HALI
was observed in baboons, with progressive pulmonary damage
characterized by destruction of endothelial and alveolar type
I cells, hypertrophy of type II cells, interstitial edema and
neutrophil accumulation (17). In terms of recovery, monkeys
who survived a hyperoxic environment and who were allowed to
reach full recovery showed normal lung histology suggesting that
sub-lethal HALI has a reversible pattern (18). Oxygen toxicity was
also proposed as a second hit injury. Studies in baboons revealed
a synergistic effect of hyperoxia and bacterial pneumonia on lung
injury (19), however, experiments with hyperoxia exposure after
oleic acid infusion suggested that previous lung injury does not
change the response to hyperoxia (20). Paradoxically, rabbits pre-
treated with oleic acid were found to develop a delayed oxygen
toxicity and prolonged survival, compared with a non-pre-
treated hyperoxic group (21, 22). Furthermore, a potential benefit
of hyperoxia was proposed by Milstein et al., who observed
in rabbits that hyperoxia induces changes in microcirculatory
flow in a reversible manner with a slight impact on macro-
hemodynamic parameters (23).

Large Animal Models of
Bronchopulmonary Dysplasia (BPD)
The effect of a high oxygen dose during the early stages of
life is known to have deleterious effects on lung development.
Experimentation on animal models has been essential to
understanding the role of hyperoxia and the underlying
mechanisms of BPD, a chronic lung disease in which the
development of the respiratory system is severely affected.
Rabbit models helped to elucidate some important features of
the BPD in preterm born infants. The transcriptome analysis
on preterm pups shows that the main pathways altered by
hyperoxia are related with reactive oxygen species production,
inflammation, and lung and vascular development (24). Other
reports observed that the gestational age and the FiO2 are
determinant factors for BPD, inducing characteristic histological
changes and decreasing survival rates (25). Moreover, Jiménez
et al. have reported that preterm rabbits exposed to up to seven
days of hyperoxia show early structural changes in the lung
vasculature and alveoli development compromised with severe
consequences on respiratory physiology (26). Nonetheless, short
term noninvasive ventilation with 100% O2 as a strategy for
preserving spontaneous breathing was shown to be beneficial
in preterm rabbits (27). Additionally, therapeutic studies on
large animal models have contributed to proposed therapeutic
strategies, such as the pharmacological effect of statins on
preventing the arterial remodeling and BPD induced by
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hyperoxia in a rabbit model (28) and the protective effect
of the proton-pump inhibitor Omeprazole in a rabbit model
of neonatal hyperoxic lung injury by inducing Cytochrome
P4501A1 (CYP1A1) activation (29). Moreover, larger preterm
animals such as lambs, baboons, and pigs (30–33) have been
studied tomodel human neonatal disease, in which hyperoxia has
a key role.

Small Animal Models of Hyperoxic Acute
Lung Injury (HALI)
Following the 3Rs (Replacement, Reduction, and Refinement)
recommendations in the bioethics principles (34), and
considering that large animal models are often costly and
time-consuming, small animals have been used for alternative
models for biological research.

Rat Models
Rats breathing 24 h in a 100% oxygen atmosphere showed
an increase of stress response gene HO-1 (heme oxygenase-1)
in lung tissue homogenates (35), and at 48 h the pulmonary
surfactant was altered, leading to a decrease in lung compliance
after 60 h of hyperoxia (36). Moreover, in a short exposure
of 90min to hyperoxia, inflammatory cells and biomarkers of
oxidative stress were increased and histology revealed lung injury
in a dose dependent manner (37). Furthermore, experiments in
rats revealed that lung injury after 60 h of hyperoxia could be
paradoxically prevented by the free radical nitric oxide when it
was added to the hyperoxic gas mixture (38).

Mice Models
At present, mice models are themost used to study hyperoxia due
to the wide availability of transgenic strains, essentials to explore
the pathophysiology of HALI. The susceptibility to hyperoxia
was shown to vary between mice and rats and within different
mice strains. More than 40 years ago, Tierney et al. observed
that mice exposed to an enriched oxygen atmosphere for several
days have an increased mortality rate when compared to rats
(39). Recent research demonstrated that the susceptibility to
oxygen toxicity in mice depends on three main factors, (1) sex:
the adult C57BL/6 WT male mice had more lung injury and
inflammatory edema after hyperoxia exposure (40–42). Also,
neonatal male C57BL/6 WT are more susceptible to oxygen
toxicity in terms of inflammatory response and impairment
in lung development (43–45). Nevertheless, a different sex
susceptibility can be observed in other strains. In genetic analysis,
Prows et al. showed that in adult mice resulted from the cross of
sensitive (C57BL/6) and resistant (29X1/SvJ) progenitor strains,
females have increased susceptibility to hyperoxia compared with
males (46, 47). Considering the strain and the sex differences in
terms of susceptibility is imperative when analyzing the effects of
hyperoxic damage. (2) age: the survival rate is inversely correlated
with age, and (3) strain: C3H/HeJ and 129X1/SvJ mice are
resistant to hyperoxic damage, whereas C57BL/6J background
confers a consistent sensitivity to the strain (47–49). In terms of
genetic research, Prows et al. demonstrated that the quantitative
trait loci Shali-1 and Shali-2 have strong effects on survival times
after hyperoxia (46, 50). Experimental hyperoxia on transgenic

mice have helped us to understand the pathophysiology of
HALI and to elucidate mediators, signaling pathways and cell
deathmechanisms involved. Some important processes of oxygen
toxicity include cytokine (IL-3) and grow factors (TGFß, VEGF,
Ang2) release, activation of transmembrane receptor (P2X7)
and intracellular pathways including inflammasome, kinases
cascades, and oxygen reactive species processes. Many transgenic
mice strains have been used to explore hyperoxia, showing
different susceptibility patterns, in Table 1 the main reports
are listed, describing gene alteration, background strain, sex,
age, method of exposure to hyperoxia, outcomes measured and
susceptibility pattern (Table 1).

Hyperoxia and Second Hit Models of HALI in Small

Rodents
In addition to the described for large animals (20–22), small
rodents have also been used to study the role of hyperoxic
insult superimposed on a preexisting damage, enhancing its
effect (a second hit). Rats exposed continuously to 100% oxygen
are more susceptible to toxic acute lung injury with a marked
increase in mortality rate (39). Also, hamsters breathing on
70% O2 atmosphere for 72 h after bleomycin instillation showed
more pulmonary fibrosis and higher mortality (15). Hakkinen
et al. observed similar effect on rats with bleomycin and
cyclophosphamide induced lung injury followed by exposition
to 80% oxygen for 6 days (93). Moreover, rats have been
essential for research on lung mechanical stress and its effects on
respiratory physiology. The characterization of the mechanical
ventilation induced lung injury (VILI) determined a paradigm
shift in the management of critically ill patients. Furthermore,
the hyperoxic acute lung injury was proposed to be an additional
mechanism on VILI. High tidal volume (Vt) ventilation of 20
ml/kg plus high FiO2 for 2 h was shown to cause significantly
more pulmonary edema and neutrophil migration on Sprague-
Dawley rats. The mechanical stress can induce chemoattractant
MIP-2 (macrophage inflammatory protein-2), which could have
a role on this inflammatory response to VILI and HALI (94).
Additionally, it was observed in a rat model that the synergistic
effect of VILI and HALI impaired alveolar type II cell adhesion
due to changes in adhesion proteins by RhoA signaling activation
(95). In terms of susceptibility, agedWistar rats had amore severe
lung damage and diaphragmatic dysfunction in a model of short
term mechanical ventilation and hyperoxia when compared with
adult rats (96). Furthermore, the enhanced effect of hyperoxia
on VILI was also widely studied in mice as is discussed in
the acute exposure section of this review. Second hit impact
of hyperoxia was additionally demonstrated in a rat model
of fulminant sepsis, in which increasing FiO2 directly affected
mortality rates in a dose dependent manner (97). Experiments
in adult mice also observed increased inflammatory injury in
with 100% hyperoxia for 48 h after acute lung injury induced
by intra-tracheal administration of lipopolysaccharide (LPS) and
staphylococcal enterotoxin B (98). These models are relevant for
translational analysis, considering that most critically ill patients
exposed to high doses of oxygen by mechanical ventilation have
some pulmonary or systemic additional disease, resulting in a
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TABLE 1 | Transgenic mice and susceptibility to hyperoxia.

Transgenic

mice

Background

strain

Sex Age Phenotype/Alterations Hyperoxia exposure Outcome measured Effect References

Cytokines

CC10–IL-11 C57BL/6 UNS UNS Overexpression of IL-11 in Clara cells of the

lung

100% O2 chamber ALI markers. Oxidative

stress. Survival rate

Protection (51)

CC10–IL-6 C57BL/6 UNS UNS Overexpression of IL-6 in Clara cells of the lung 100% O2 chamber ALI markers. Oxidative

stress. Survival rate

Protection (52)

IL-3 KO C57BL/6 Male 7–9 weeks Deficiency of the pro inflammatory cytokine

interleukin (IL)-3

100% O2 chamber ALI markers Protection (53)

Growth factors

Ang2 KO C57BL/6 UNS 4–6 weeks Deficiency of Angiopoietin 2, a regulator of

angiogenesis and vascular homeostasis

100% O2 chamber ALI markers.

Apoptosis. Survival rate

Protection (54)

TGFβ1R2 KO C57BL/6 UNS 1 day Deficiency of the type II transforming growth

factor beta 1 receptor (TGFβR2). TGFβ is a

secretory cytokine regulator of proliferation,

differentiation and apoptosis. It is involved in

many pathological processes.

100% O2 chamber (7 days) Alveolarization. ALI

markers. Apoptosis.

Survival rate

Protection (55)

VEGF-D KO C57BL/6 Male 7–10 weeks Deficiency of the vascular endothelial growth

factor D, an angiogenic and lymphangiogenic

protein

95% O2 chamber ALI markers Protection (56)

Receptors

P2X7 KO C57BL/6 Female and male 6 weeks Deficiency of the purinergic receptor P2X7, a

membrane receptor involved in innate and

adaptive immune responses.

100% O2 chamber ALI markers. Survival

rate

Protection (57)

Cell signaling and pathways

Src+/− C57BL/6 UNS (54) 6–8 weeks (54) Deficiency of Src (heterozygotes), a tyrosine

kinase, which regulate cell processes such as

proliferation, migration, apoptosis

100% O2 mechanical

ventilation

ALI markers. Apoptosis Protection (58, 59)

Male (55) 2–3 month (55)

Nlrp3 KO C57BL/6 Female and

male (56)

3 days (56) Deficiency of the Nucleotide-binding domain

and leucine-rich repeat PYD-containing protein

3, an essential component of the

inflammasome.

85–100% O2 chamber Alveolarization. ALI

markers. Apoptosis

Protection (60–62)

Female (57) 8–14 weeks

(57)

UNS (58) 7–9 weeks (58)

ASK1 KO C57BL/6 UNS 7–9 weeks Deficiency of the apoptosis signal-regulating

kinase 1 (ASK1), a member of the

mitogen-activated protein kinase (MAP3K)

family, involved in cell response to stress.

100% O2 chamber ALI markers. Apoptosis Protection (63)

SphK1 KO C57BL/6 Female 6 weeks Deficiency of sphingosine kinase (SphK)1,

which is involved in ROS production by NOX

activation

95% O2 chamber ALI markers. Oxidative

stress

Protection (64)

(Continued)
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TABLE 1 | Continued

Transgenic

mice

Background

strain

Sex Age Phenotype/Alterations Hyperoxia exposure Outcome measured Effect References

Other transporters, enzymes and metabolic factors

db/db C57BL/6 Male 6–8 weeks Leptin resistance Mice are obese, hyperphagic

and hyperglycemic

100% O2 chamber ALI markers Protection (65)

SP-D KO C57BL/6 Male 7–8 weeks Deficiency of the surfactant protein D 80% O2 chamber ALI markers. Oxidative

stress. Survival rate

Protection (66)

Periostin KO B6/129 UNS 2–3 days Deficiency of the protein Periostin, a

non-structural extracellular matrix- associated

molecule

75% O2 chamber (14 days) Alveolarization Protection (67)

(Control:

C57BL/6 WT)

sEH KO C57BL/6 Male 7–10 weeks Deficiency of the soluble epoxide hydrolase, an

enzime with a role on lipid metabolism

100% O2 chamber ALI markers. Survival

rate

Protection (68, 69)

Tgm2 KO C57BL/6 Female and male 1 day Deficiency of the transglutaminase (TGM)-2,

important for extracellular matrix (ECM)

structure and function

85% O2 chamber (14 days) Alveolarization Protection (70)

Cyp1b1 KO C57BL/6 Female and male 8–10 weeks Deficiency of the cytochrome P450 enzyme

CYP1B1

>95% O2 chamber ALI markers. Oxidative

stress

Protection (71)

slc7a2 KO C57BL/6 Female and male 8–12 weeks Deficiency of the cationic amino acid

transporter (CAT)-2, by which L-arginine is

transported to participate in NO production

>95% O2 chamber ALI markers. Lung

mechanics. Apoptosis

Protection (72)

Cytokines

IL-13 KO C57BL/6 UNS 4–6 weeks Deficiency of IL-13 100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (73)

Growth factors

Fgf10+/− C57BL/6 Female and male 0 day Deficiency of Fibroblast growth factor 10

(FGF10) (heterozygotes), a protein with a key

role in embryonic lung development

85% O2 chamber (8 days) Alveolarization Susceptibility (74)

Receptors

CD44 KO C57BL/6 Male 10–12 weeks Deficiency of the transmembrane adhesion

molecule CD44

>95% O2 chamber ALI markers. Survival

rate

Susceptibility (75)

TLR4 KO C57BL/6 UNS 6–10 weeks Deficiency of toll-like receptor 4 100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (76)

TREK KO C57BL/6 Female and male 9–12 weeks Deficiency of the two-pore domain potassium

(K2P) channel. Mice lack TREK-1, TREK-2, and

TRAAK isoforms (triple KO).

95% O2 chamber and

mechanical ventilation

ALI markers. Lung

mechanics. Apoptosis

Susceptibility (77)

Cell signaling and pathways

NRF2 KO ICR/Sv129 (74) Female and

male (74)

6–8 weeks (74) Deficiency of the transcription factors NRF2, a

regulator of antioxidant genes

95–99% O2 chamber ALI markers. Apoptosis Susceptibility (78, 79)

C57BL/6 (75) UNS (75) 8 weeks (75)

NOS2 KO C57BL/6 UNS 4–6 weeks and

1 day

Deficiency of nitric oxide (NO) synthase 2, an

enzyme which generates NO

100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (80)

(Continued)
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TABLE 1 | Continued

Transgenic

mice

Background

strain

Sex Age Phenotype/Alterations Hyperoxia exposure Outcome measured Effect References

Other transporters, enzymes and metabolic factors

Bfl-1/A1 KO C57BL/6 UNS 6–8 weeks Deficiency of the anti-apoptotic protein

Bfl-1/A1, a Bcl-2 family member

100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (81)

TIMP-3 KO C57BL/6 Male 9–12 weeks Deficiency of the tissue inhibitors of

metalloproteinases. Determines chronic and

progressive lung air space enlargement

>90% O2 chamber Lung mechanics. ALI

markers

Susceptibility (82)

BRP-39 KO C57BL/6 Female and male 4–6 weeks Deficiency of Breast regression protein −39, a

chitinase-like protein

100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (83)

Ddit3 KO C57BL/6 Female UNS Deficiency of CCAAT enhancer-binding protein

homologous protein (CHOP), a pro-apoptotic

transcription factor

>95% O2 chamber ALI markers. Survival

rate

Susceptibility (84)

AhRd C57BL/6 UNS 0 day Aryl hydrocarbon dysfunctional

B6.D2N-Ahrd/J. AhRd is a regulator of

detoxification enzymes. This transgenic mice

have decreased affinity of the receptor AhRd

for its ligand

85% O2 chamber (14 days) Alveolarization Susceptibility (85)

Hsp70 KO C57BL/6 UNS 6–10 weeks Deficiency of heat shock proteins 70s 100% O2 chamber ALI markers.

Apoptosis. Survival rate

Susceptibility (76)

Cyp1a1 KO C57BL/6 UNS 8–10 weeks Deficiency of the cytochrome P450 enzyme

CYP1A1 and CYP1A1

95% O2 chamber ALI markers. Oxidative

stress

Susceptibility (86, 87)

apoE KO C57BL/6 Male 8–15 weeks Deficiency of apolipoprotein E (apoE), involved

in the lipid transport. Mice have

hypercholesterolemia, premature

atherosclerosis and impaired inflammatory

response.

100% O2 mechanical

ventilation

ALI markers Susceptibility (88)

dnTrx-Tg C57BL/6 UNS UNS Decreased levels of functional thioredoxin (Trx),

an antioxidant protein.

>90% O2 chamber ALI markers. Survival

rate

Susceptibility (89)

LysM-

Cre/Foxm1

KO

C57BL/6 UNS 0 day Selective deficiency of Foxm1 in

myeloid-derived inflammatory cells.

85% O2 chamber (21 days) Alveolarization Susceptibility (90)

ogg-1 KO C57BL/6 UNS UNS Deficiency of the 8-oxoguanine- DNA

glycosylase (OGG)-1, an enzyme involved in

DNA repair

95 % O2 chamber ALI markers Susceptibility (91)

Akap1 KO C57BL/6 UNS 7–9 weeks Deficiency of the mitochondrial A-kinase

anchoring protein (Akap), a regulator of the

mitochondrial function.

100% O2 chamber ALI markers Susceptibility (92)

Uns, Unspecified in the original article; Ali, Acute lung injury; PN, Post-natal.
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multi factorial insult to the lungs in which hyperoxia has an
important role.

Small Animal Models of Bronchopulmonary
Dysplasia (BPD)
Modeling the effects of hyperoxia on the neonatal in mice
and rats has many advantages, e.g., they have relatively short
gestation times and short lifetimes and are less expensive than
larger animals. However, perhaps the most important benefit is
that mice and rats are delivered at term in the saccular stage
of lung development, like preterm infants that develop BPD.
Development of the lung is typically described to occur over
five stages: embryonic, pseudo-glandular, canalicular, saccular,
and alveolar stages in overlapping periods (99–101). Term
human babies (38 week-old) are born in the alveolar phase,
whereas preterms between 24–36 weeks are born in the saccular
stage. On the other hand, the saccular phase of rats and
mice starts on the embryonic day 20 and 17, respectively, and
both end in the postnatal day 5, where the alveolar phase
starts. Comparison of developmental stages among different
animal species can be found in recent state-of-the-art reviews
(30, 32, 101, 102). Hyperoxia has been widely used to model
BPD as it determines an impaired alveolarization, increased
collagen deposition, and interstitial thickness, associated with
changes in lung function. Cell proliferation is inhibited, whereas
inflammatory cell activation and its products are exacerbated.
Proinflammatory cytokines, such as TNF-α, IL-6, and IL-
1, play a key role in hyperoxic oxidative lung damage by
altering essential growth factors and thus have been proposed
as therapeutic targets (103–105). Prolonged exposition to high
FiO2 in sealed chambers for several days is the usual model
to induce BPD and evaluate the effect of hyperoxia on the
impairment of lung development. The dose needed to develop
BPD in murine models are frequently very high (FiO2 >0.8),
which does not precisely correlate with the dose used usually
in patients. Interestingly, lower FiO2 was demonstrated to
cause structural alteration in lung tissue, and a dose dependent
effect was observed (106–108). Moreover, Yee et al. reported a
model closer to the clinical course in human preterm neonates
using concentrations from 0.4 to 1 for PN days 1–4, followed
by 8 weeks of room air recovery (107). The duration of
exposure is also a critical factor in the effect of hyperoxia
in lung development. In many studies, continue exposure
from PN day 0–28 was used to reproduce histopathological
changes similar to BPD (103, 109, 110). Nevertheless, a
shorter exposure also induces a marked impairment in lung
tissue development (111–114). Consistently, in vitro studies
have demonstrated robust changes in cellular metabolism with
alteration of oxidative phosphorylation triggered by only 4 h of
hyperoxia (114).

Effects of Hyperoxia on Pulmonary Vasculature on

Neonatal Models
Hyperoxia is known to alter growth factor signaling, extracellular
matrix (ECM) assembly, cell proliferation, apoptosis, and
vascular development (100, 115). Experiments in animals have
shown that hyperoxia impairs angiogenesis by downregulating

essential growth factors such as vascular endothelial growth
factor (VEGF) (104, 116–120). Additionally, the role of
factors such as hypoxia-inducible factor (117, 121, 122)
has been studied in animal models and helped to identify
potential therapeutic targets. Transforming growth factor-
β (TGF-β) plays a pivotal role during lung development
and angiogenesis by regulating endothelial cell growth,
differentiation and migration, and ECM production. Recent
findings on mice models of hyperoxia reported the contribution
of two endoglin isoforms (L- and S-endoglin) to TGF-β
downstream signaling and its role on angiogenesis and BPD
development (123). Moreover, the vascular consequences
of hyperoxia exposure during lung development can cause
long term alterations that persist into adulthood. Studies
in rats demonstrated that hyperoxia alters the reactivity
in pulmonary arteries (124), leading to an impairment
of the contractile properties of the right ventricle (125).
Pulmonary hypertension signs such as arterial thickness and
right ventricle hypertrophy were observed in mice with post-
natal hyperoxia, among other systemic vascular structural
effects (126–128).

Hyperoxia and Second Hit Models of BDP in Small

Rodents
Hyperoxic insult has also been studied as a second hit factor
on BPD. The combination of prenatal infections or hypoxia
with post-natal noxious stimuli such as mechanical ventilation
and hyperoxia are known to be key pathogenic factors. Using a
mice model, Gortner et al. combined prenatal grow restriction
by hypoxia with post-natal hyperoxia (129, 130) to induce
BPD. Interestingly, when hypoxia in short episodes occurs after
hyperoxia, the structural alteration is exacerbated (129). Perinatal
inflammation induced by LPS, followed by prolonged exposure
to hyperoxia produces BPD and was used as a model to study
anti-inflammatory therapeutic strategies (131, 132).

DISCUSSION

Chronic Exposure
As a mechanistic approach, experimental animals breathing
in a high oxygen atmosphere in a chronic scenario has been
widely used. The main method for chronic hyperoxic exposition
consists in rooming the animals in closed and sealed chambers
with an oxygen enriched atmosphere for several hours or days.
This model has been used in many reports with mice and
rats, assessing different features of oxygen toxicity. Thereby,
exposing rodents to 72 h of a pure oxygen atmosphere in a
chamber has been shown to induce lung edema and alveolar
leakage with increased oxidative stress markers and recruitment
of inflammatory cells and mediators, such as IL1-ß, TNF α

and IL-6. Moreover, prolonged exposure causes lung mechanics
alterations, increasing airway resistance and diminishing lung
compliance; also histological evidence of injury has been
consistently observed (53, 57, 72, 77, 92). The extended exposure
in a plastic chamber requires an inexpensive system which
could be hand crafted, additionally, it is a technically simple
and high fidelity reproducible model. It is a suitable method
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to characterize different phases of acute lung injury and also
to observe persistent structural, biochemical and inflammatory
changes that can be translated into human diseases such as
chronic obstructive pulmonary disease (COPD) with permanent
oxygen dependency. Nevertheless, it does not simulate the effect
of an acute high fraction of inspiratory oxygen that is frequently
delivered to critically ill patients under mechanical ventilation.
For this purpose, short exposure models (with and without
mechanical ventilation) have been reported and are reviewed in
the following section.

Acute Exposure
The exposure to supra-normal concentration of oxygen in an
acute scenario usually involves mechanical ventilation (MV).MV
entails profound changes on respiratory physiology by applying
positive pressure to the lungs and subjecting the parenchyma
to abnormal stretching stress, which, if excessive, could lead to
ventilator-induced lung injury (VILI), with structural alteration,
impaired gas exchange and activation of the inflammatory
cascades (133). Hyperoxia added to MV with high tidal volumes
(Vt) establishes a scenario with high risk of acute lung injury
and systemic inflammation. Animal models of acute hyperoxia
are helpful to evaluate the harmful effects of oxygen and MV,
resembling what happens in critical care or anesthesia patients.
Hence, rodent models have been used to characterize HALI
plus VILI lung injury. The ventilatory pattern with large Vt
(20 ml/k) and 100% oxygen was observed to induce more
pulmonary edema and inflammatory infiltration than the same
Vt without hyperoxia in a rat model (94). Pre-exposure to a
high oxygen environment was also shown to aggravate lung
injury produced by mechanical ventilation in adult mice (134).
Also, the potential anti-inflammatory effect of pluripotent stem
cells was proposed to ameliorate hyperoxia-augmented VILI
through the inhibition of Src-dependent signaling pathway
(59). Interestingly, Wagner et al. observed that 4 h of low Vt
mechanical ventilation with 100% O2 did not increase lung
injury after blunt chest trauma and cigarette smoking in a mouse
model, but paradoxically, decreased nitrosative stress (135).
Furthermore, hyperoxia without mechanical ventilation was seen
to be harmful in acute experimental conditions, namely, mice
with 2 h-exposition to 60% O2 showed pulmonary genotoxicity
that could be prevented by the halogenated volatile anesthetic
Isofluorane by decreasing superoxide anion generation (136).
Moreover, in a rat model Nagato et al. observed that 90min of
hyperoxia itself determines lung injury with typical histological
changes, immune cells infiltration and excessive oxidative stress
(37). All those findings taken together suggest that short term
hyperoxia - which is often tolerated in perioperative and severe ill
patients - could be as harmful as long term hyperoxia, and should
be avoided.

Modeling the Disease
Critically ill adults and newborn babies are often exposed
to several insults, including oxygen toxicity. Translational
investigation with animal models is essential to explore injuring
stimuli in controlled experimental conditions. Nevertheless,
some aspects of animal biology differ markedly from human
functional mechanisms. Moreover, the models often do not
entirely resemble what happens in human pathology and can
give an oversimplified explanation of the mechanisms. Many
animal models lack the complexity of multifactorial insults, the
interaction of mechanisms, and the individual differences that
converge in human disease. To address this point, the second
hit injury models previously described have been proposed to
study the hyperoxic effect in a scenario closer to human disease.
Large animal models can be anatomically similar to humans,
appropriate to test some therapeutic strategies (i.e., Mechanical
ventilation, non-invasive support), and more accessible to
technical instrumentation, but are expensive, time demanding,
and offer fewer reagent and transgenic models compared with
rodents. Models are not good or bad; the point is to choose a
model that can test our scientific hypothesis. Animal models of
hyperoxia are fundamental to understanding lung diseases and
the development of therapeutic strategies.

In summary, hyperoxia is a frequent harmful consequence
of oxygen therapy, leading to lung injury and exacerbating the
effect of other insults. Translational investigation with animal
models is essential to study the toxicity of oxygen in a complete
system and explore the mechanisms involved, safety levels,
and potential therapeutic targets. In this narrative review, we
contribute to the research field by describing and analyzing the
main aspects of animal models of hyperoxia and its implications
on human pathology.
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