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Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome is the

most common autoinflammatory disease in children and is often grouped together

with hereditary periodic fever syndromes, although its cause and hereditary nature

remain unexplained. We investigated whether differential DNA methylation was present

in DNA from peripheral blood mononuclear cells (PBMC) in patients with PFAPA vs.

healthy controls. A whole-epigenome analysis (MeDIP and MBD) was performed using

pooled DNA libraries enriched for methylated genomic regions and identified candidate

genes, two of which were further evaluated with methylation-specific restriction enzymes

coupled with qPCR (MSRE-qPCR). The analysis showed that the PIK3AP1 and SPON2

gene regions are differentially methylated in patients with PFAPA. MSRE-qPCR proved

to be a quick, reliable, and cost-effective method of confirming results from MeDIP

and MBD. Our findings indicate that a B-cell adapter protein (PIK3AP1), as the PI3K

binding inhibitor of inflammation, and spondin-2 (SPON2), as a pattern recognition

molecule and integrin ligand, could play a role in the etiology of PFAPA. Their role and

the impact of changed DNA methylation in PFAPA etiology and autoinflammation need

further investigation.

Keywords: PFAPA, differential methylation, PIK3AP1, SPON2, MSRE-qPCR, MeDIP, MBD

INTRODUCTION

Periodic fever syndrome with adenitis, pharyngitis, and aphthous stomatitis (PFAPA) belongs to
the group of autoinflammatory diseases (AID). This group of disorders is marked by increased
inflammation associated with the innate immune system, and most of the disorders are inherited in
a Mendelian pattern (1, 2). Of the various autoinflammatory diseases, many now have a confirmed
known genetic cause. However, PFAPA syndrome still has an unknown genetic background and
pathogenesis (3).

PFAPA was first described by Marshall et al. (4). Its most common feature is periodic
fever, while its other features are more variable: pharyngitis, aphthous stomatitis, and cervical
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adenopathies (5, 6). Episodes have an early onset, usually
in patients around 2–3 years of age, mainly before the age
of five. Episodes can reoccur for several years, followed by
disease remission, and leave no long-term health consequences
(5–7). The syndrome is considered sporadic and has been
described as a non-inherited syndrome; however, familial
cases of PFAPA have been reported, suggesting a potential
genetic origin (3, 8–11). PFAPA could be caused by cytokine
dysregulation linked to genetic variants of autoinflammatory
disease-associated genes (12). Studies also point to altered
complement activation and IL-1 production in PFAPA patients
(13), as well as to IL-1β dysregulation (14). Since PFAPA shares
clinical similarities with monogenic fever syndromes, several
studies have investigated the possible involvement of the genes
responsible for Familial Mediterranean Fever (MEFV gene),
TNF-Receptor Associated Periodic Syndrome (TNFRSF1A gene),
Mevalonate kinase deficiency (MVK gene), and Cryopyrin-
Associated Periodic Syndrome (NLRP3 gene) in PFAPA cohorts
(15). A variant in CARD8 has been associated with more severe
cases of PFAPA. CARD8 acts as a negative regulator of the
inflammasome; its decreased ability to bind NLRP3 could partly
contribute to exacerbated inflammasome responses, although
probably not on its own (16). Genes known to be involved
in inflammation or in autoinflammatory disorders seem to
contribute to a predisposition to PFAPA syndrome, suggesting
complex genetic inheritance and interaction with non-genetic
factors (12, 14, 17–20).

Several inflammasome-related genes have been found to
have increased expression when demethylated during the
differentiation of monocytes to macrophages, specifically AIM2,
NLRC5, PYCARD, CASP1, and PSTPIP2, and their targets
IL1A, IL1B, and IL1RN. Furthermore, untreated patients
with Cryopyrin-Associated Periodic Syndrome (CAPS) have
exacerbated DNA methylation-dependent regulation of the
inflammasome product genes IL1B, ILR1N, NLRC5, and
PYCARD, while patients with CAPS undergoing anti-IL-1β
treatment have displayed demethylation levels in stimulated
monocytes similar to those seen in healthy subjects (21). Different
methylation levels of the MEFV gene have been observed in
Familial Mediterranean Fever patients compared to healthy
controls (22). Additionally, DNAmethylation plays an important
role during hematopoietic differentiation to a myeloid vs. a
lymphoid lineage (23).

Since studies suggest that DNA methylation plays a role in
other autoinflammatory diseases, we hypothesized that specific
methylation patterns may be aberrant in at least a small
portion (population) of peripheral blood mononuclear cells
(PBMC) in PFAPA patients. To identify the potentially relatively
small change in the methylation patterns due to the specifics
of a PBMC-derived DNA sample and to confirm whether
the PFAPA cohort differs in DNA methylation patterns from
healthy controls, a whole-epigenome analysis was performed
using pooled DNA libraries enriched for methylated genomic
regions using Methylated DNA Immunoprecipitation (MeDIP)
and Methyl-CpG-binding domain (MBD). We identified several
candidate genes with differential methylation, two of which
(PIK3AP1 and SPON2) were chosen based on their involvement

in the inflammation pathways and were further evaluated with
MSRE-qPCR. To our knowledge, no research had previously
been performed regarding differentially methylated DNA in
PFAPA patients.

MATERIALS AND METHODS

Participants
Clinical data and samples of 75 patients (44 boys and 31 girls)
with PFAPA syndrome at the University Children’s Hospital
Ljubljana were collected from 2008 to 2016. The median age of
the patients when blood was taken for the DNA analysis was 4.1
[Interquartile range, IQR 3–5.8] years. Patients were not in an
active state of the disease when samples for DNA isolation were
taken. Prior to donating blood for DNA analysis, 15 (20%) had
received methylprednisolone in the past but not in the month
prior to blood donation (except for one individual, who had
received treatment 2 weeks prior). Samples from 65 apparently
healthy children (35 boys and 30 girls) of Slovenian ethnicity
whose median age was 5.3 [IQR 5.2–5.4] were included in the
study as healthy controls. The parents of each child included in
the study were informed about the aim of the study and signed
a written informed consent form for inclusion in the study. The
study was approved by the Ethics Committee of the Republic of
Slovenia and was conducted according to the principles of the
Helsinki Declaration.

Samples
Five ml of peripheral blood was taken for DNA isolation.
Blood was taken from patients during routine venipuncture at
follow-up visits. Blood of the healthy controls was taken during
routine health examinations of the children. DNA isolation was
performed using the FlexiGene isolation kit (Qiagen, Germany)
according to the recommended protocol. The DNA was stored
at 4◦C.

MeDIP and MBD Data Analysis
For each sample pool (PFAPA vs. healthy), three separate NGS
libraries were generated for each enrichment method (MBD or
MeDIP). All 36 libraries were combined and simultaneously
sequenced on the MiSeq Illumina sequencer [MiSeq Reagent
Kit v3 (150-cycle)] by a 2 × 75 paired-end run. Sequencing
was repeated until each separate library had acquired at least
10 million pair-end reads. The acquired dataset was filtered
for low-quality reads and duplicates aligned by the BWA-MEM
aligner (24) and followed by MACS2 (25) analysis of narrow
and broad peak regions. The callable regions identified by the
MACS2 algorithm were used to count reads in each peak region
for each library by the featureCounts algorithm (26). Using
DeSeq2 (27), the algorithm peaks were compared to identify
differentially methylated regions via differences in normalized
read counts. The Benjamini-Hochberg procedure, which controls
false discovery rate (FDR), was used to identify true differentially
methylated regions (DMRs). DMRs were annotated for the
overlapping or proximal gene regions. DMRs associated with the
immune system were further verified using MSRE-qPCR.
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TABLE 1 | Primer sequences and PCR product length, genomic position and location within the gene.

Gene Accession number Primer Sequence Product size [bp] GRCh37 position Location

HBB NM_000518 HBB F GGATGAAGTTGGTGGTGAGG 231 11:5247959–5248189 Exon 1–2

HBB R CAGCATCAGGAGTGGACAGA

PIK3AP1 NM_152309 PIK_1 F AAAAGAGTTAAATAGGCCGGGCG 120 10:98425881–98426000 Intron 2

PIK_1 R GTTTCACCATGTTAGCCAGGATG

PIK_2 F GATCACAAGGTCAGGAGATCGAGA 238 10:98425953–98426190 Intron 2

PIK_2 R TTTGTTTGTTTGTTTGAGATGGAGTC

SPON2 NM_012445 SPON_1F TAATTACTGCTGCTCCTCAAGACG 174 4:1163329–1163502 Intron 5

SPON_1 R GGACTTCAGACTTTCCCGAGGA

SPON_2F CTCCTCGGGAAAGTCTGAAGTC 248 4:1163480–1163727 Intron 5

SPON_2 R CATTCTCCTAGCTCTTCCAGGC

TABLE 2 | qPCR reaction efficiencies.

qPCR reaction E [10
−1

slope ] Efficiency R2 Slope

HBB 1.945 0.945 0.998 −3.46

PIK_1 2.231 1.231 0.984 −2.87

PIK_2 2.117 1.117 0.961 −3.07

SPON_1 1.906 0.906 0.996 −3.57

SPON_2 1.771 0.771 0.992 −4.03

Primer Selection and Evaluation,
MSRE-qPCR Verification of DMRs
PCR primers were designed using the Primer 3 online
tool (http://primer3.ut.ee/) and SNP Check (https://genetools.
org/SNPCheck/snpcheck.htm) according to the established
laboratory protocol, covering the whole sequence identified by
MBD or MeDIP. Since the identified sequences were longer than
is optimal for qPCR amplicons, primers were chosen in pairs
to cover the first and second halves of the sequence (Table 1).
The primers were first evaluated with PCR and 2% agarose gel
electrophoresis (SYBR staining) and with a 50 bp DNA ladder
(N0556S, New England Biolabs), figure of Electrophoresis gel is
available in Supplementary Table 2. PCR was performed with
Go Taq G2 Green Master Mix according to the protocol.

After successful evaluation for specificity and annealing
temperature, evaluation of the qPCR assay was performed. We
used Luna Universal qPCR Master Mix (New England BioLabs)
with a fast cycling profile. Standard curves were prepared
for each primer pair to determine the efficiency (E) of the
designed primers. Efficiency calculations were calculated online
with the NEBioCalculator for qPCR Quantification (https://
nebiocalculator.neb.com/#!/qPCRGen) (Table 2).

Enzyme Restriction
The regions selected for MSRE-qPCR had multiple CpGs
between forward and reverse primer annealing sites. The selected
enzymes (MspJI and McrBC; Tables 3, 4) cover almost all CpGs;
however, for successful digestion and subsequent evaluation, at
least one of the targeted CpGs must be methylated. Furthermore,
the MspJI enzyme can also recognize methylated C in front of
any base (Table 3). However, since, in humans, mostly CpGs are

TABLE 3 | Recognition sites for methylation-sensitive enzymes (both New

England Biolabs) used for MSRE-qPCR.

Enzyme Recognition site

MspJI (R0661) mCNNR

McrBC (M0272) PumCG

mC represents 5-methylcytosine or 5-hydroxymethylcytosine, N represents any of the

nucleotides, and R and Pu represent purines A or G.

TABLE 4 | Amplicon CG content, number of CpGs, and candidate restriction sites

within amplicons.

Length [bp] CG content

[%]

Number of

CpGs

Candidate

restriction sites

HBB 231 51.1 0 0

PIK_1 120 55.0 5 5

PIK_2 238 53.4 10 9

SPON_1 174 62.1 6 6

SPON_2 248 63.3 8 6

methylated, only CpGs were counted for the number of candidate
restriction sites (Table 4). Beta globin amplicon, which does not
contain any CpGs, was used as a reference. Equal amounts of
DNA were used in control and restriction reaction. First, 200
ng of DNA was digested in accordance with the manufacturer’s
protocol by 2 units of MspJI and 2 units of McrBC (both New
England BioLabs) in a 25-µl reaction with CutSmart buffer
for 1 h at 37◦C, and this was followed by heat inactivation for
20min at 65◦C. Samples from the restriction reaction were then
purified using Sample Purification Beads from a TruSight R© One
Sequencing Panel Kit according to the manufacturer’s protocol.

Quantitative PCR
The purified digested and undigested DNA samples were used for
relative qPCR quantification. qPCR assays were run in triplicates
in 96-well plates using Luna Universal qPCRMaster Mix (SYBR).
In addition, melt curves were performed. Five pairs of primers
[two for PIK3AP1, two for SPON2, and one for normalization
(HBB, beta globin)] were analyzed on digested and undigested
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DNA samples for relative quantification using the11CT method
(28). This method analyzes relative changes in methylation
of the target gene to the reference gene, and it assumes
uniform PCR amplification efficiency across all reactions. Due to
varying efficiencies in qPCR assays, we used efficiency corrected
calculation (Equations 1–3) (28) for each obtained CT to produce
more accurate estimates in relative quantification.

Ratio =
Etarget

1CT(target)

Ereference
1CT(reference)

(1)

1CT
(

target
)

= CT
(

undigested, target gene
)

− CT(digested, target gene) (2)

1CT
(

reference
)

= CT
(

undigested, reference gene
)

− CT(digested, reference gene) (3)

Calculations for the11CT methodwere done in Excel. Statistical
data analysis was performed in the GraphPad Prism 8 program.
A Mann-Whitney test was performed; the data represent relative
expression ratios obtained with Equation (1). P < 0.05 was
considered statistically significant, and p < 0.01 was considered
statistically highly significant.

RESULTS

Clinical Characteristics of PFAPA Patients
All included participants fulfilled the clinical criteria for PFAPA
syndrome (5). Included in our study were 44 (58.7%) boys and
31 (41.3%) girls. All patients were asymptomatic during the
afebrile period. Pharyngitis (94.7%) and adenitis (89.3%) were
the most present symptoms during febrile episodes, followed
by abdominal pain (61.3%) and aphthous stomatitis (58.7%)
(Table 5). Included in our cohort were three pairs of siblings
(twin brothers, twin sisters, and two brothers). Positive family
history, meaning that at least one first-degree relative had
recurrent fevers or a tonsillectomy, was found in 73.4% of
patients. Positive family history, either in the first or second
degree, was present in 87.5% of patients.

Identification of DMRs With MDB and
MeDIP
13.8M (12.9–14.8M) reads per library were collected on average,
with 20% (17.2–22.8%) of the duplicates per library excluded
from further analysis. The mean insert size per library was
318 bp (305–331 bp), and 91% (88.6–93.6%) of reads had
proper pairs identified.MBD enrichment generated libraries with
significantly higher %GC (63.3% [62.8–63.8%]) compared to
MeDIP enrichment (49% [48.7–49.3%]). After cleanup of the
datasets—by eliminating duplication, multiple alignment, and
misalignment reads—the MACS2 algorithm identified 352,451
potential peaks in the MeDIP dataset and 100,902 peaks in
the MBD dataset. To reduce the number of false-positive
results in DMR analysis using DeSeq2, the FDR cutoff value
was modified in such a way that the potential DMR set
contained up to 1 (one) false-positive result. Consequently,
the FDR cutoff value was set to q < 0.06 for the MeDIP
dataset and q < 0.15 for the MBD dataset. After count tables

TABLE 5 | Demographic and clinical characteristics of PFAPA patients with family

history and symptoms.

Demographic and clinical characteristics of PFAPA patients

Total number of patients 75

Male 44 (58.7%)

Female 31 (41.3%)

Age at disease onset (mean ± SD) 2.1 ± 1.4 years

Age at giving a sample for DNA (mean ± SD) 4.5 ± 2.0 years

Family history

Positive family history (first degree) 47/64 (73.4%)

Tonsillectomy in first-degree relative 32/65 (49.2%)

Tonsillectomy in first-degree relatives,

more than one family affected

8/64 (12.5%)

Tonsillectomy in second-degree relative 19/64(29.7%)

Tonsillectomy in second-degree relative only,

excluding those with tonsillectomy in first-degree

relative

8/64 (12.5%)

Unknown 11/75 (14.7%)

Symptoms

Pharyngitis 71 (94.7%)

Adenitis 67 (89.3%)

Abdominal pain 46 (61.3%)

Aphthous stomatitis 44 (58.7%)

Vomiting 28 (37.3%)

Joint pain 27 (36.0%)

Diarrhea 16 (21.3%)

Skin rash 9 (12.0%)

were generated by the featureCount algorithm, the DeSeq2
identified 17 DMRs in the MeDIP dataset and seven DMRs
in the MBD dataset. There was no overlap between the
identified DMRs from the MeDIP and MBD datasets. All
identified DMRs were annotated for proximal genes or other
location-specific elements (intergenic space, regulatory elements,
ncRNAs, etc.). The identified genomic elements/regions, listed
in Supplementary Table 1, were analyzed for their potential role
in (auto)immune response and consequently selected for further
evaluation. Out of 24 identified DMRs, one DMR per enrichment
method (MeDIP orMBD)with themost significant signal located
near or within genes that could be reliably associated with
the autoinflammation through published literature and public
database search was further evaluated by MSRE-qPCR.

Identification of DMRs With MSRE-qPCR
Of the differentially methylated sequences previously identified
by using MDB and MeDIP, two regions of interest (ROIs)
were chosen to perform our analysis based on the location and
function of the gene. Of the top significant candidate genes,
one was chosen from MeDIP (PIK3AP1, region 10:98425909–
98426208, GRCh37) and one from the MBD method (SPON2,
region 4:1163349–1163641, GRCh37). Relative quantification of
digested and undigested DNA was performed with MSRE-qPCR
in order to compare patients with healthy controls. The second
intron region of PIK3AP1 (10:98425909–98426208) was found to
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TABLE 6 | Descriptive statistics of each ROI with exact two-tailed P-values of the unpaired Mann-Whitney tests.

PIK_1

controls

PIK_1

patients

PIK_2

controls

PIK_2

patients

SPON_1

controls

SPON_1

patients

SPON_2

controls

SPON_2

patients

N 64 74 64 75 59 65 61 69

Mean 0.1576 0.1892 0.03239 0.06402 0.2561 0.1912 0.2382 0.2911

Std. deviation 0.08185 0.1486 0.01146 0.09392 0.1584 0.1139 0.1505 0.1656

Std. error of mean 0.01023 0.01728 0.001433 0.01085 0.02063 0.01412 0.01927 0.01994

Lower 95% CI of mean 0.1371 0.1548 0.02953 0.04241 0.2148 0.163 0.1997 0.2514

Upper 95% CI of mean 0.178 0.2236 0.03526 0.08563 0.2974 0.2195 0.2768 0.3309

P-value 0.508 <0.0001 0.001 0.019

be more methylated in PFAPA patients by the MeDIP method
and was verified by MSRE-qPCR, with a slight difference in the
size of the differentially methylated region. MSRE-qPCR showed
that only the second half (10:98425953–98426190) of the second
intron region was over-methylated (P < 0.0001), while the first
half (10:98425881–98426000) was not significantly different (P=

0.5079) compared to the healthy controls (Table 6).
Methylation results in the fifth intron region of the SPON2

gene are conflicting. MBD defined the region of the fifth intron
of SPON2 (4:1163349–1163641) as more methylated in PFAPA
patients, while MSRE-qPCR later showed that this is not the
case for the whole region. The first half (4:1163329–1163502)
of the fifth intron was, in fact, less (P = 0.001) methylated and
the second half (4:1163480–1163727) was more (P = 0.0191)
methylated in PFAPA patients compared to the healthy controls.

Results from both MeDIP and MBD were confirmed
with MSRE-qPCR, with some differences. Firstly, MSRE-qPCR
identifies smaller regions where differential methylation occurs,
because qPCR reaction efficiency is limited with amplicon length.
Secondly, because MSRE-qPCR has an amplicon size limit, it
was able to reveal that the whole region of the fifth intron of
the SPON2 gene does not have higher methylation in PFAPA
patients. Moreover, MSRE-qPCR requires only one methylated
CpG at the ROI per single DNAmolecule to detect a difference, as
one cut site is enough to prevent PCR amplification of a particular
DNA molecule.

An unpaired Mann-Whitney test with a 95% confidence level
was performed. Patients vs. controls were compared for each
ROI. Exact two-tailed P-values are listed in Table 6. The data
are visualized with boxplots with added scatter plots and the P-
value of the Mann-Whitney test in Figure 1. Each dot represents
the relative expression ratio of each control or patient obtained
with Equation (1). The number of controls and patients used for
MSRE-qPCR analysis was lower than the initial 65 controls and
76 patients due to the limited amount of DNA for specific samples
and difficulties with qPCR.

DISCUSSION

PFAPA syndrome is the most common pediatric fever syndrome,
and its etiology is unknown. So far, no clear genetic causes have
been found. In this study, we analyzed differential methylation

patterns in a cohort of 75 PFAPA patients. All patients included
in the study fulfilled the clinical criteria for PFAPA syndrome
(5). The majority of patients analyzed were boys (58.7%).
During the fever episode, pharyngitis and adenitis were the most
common symptoms (94.7 and 89.3%, respectively). All three
major symptoms (adenitis, pharyngitis, and aphthous stomatitis)
were present in 52% of the patients. The included patients had
previously been analyzed in an independent study, and genetic
analysis was performed for four genes:AIM2, NLRP3, MEFV, and
MVK. No clinically significant variants were found (18).

Relative quantification with the MSRE-qPCR method proved
to be a quick and efficient way to estimate differentially
methylated DNA regions, which were identified beforehand by
MeDIP and MBD. Our results showed that there are two regions,
one inside the second intron of the PIK3AP1 gene and a second
one inside the fifth intron of SPON2, which have a statistically
significant difference in methylation in PFAPA patients when
compared to healthy controls.

Both MeDIP and MBD have the advantage of identifying
regions with differential methylation over the whole genome,
while MSRE-qPCR is more suitable to analyze the few previously
identified candidate regions. MeDIP favors regions with low
CpG density and MBD favors regions with higher CpG density
(29), which was also observed in our case. All three methods
are a suitable way to identify differentially methylated genomic
regions, though they cannot determine how many and which
CpGs are methylated specifically.

The PIK3AP1 gene was identified as more methylated in
PFAPA patients by MeDIP, which the MSRE-qPCR method
confirmed, but only for a part of the said region. TheMBD results
identified a region of SPON2 as more methylated in PFAPA
patients, while MSRE-qPCR later revealed that this is not the
case for the whole identified region. The first half had lower
methylation levels in PFAPA patients, while the second half had
higher methylation levels. A possible reason for such divergence
with the results of the first half of SPON2 could be the specifics of
the process of broad peak identification by theMACS2 algorithm,
where a wider area is incorporated into the final signal peak
identification, partially influenced by the final NGS library insert
size as well. Nevertheless, there is a measurable difference in the
methylation pattern in the fifth intron region of the SPON2 gene.

The B-cell adapter protein (BCAP, PIK3AP1 gene) is a
phosphoinositide 3-kinase (PI3K) binding protein (30) and
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FIGURE 1 | Comparison of MSRE-qPCR ratios between Control and Patient group for each ROI. Boxplots include scattered dots that represent relative expression

ratio of Control (blue) or Patient (pink) sample. Also included at the top are exact two-tailed P-values of unpaired Mann-Whitney tests. All scatter plots are plotted with

all data, except the plot for PIK_2 ROI, which was plotted with data without outliers (ROUT method, Q = 0.1%) for visualization purposes. Mann-Whitney tests for all

ROIs were performed with all data (outliers included).

an important inhibitor of proliferation and myeloid cell
differentiation that works in a cell-intrinsic manner (31). The
PI3K signaling cascade influences cell proliferation and survival,
metabolic reprogramming, and cellular migration. As a PI3K
adaptor, BCAP is a key regulator of PI3K signaling and T-cell

development into effector and memory cells (32). It is expressed
in lymphoid as well as in myeloid cell populations (31–34).
BCAP regulates inflammatory response. BCAP deficiency results
in exaggerated innate immune response, leading to higher
CD4+ activation (35) and to more proliferative cells (31). As a
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macrophage signaling adaptor protein, it can dampen NLRP3
and NLRC4 inflammasome activation through interaction with
the caspase-1 inhibitor (36). Altogether, BCAP could play a part
in influencing systemic inflammation, which PFAPA syndrome is
known for.

Spondin-2 (also called mindin, SPON2 gene) is an
extracellular matrix protein that functions as a pattern
recognition molecule (PRM) for initiating innate immune
responses, as well as an integrin ligand for inflammatory cell
recruitment and T-cell priming (37–39). It has been shown that,
in vivo, it is crucial for the efficient clearance of bacterial (37) and
viral (40) infections. Spondin-2/mindin-induced signaling could
be as important as other, better-defined signaling pathways,
such as TLR signaling. He et al. have proposed that mindin-
mediated carbohydrate recognition of microbial pathogens
represents a secondary stimulation essential for activation of
innate immune cells (37). Additionally, it has been suggested
that it has a role in the immune response against tumor cell
growth and migration (41). Little else is known of spondin-2
regarding immune regulation; however, as an extracellular PRM,
it could have a role in inflammation, since extracellular PRMs
are able to complement activation, opsonization, agglutination,
neutralization, and regulation of inflammation (42).

Epigenetic modifications, including DNA methylation, can
affect gene expression and, consequently, can be used as a
disease biomarker (43). Methylation of CpG dinucleotides is
one of the principal epigenetic mechanisms (44). Regions
rich in CpGs are called CpG islands (CGI). Unmethylated
promotor CGIs are generally associated with transcriptionally
active genes, whereas hypermethylated promotor CGIs result in
gene transcription repression. Furthermore, methylation levels
inside the gene correlate with gene expression, especially the
first intron methylation (45). The majority of research on
disease-related DNA methylation has been done in the field of
cancer (43); however, there is increasing evidence that epigenetic
dysregulation plays a role in autoinflammatory diseases as
well (46).

The role of DNA methylation of intragenic regions is less
clear, though evidence exists that methylated intragenic regions
influence gene transcription (47). Partial methylation of the
coding region can inhibit gene expression (48, 49), and even
a few methylated cytosines can inhibit a flanking promoter,
but a threshold of modified sites is required (50). Elevated
DNA methylation in intragenic regions usually correlates with
silencing of the associated gene (51). Blattler et al. showed that
changes in DNA methylation within bodies of genes played a
much larger role than changes in promotor regions (52). The
methylation level of the first intron is inversely associated with
gene expression, and this association is conserved regardless
of the species or tissue. Methylation tends to increase with
distance from the first exon–first intron boundary, and its
effect on gene transcription decreases with downstream distance
from the first exon (45, 53). The study of DNA methylation
during monocyte differentiation revealed that a high proportion
of the changes occurred in non-promoter regulatory regions,
mainly enhancers in gene bodies and intergenic regions (54).
Methylation patterns in the MEFV exon in pediatric patients

with Familial Mediterranean Fever correlated with expression of
the same gene; the observed slight increase in DNA methylation
of the second exon in patients correlated with decreased
expression (22).

The observed differential methylation of the second intron in
PIK3AP1 (10:98425953–98426190) could be of great significance
regarding changed expression. BCAP functions as a checkpoint
to restrict TLR signaling and production of inflammatory
cytokines (55). We hypothesize that the higher methylation
found in the second intron of PIK3AP1 in PFAPA patients
could lead to lower expression of the BCAP protein and cause
a disrupted inhibition of inflammation, leading to exaggerated
inflammation or response to environmental stimuli (for example
an infection). The cause of this particular differential methylation
is unknown, and DNA methylation can be influenced by a
range of external factors, such as diet, drugs, and infections (56,
57). There is evidence of infection-induced hypermethylation of
PIK3AP1 promoter and downregulation of its expression (58)
and evidence of hypomethylation and increased expression of
PIK3AP1 triggered by low levels of folic acid (59). Infections are
proposed contributors to the pathogenesis of PFAPA (15, 60).

The second half of the spondin-2 region (4:1163480–
1163727, GRCh37) that was investigated and showed higher
methylation in PFAPA patients is also part of a CTCF
binding region (4: 1163601–1163800, GRCh37). CTCF is a
transcription factor, chromatin organizer, and insulator protein
that was initially discovered as a transcriptional repressor;
however, its exact mechanisms remain unknown (61). We
hypothesize that the observed increased methylation could
potentially inhibit CTCF binding. As an insulator protein, CTCF
can influence gene transcription by restricting the binding of
transcription enhancers. Its binding sites are located far from
the transcriptional start sites, and their distribution is strongly
correlated with genes (62). However, without gene expression
analysis, we cannot confirm whether the changed methylation
in PIK3AP1 and SPON2 influences their expression and in
what way.

DNA was isolated from whole blood, meaning we analyzed
methylation in DNA from the whole blood cell population
with unknown ratios. Samples were collected during an afebrile
period, patients were asymptomatic, and we assumed that blood
cell populations were normal and comparable based on the facts
that changes in white blood cell counts are associated with febrile
episodes (13, 63) and that the concentrations of white blood cells
in afebrile PFAPA patients are comparable to those in healthy
children (63). Our results indicate that there is a portion of blood
cells with differentially methylated DNA in these two genes and
that the number of cells or the specific clonal subpopulation of
cells was high enough to generate a measurable signal. Currently,
there is no clear evidence which cell subpopulation is involved.
High monocytes and high neutrophils seem to be the most
consistently reported changes in blood cell populations during
PFAPA febrile attacks (13, 63, 64) and could be the possible source
of the differential DNA methylation we observed.

A limitation of our study, in addition to the mixed cell
populations as our source of DNA, is the fact that 15 patients
(20%) had previously received methylprednisolone, which could
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affect their DNA methylation patterns. We do not know if it
affected the regions in question or in what way and for how
long. Steroids do have an effect on the disease, but since their
effect is not permanent, they only stop the episode and not the
disease itself (65–67). In order to overcome this limitation, we re-
analyzed data excluding patients that received steroid treatment
and obtained similar results. Significance did not change, except
for the second half of the SPON2 region, which crossed the
significance line but still showed a tendency of hypermethylation.
Loss of significance could also be partly attributed to reduced
sample size. Additional studies investigating the effect of
methylprednisolone should be conducted. Another limitation
would be that the test and control groups were not of the same age
(4.1 and 5.3 years, respectively). The median age of our control
group was intentionally above five, which is when the fevers
generally begin to appear (5–7). Altogether, the results from our
methods do not inform us of the identity and number of CpGs
involved. We also cannot tell in which cells this difference in
methylation occurs, since the source of our analyzed DNA was
whole blood. For a more detailed look into the possible role of
DNA methylation in the pathogenesis of PFAPA, DNA isolated
from different cell lineages should be analyzed.

Both the B-cell adapter protein through the PI3K activation
pathway and spondin-2 as an extracellular pattern recognition
molecule are involved in the primary stages of immune
responses. BCAP acts as an inhibitor of receptor signaling,mainly
TLR and spondin-2, possibly as a recruiter or activator of T
cells, or by working as an opsonin that activates complement.
The role of changed DNA methylation in autoinflammation
certainly needs further investigation, as does the role of
BCAP and spondin-2 in the etiology of PFAPA. Differential
methylation of genes PIK3AP1 and SPON2 is not reported
in association with other similar autoinflammatory diseases;
however, PIK3AP1 was associated with autoimmunity (68), and
its increased expression was shown to promote TLR7-driven
lupus-like disease (69). Differential expression and methylation
of both genes have been linked with cancer. Changedmethylation
of PIK3AP1 is associated with neuroblastoma (70), and its
upregulation is associated withWaldenströmmacroglobulinemia
(71). Hypomethylation of the promoter of SPON2 and its
increased expression is associated with prostate cancer (72, 73);
its upregulation is also associated with colorectal cancer (74).

As far as the clinical impact of these data is concerned,
this kind of change in methylation would not be detected
by Sanger sequencing, because the proportion of differentially
methylated DNA molecules is too small. Therefore, a more
advanced quantification method is needed, such as MSRE-qPCR.
Nevertheless, the cutoff values for the positive MSRE-qPCR
results should be carefully examined, set, and validated.

CONCLUSIONS

Whole-genome methylation screening analysis methods, such as
MeDIP and MBD are a useful tool for identifying differentially
methylated genomic regions. MSRE-qPCR proved to be a
reliable, quick, and cost-effective method of confirming results
and showed potential applicability in translation of the research
into clinical practice. The changed methylation patterns in
PIK3AP1 and SPON2 that we observed in PFAPA patients
point to novel and still unknown roles of BCAP and spondin-
2 in the etiology of PFAPA. Furthermore, likely transient
changes of DNA methylation patterns are potentially a novel
direction in research into the molecular mechanisms leading to
PFAPA development.
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