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Abstract: This study aimed to integrate and analyze the existing studies and to explore research
trends and hotspots related to the effects of xenobiotics on glucose metabolism in male testes.
All articles were retrieved from the PubMed database, from an inception date up to 10 June 2017.
CiteSpace software (version 5.1.R8 SE) was used for the co-word cluster analysis. A total of 165 eligible
publications were included in this study. In 1949–1959, only two articles were published. After 1960,
the number of articles increased steadily. These articles were published in 97 journals, in particular,
in the Indian Journal of Experimental Biology (11 articles, 6.7%). Most of the authors (87.0%) only
published one article. Only a few established research teams, mostly from the USA, worked
consistently in this field. The main xenobiotics that had been studied were medicine and common
environmental pollutants, e.g., gossypol, cadmium, di-n-butyl phthalate, and alpha-chlorohydrin.
The hotspot keywords were Sertoli cell, lactate dehydrogenase, 6-phosphate dehydrogenase, oxidative
stress, and glucose metabolism. The focus of research had been changed overtime. This is the first
bibliometric study between xenobiotics and glucose metabolism in the male testes. The findings
suggest that environmental pollutants have become a huge concern, and related research should
be strengthened.
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1. Introduction

Many agricultural and industrial chemicals introduced to the environment are deleterious to the
development and reproductive systems of humans and animals [1]. Xenobiotics are chemicals foreign
to the human system. They include a wide range of chemicals in our environment, e.g., persistent
organic compounds, pesticides, heavy metals, organic solvents, medicine, and tobacco smoke. They are
also defined as organic and inorganic compounds, which are produced by human beings and gradually
introduced to the environment [2]. Continuous exposure to xenobiotics may have cumulative effects
that lead to reproductive disorders [3]. For example, xenobiotics such as glyphosate are potentially
toxic to sperm motility [4].

The testicles are a pair of organs that essentially perform two functions: sex steroid hormone
biosynthesis and production of spermatozoa [5]. Glucose metabolism in the testes is critical for normal
spermatogenesis and fertility [5,6]. Xenobiotics can affect the glucose metabolism at multiple levels,
directly or indirectly, and impair spermatogenesis irreversibly [3,5,7].
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Bibliometrics has been utilized to evaluate scientific output and the importance of scientific
studies [8,9]. It is effective and useful in evaluating the scientific productions and research trends in a
specific research field by word cluster analysis. Furthermore, it can identify the intellectual structures
and research fronts by analyzing the most cited words.

In this study, a bibliometric analysis of xenobiotics on glucose metabolism in male testis research
was carried out based on articles retrieved from the PubMed database, from an inception date to
10 June 2017. We presented publication trend by year, geographic regions, and most influential authors.
We aimed to identify the intellectual structure, research trends, and hotspots of the effects of xenobiotics
on glucose metabolism in male testes.

2. Methods and Materials

2.1. Search Strategy

PubMed database was searched from inception date up to 10 June 2017. Only studies in English
were included. An auxiliary manual retrieval was performed to prevent missing studies. The keyword
retrieval strategy was as follows: (1) nutrient or nutrition; (2) heavy metal; (3) organic pollutant or
organic compound or organic chemical or organic solvent or benzene or cyanide or phenol; (4) pesticide;
(5) terms (1) or (2) or (3) or (4); (6) testis or testes or testicle; (7) carbohydrate metabolism or glucose
metabolism or metabolism of carbohydrates; and (8) terms (5) and (6) and (7).

2.2. Selected Criteria and Data Extraction

Three authors (Jun Yu, Jiantao Sun, and Yu Wu) conducted the search independently.
After removing the duplicates and news reports by EndNote X8, 2408 records were obtained. These data
were extracted from the eligible studies according to the following criteria: (1) focused on male testis
(including humans or animals, tissues or cells); (2) the contents of the study were about xenobiotics and
glucose metabolism; and (3) written in English. The exclusion criteria included the following: (1) similar
objective results in the same study or in the same institution at different time and (2) duplicates and
news reports. Meanwhile, references were examined manually to identify any of the missing articles.
If the full text of the included articles could not be obtained directly from the databases, we used the
document delivery service from Wuhan University Library or directly contacted the author via email.
The screening and review strategy is illustrated in Figure 1.
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Figure 1. Flow diagram of study selection based on PRISMA 2009 guidelines [10] (PRISMA is an
evidence-based minimum set of items for reporting in systematic reviews and meta-analyses).
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The collection of relevant data was extracted from the eligible studies. The main information
included the title, year, corresponding author and his/her affiliation and country, journal title,
xenobiotics, and experimental materials.

2.3. Analysis Methods

A descriptive analysis was used to present the characteristics of the included studies by publication
years, countries, journals, and research teams.

To identify the intellectual structure and impacted works in the research field of xenobiotics on
glucose metabolism in male testes, analyses were carried out in CiteSpace software (version 5.1.R8 SE).
CiteSpace software (version 5.1.R8 SE) is a free Java-based application that was founded by Chaomei
Chen (http://cluster.ischool.drexel.edu/~cchen/citespace/download/).

3. Results

As shown in Figure 1, 2408 publications were retrieved. After screening for article titles and
abstracts, 865 publications remained. Finally, 165 eligible publications were included in this study
based on these selected criteria formulated in advance (Table S1).

3.1. Characteristics of the Selected Studies

3.1.1. Publication Years

Figure 2a shows the number of publication of 165 articles by year. In 1949–1959, only two articles
were published [10,11]. After 1960, the number of articles increased steadily from 15 in the 1960s to
34 in the 1980s. In the 1990s, the number declined to 22 papers and then increased to 34 in the first
two decades of the new millennium.

According to the affiliation or country of the corresponding author, authors from five continents
(Asia, America, Europe, Africa, and Oceania) contributed to this field (Figure 2b). Authors from Asia
published approximately half of these papers (N = 78, 47.3%), followed by America (N = 46, 27.9%)
and Europe (N = 26, 15.8%). American scholars were the first to start the research in this field. The first
article was from the USA in 1949. However, after 1980, the number of articles from Asia exceeded the
publications from America and Europe. Meanwhile, authors from Oceania only published one article
in 1997 [12].
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3.1.2. Distribution of Articles by Countries, Journals, and Authors

The authors of the 165 articles were from 29 countries. As listed in Table 1, the top five countries
are India, America, China, Egypt, and Portugal. Indian authors published approximately one third of
these articles (N = 54, 32.7%). Authors in the USA published a total of 33 articles (20%) and ranked
second. China, a developing country, had a steadily increasing article number in basic research and
ranked third.

The 165 articles were published in 97 journals. Only five journals published no less than
five articles. They were the Indian Journal of Experimental Biology (10 articles [13–22]), Biology of
Reproduction (7 articles [23–29]), Journal of Reproduction and Fertility (6 articles [30–35]), Endocrinology
(5 articles [10,36–39]), and International Journal of Andrology (5 articles [40–44]). A total of 26 journals
(26.9%) published only 2–4 articles, and 66 journals (68.0%) published only one article. Therefore, no
single journal is dominant over the other.

The 165 articles were published from 138 research teams. The top three productive authors for
publications are shown in Table 2. The five authors published three articles or more. Satya P. Srivastava
was the most productive author with five articles published [21,22,45–47]. The following three scientists
were from the USA: Mannfred A. Hollinger [33,48–50] and Syed Husain [51–54], who published four
articles, and Peter F. Hall [22,37,38], who published three articles. Pedro F. Oliveira from Portugal
also published three articles [6,55,56]. For the remaining authors, the majority had only one article,
indicating that only a few stable research teams were working in this field and mainly in the USA.

Table 1. The 5 most productive countries for publications of effects of xenobiotics on glucose
metabolism in testes.

Rank Country Continent Articles Percent (%)

1 India Asia 54 32.7
2 USA America 33 20.0
3 China Asia 11 6.7
4 Egypt Africa 8 4.9
5 Portugal Europe 7 4.2

Table 2. The 5 most productive authors for publications of effects of xenobiotics on glucose metabolism
in testes.

Author Country Publications Percent (%)

Satya P. Srivastava India 5 3.03
Mannfred A. Hollinger USA 4 2.42

Syed Husain USA 4 2.42
Peter F. Hall USA 3 1.82

Pedro F. Oliveira Portugal 3 1.82

3.2. Main Research Topics

3.2.1. Experimental Subjects and Xenobiotic Distribution

The 165 studies were conducted based on the population, animal models, and isolated tissues or
cells. The animal models were the most used model to evaluate the association of xenobiotics on glucose
metabolism in the testes, accounting for 84.8% of the articles. A total of 195 xenobiotics had been
examined. Similar to the trend of publication years, the types of xenobiotics studied increased steadily
(Figure 3a). All xenobiotics can be divided into six types: medicines, persistent organic pollutants
(POPs), nutrients, heavy metals, pesticides, and others. Figure 3b illustrates that the most studied
xenobiotics were medicines. Further analysis showed that several chemicals, e.g., gossypol, cadmium,
di-n-butyl phthalate, alpha-chlorohydrin, cyclophosphamide, and delta-9-tetrahydrocannabinol, were
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frequently studied. Notably, cadmium, di-n-butyl phthalate, and alpha-chlorohydrin are all common
environmental pollutants. Gossypol is a male contraceptive and also a residue in cottonseed oil.
The findings implied that the effects of environmental pollutants on glucose metabolism in the testes
are becoming a hotspot.

Int. J. Environ. Res. Public Health 2018, 15, x 5 of 12 

 

  
Figure 3. The distribution of xenobiotics studied related to glucose metabolism in testes: (a) by 
publication year; (b) types. 

3.2.2. Intellectual Structure and Hotspot Analysis 

Network and cluster of co-words were applied to explore the intellectual structure and hotspot 
by CiteSpace software. From the map of co-words (Figure 4), 103 nodes and 263 connections were 
present between the keywords. The co-word clusters with more frequency and favorable silhouette 
presented large nodes. The top seven high-frequency clusters were Sertoli cell (SC), lactate 
dehydrogenase (LDH), 6-phosphate dehydrogenase, oxidative stress, rat testis, male rat, and glucose 
metabolism. The top seven favorable silhouette clusters were SC, LDH, glucose metabolism, 6-
phosphate dehydrogenase, oxidative stress, gamma-glutamyl transpeptidase, and germ cell (Table 3). SC 
and LDH were the most used words by examining both the frequency and silhouette of co-word 
clustering. The other three hotspot keywords (6-phosphate dehydrogenase, oxidative stress, and 
glucose metabolism) were also significantly mentioned in these articles. 

 
Figure 4. A network of co-words of 165 articles. 

Timeline mapping of co-words was applied to further exhibit the research trends of this field. 
As illustrated in Figure 5, four noticeable turning points were observed in the term usage trend. Since 
1972, “rat testis” was mostly used, as most of the studies were animal models. In the 1980s, the word 
“Sertoli cell” was introduced, as studies in isolated cells emerged in this field. In the late 1980s, more 
researchers began to study “lactate dehydrogenase” and “6-phosphate dehydrogenase” and this 
trend has changed into “oxidative stress” since 2006. 

Figure 3. The distribution of xenobiotics studied related to glucose metabolism in testes: (a) by
publication year; (b) types.

3.2.2. Intellectual Structure and Hotspot Analysis

Network and cluster of co-words were applied to explore the intellectual structure and hotspot by
CiteSpace software. From the map of co-words (Figure 4), 103 nodes and 263 connections were present
between the keywords. The co-word clusters with more frequency and favorable silhouette presented
large nodes. The top seven high-frequency clusters were Sertoli cell (SC), lactate dehydrogenase (LDH),
6-phosphate dehydrogenase, oxidative stress, rat testis, male rat, and glucose metabolism. The top
seven favorable silhouette clusters were SC, LDH, glucose metabolism, 6-phosphate dehydrogenase,
oxidative stress, gamma-glutamyl transpeptidase, and germ cell (Table 3). SC and LDH were the most
used words by examining both the frequency and silhouette of co-word clustering. The other three
hotspot keywords (6-phosphate dehydrogenase, oxidative stress, and glucose metabolism) were also
significantly mentioned in these articles.
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Timeline mapping of co-words was applied to further exhibit the research trends of this field.
As illustrated in Figure 5, four noticeable turning points were observed in the term usage trend.
Since 1972, “rat testis” was mostly used, as most of the studies were animal models. In the 1980s,
the word “Sertoli cell” was introduced, as studies in isolated cells emerged in this field. In the late
1980s, more researchers began to study “lactate dehydrogenase” and “6-phosphate dehydrogenase”
and this trend has changed into “oxidative stress” since 2006.

Table 3. The top 7 co-word clusters with high frequency and silhouette in articles examining effects of
xenobiotics on glucose metabolism in testes.

Frequency Silhouette

Rank Frequency Clusters Rank Silhouette Clusters

1 25 Sertoli cell 1 0.84 Sertoli cell
2 17 lactate dehydrogenase 2 0.46 lactate dehydrogenase
3 14 6-phosphate dehydrogenase 3 0.37 glucose metabolism
4 13 oxidative stress 4 0.28 6-phosphate dehydrogenase
5 12 rat testis 5 0.24 oxidative stress
6 10 male rat 6 0.24 γ-glutamyl transpeptidase
7 8 glucose metabolism 7 0.20 germ cell
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3.2.3. Main Regulatory Pathways

In accordance with previous studies, oxidative stress was a key factor in the etiology of male
infertility, as demonstrated by enhanced lipid peroxidation and antioxidant defense system [57–59].
Another regulatory pathway, apoptosis, was presented by the balance of proapoptotic factor and
antiapoptotic factors [1]. More details are provided in Figure 6.

In this study, the main changes induced by xenobiotics had more association with testicular
glucose metabolism, and SCs metabolism was primarily affected [56,60]. Glycolysis was the main
pathway for SCs to provide adequate energy substrate for themselves and germ cells. The expression
of glucose transporter type 1 (GLUT1) and glucose transporter type 3 (GLUT3) was mainly
distributed on the plasma membrane of SCs and was responsible for glucose transport [61].
For example, melatonin-exposed SCs presented higher GLUT1 expression [56], caffeine significantly
increased the protein levels of GLUT1 and GLUT3 in human SCs [60], and both stimulated
glucose uptake. Once glucose was transported into SC, the glycolytic pathway came into function,
and phosphofructokinase was the rate-limiting control [62]. Glucose normally converted into lactate
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via LDH and transported across the plasma membrane to germ cells by specific monocarboxylate
transporters (MCTs), particularly monocarboxylate transporter 1 (MCT1) and monocarboxylate
transporter 4 (MCT4) [55]. The decline in their activities would lead to numerous abnormalities
in SCs, including alterations in connection (the main component of the blood–testis barrier), cell
degeneration, and vacuolization [63]. Thus, less lactate production and transportation was from SCs.
Finally, it would cause defects in sperm maturation and spermatogenesis and even accelerated germ
cell apoptosis. A study showed that testis exposed to xenobiotics have altered tricarboxylic acid
(TCA) cycle due to testicular enzymes (SDH, Sorbitol dehydrogenase; MDH, Malate dehydrogenase;
ICDH, Isocitrate dehydrogenase) in the mitochondrial fractions [59]. The pachytene spermatocyte
maturation of the germinal epithelium was associated with SDH. The decreased SDH activity was
mainly attributed to the reduced aerobic oxidation of acetyl CoA and ATP [64]. ATP served as an
energy substance, and the loss of sperm motility was possibly correlated with low generation of ATP
by xenobiotic-induced mitochondrial impairment [65].

Therefore, the balance loss in the main regulatory pathways would result in testicular damage
and testicular dysfunction. The testicular damage included impaired vessels, changes in testicular size
and weight with irreversible edema, hemorrhage, and necrosis. The testicular dysfunction induced
by xenobiotics in energy metabolism, endocrine signaling, and microvascular blood flow would
lead to body weight loss and reproductive problems, even death in individual effect. Finally, group
characteristic presented low fertility.
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Superoxide radical (O2

−), Hydrogen peroxide (H2O2), Reactive oxygen species (ROS), Peroxisome
proliferator-activated receptor-gamma (PPAR-γ), Superoxide dismutase (SOD), Catalase (CAT),
Glutathione peroxidase (GPx), Glutathione-S-transferase (GST), Glutathione reductase (GR), Reduced
glutathione (GSH), Succinate dehydrogenase (SDH), Malate dehydrogenase (MDH), Isocitrate
dehydrogenase (ICDH), Phosphofructokinase (PFK), Lactate dehydrogenase (LDH).
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4. Discussion

In this article, we presented the characteristics and research hotspot of the selected studies in the
field of xenobiotic effects on glucose metabolism in male testes from 1949 to 2017. The first article
was from the USA in 1949, but most published authors in this field were from Asia. Thus, developing
countries, e.g., India and China, were more interested in researching this field.

Furthermore, the most studied xenobiotics were mainly medicine. The most frequently studied
medicine was gossypol, a contraceptive causing infertility in humans and animals [66]. Gossypol was
also a residue in cottonseed oil, and its side effects in male reproductive health should not be
ignored [62,67]. Further analysis showed that cadmium, di-n-butyl phthalate, and alpha-chlorohydrin
were in the top four chemicals studied, and these are common environmental pollutants. With the
number of xenobiotics increasingly introduced to the environment, their impact on glucose metabolism
dysfunction in male testes is becoming an important topic of research.

CiteSpace software was used to analyze research hotspots and emerging trends. Based on the
co-word cluster analysis, hotspot keywords were Sertoli cell, lactate dehydrogenase, 6-phosphate
dehydrogenase, oxidative stress, and glucose metabolism. The word with the highest frequency and the
greatest silhouette was SCs. SCs are responsible for providing energy and nutritional support to germ
cell development [5]. Germ cell development has specific metabolic requirements, preferentially using
lactate as a substrate for ATP production. SCs produce lactate via the metabolism of various substrates,
preferentially glucose. This is why SCs were the most valuable target for studying the deleterious
effect of xenobiotics [1]. Meanwhile, some enzymes such as LDH and 6-phosphate dehydrogenase,
which are associated with glucose metabolism, and ATP were also an active research area in recently
published papers.

From timeline mapping of co-words, the focus of the research has changed over time. Before 1980,
the effect of exogenous chemicals on testes was the key point; after 1980, the adverse effect of
xenobiotics on glucose metabolism was studied in testicular cells [59,68]. In 1989, the research focus
had shifted to enzymes related to testicular cell glucose metabolism, such as LDH and 6-phosphate
dehydrogenase. Subsequently, the mechanism of how exogenous chemicals disrupted the glucose
metabolism of testicular cells was also studied. Since 2006, one of the mechanisms, oxidative stress,
has become a hotspot. Previous studies found that oxidative stress directly or indirectly interfered
with enzyme activity and affected testicular carbohydrate metabolism [69–71].

Glucose metabolism was primarily affected by xenobiotics in the testes, including the process of
TCA cycle and glycolytic pathway. The molecular interactions changed the specific markers during
the process, resulting in alterations in the function and structure of Leydig cells, germ cells, and SCs to
ameliorate the injury. Further testicular damage and dysfunction decreased fertility.

However, a few limitations must be considered for the bibliometric assessment. First, quantifying
multiple literature problems is difficult. In particular, the literature system is very complex and
unstable enough that we cannot obtain enough and effective information to reveal the macroscopic
rule of the literature. Second, our articles were only from the PubMed databases. Third, bibliometrics
depend on the support of mathematical and statistical techniques. Thus, some information may not
have been analyzed.

5. Conclusions

To our knowledge, this study is the first bibliometric assessment of xenobiotics on glucose
metabolism literature from 1949 to 2017. The number of published articles increased rapidly, especially
in Asia. Medicines and environmental pollutants were the main xenobiotics studied. SCs were the
most used models in these studies, and most studies focused on the glucose metabolism related to
enzymes. Because environmental pollution is a huge concern and has a great impact on the human
reproductive system, further research in this area will undoubtedly take place.
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