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Spain and 7Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927 des Sciences de la Vie, Paris, France

Received March 21, 2018; Revised June 23, 2018; Editorial Decision June 25, 2018; Accepted June 26, 2018

ABSTRACT

During HIV-1 assembly and budding, Gag protein, in
particular the C-terminal domain containing the nu-
cleocapsid domain (NCd), p1 and p6, is the site of
numerous interactions with viral and cellular factors.
Most in vitro studies of Gag have used constructs
lacking p1 and p6. Here, using NMR spectroscopy,
we show that the p1–p6 region of Gag (NCp15) is
largely disordered, but interacts transiently with the
NCd. These interactions modify the dynamic prop-
erties of the NCd. Indeed, using isothermal titration
calorimetry (ITC), we have measured a higher en-
tropic penalty to RNA-binding for the NCd precursor,
NCp15, than for the mature form, NCp7, which lacks
p1 and p6. We propose that during assembly and
budding of virions, concomitant with Gag oligomer-
ization, transient interactions between NCd and p1–
p6 become salient and responsible for (i) a higher
level of structuration of p6, which favours recruit-
ment of budding partners; and (ii) a higher entropic
penalty to RNA-binding at specific sites that favours
non-specific binding of NCd at multiple sites on the
genomic RNA (gRNA). The contributions of p6 and p1
are sequentially removed via proteolysis during Gag
maturation such that the RNA-binding specificity of
the mature protein is governed by the properties of
NCd.

INTRODUCTION

In retroviruses, the Pr55Gag polyprotein precursor (Gag) is
the only protein required for particle formation. It is com-
posed of the structural protein domains (Figure 1A): the
matrix (MA), the capsid (CA), a spacer peptide p2, the nu-
cleocapsid domain (NCd), a hydrophobic peptide p1, and
an acidic p6 domain. As part of Gag, the MA domain tar-
gets Gag to the plasma membrane; CA drives Gag multi-
merization during assembly; NCd recruits the viral genomic
RNA (gRNA) into virions and facilitates the assembly pro-
cess; and p6 recruits the endosomal sorting complex (ES-
CRT), which catalyses the membrane fission step to com-
plete the budding process (1).

Gag is present as monomers or dimers in the cytoplasm
where Gag and gRNA first interact (2–6). Once targeted to
the plasma membrane, Gag oligomerisation and the gRNA
nucleate particle assembly (1). Both MA and NCd within
Gag are able to bind to RNA in the cytoplasm (7–9). How-
ever, the NCd of Gag is the primary viral determinant that
drives gRNA packaging by binding to a packaging � sig-
nal, whereas MA selects a subset of tRNAs in the cytosol
which regulates MA and Gag-membrane binding (8,10–12).
Global changes in the RNA binding specificity of Gag regu-
late virion synthesis (12). Prior to, and after virion assembly
and maturation, the NCd preferentially binds to the � re-
gion at the level of SL3, one of the major determinants of
gRNA encapsidation (6,13,14), and to Rev Response ele-
ments (RRE) of the gRNA (12). The RNA-binding proper-
ties of NCd in its mature forms (also called NCp7, Figure
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Figure 1. Structural and dynamic characterization of NCp15 from NMR chemical shifts and 15N relaxation data. (A) Schematic of full-length Gag, (B)
Sequence of the HIV-1 C-terminal domain of Gag (NCp15). The first cleavage by the HIV-1 protease first liberates the NCp15 protein, then NCp9 and
finally the mature form of NCd called NCp7. The dashed line represents the two sites of protease cleavage present in NCp15. Residues are coloured in
grey for residues in the N-terminal part of NCd, green for those in the zinc knuckles and orange for residues in the linker between the two zinc knuckles
of NCd and purple for the C-terminal domain of NCd. Due to a limitation in space, the sequence of p6 is not drawn linearly, but this does not represent
a fold back of p6 on itself, (C) Secondary structural propensities calculated by the SSP program (58). C�, C �, CO and H� were used as input data for the
calculation of the SSP score. Positive values indicate the amount of �-helical conformation present along the sequence whereas negative values indicate
extended or �-strand conformations. (D) 15N–{1H} NOE (HetNOE) values are indicative of the magnitude of local subnanosecond motions (high values:
restricted motions; low values: high-amplitude motions). (E) Spectral densities J(0) extracted by spectral density mapping from 15N relaxation data (T1,
T2, HetNOE) of NCp15. J(0) values are indicative of slow overall and segmental tumbling motions present in NCp15. The boxes in grey indicated the four
regions of p1–p6 domains showing significant secondary structure propensities. (F) Differences of HetNOE within the NCd between NCp15 and NCp7 to
probe the change in restrictions of motions of the backbone of the precursor and mature forms of the NCd.
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1B) hence resemble that of unassembled Gag in the cytosol.
During assembly and budding, this specificity transiently
changes in a manner that facilitates genome packaging, i.e.
the NCd within Gag non-specifically binds to many sites on
the gRNA (12).

After assembly, the release step is mediated by the cellular
ESCRT machinery, which is hijacked by Gag. p6 harbors
motifs known as late (L) domains. Its primary L domain
motif, P78TAP81, binds the ESCRT-I component TSG101
(15,16), which in turn recruits the ESCRT-III machinery
enabling final pinching off of particles and subsequent re-
cycling of the ESCRT components (reviewed in (17,18)). p6
also harbors an auxiliary L domain (L106YPLASL112) that
engages the ESCRT pathway component ALIX, in addi-
tion to its primary PTAP-type L domain (19,20). For both
TSG101 and ALIX, the L domains in p6 are the strongest
interaction sites with Gag but, the NCd cooperates with p6
for their binding and to promote virus budding (21–27). p6
is also engaged in the binding of the retroviral protein Vpr
via its conserved L112RSLFG117 motif (28–30). The coor-
dination between protease activation, virion assembly and
budding is critical and ensures the infectiousness of progeny
virions (21,31).

During or shortly after budding of the particle from the
cell surface, the viral protease cleaves the Gag polyprotein
precursor to trigger HIV-1 maturation (31). Three differ-
ent forms of NCd appear subsequently (Figure 1B). The
first cleavage by the HIV-1 protease occurs between MA-
CA-p2 and NCd-p1–p6, thereby liberating NCp15. The sec-
ond cleavage frees NCp9 (NCd-p1) whereas the last one
releases the NCd itself, which constitutes the final mat-
uration form of NCd (NCp7). NCp7 exhibits the opti-
mal RNA chaperone activity, essential notably during re-
verse transcription (32–39). NCp15 and NCp9 intermedi-
ates appear transiently but their lifetime is specifically pro-
grammed (31,40). The correct processing of the cleavage site
between p1 and p6 is essential and NCp15-containing viri-
ons are non-infectious (41–43).

Although the structures of isolated domains of the C-
terminal part of Gag, NCd or p6, have been extensively
studied independently (30,44,45) or in complex with their
partners (29,37,46–53), no structural data are available
about the conformation of these domains when they are
present together. Yet, p6 is an essential domain for assem-
bly and budding. There is therefore a clear need for in-
depth studies of the C-terminal part of Gag containing p1
and p6. The low solubility of full-length Gag and its ex-
treme sensitivity to proteolysis (54) precludes this investiga-
tion. Only a Gag construct lacking p1 and p6 was amenable
to an NMR dynamic study which showed that the struc-
tured domains within Gag (MA, CA and NCd) retain the
same fold as their isolated counterparts. They reorient semi-
independently from each other through unfolded and dy-
namic linkers that connect the structural domains (3). We
can thus anticipate that the dynamic properties of a con-
struct composed of NCd-p1–p6 (NCp15) are conserved in
the context of Gag.

In the present study, we have explored the conformational
landscape of NCd by a comprehensive NMR dynamic study
using 15N relaxation measurements of NCd in its different
stages of maturation by the HIV-1 protease (NCp7, NCp9

and NCp15). We also analyzed their interaction with the
RNA stem-loop SL3 from the encapsidation signal. For
the first time, we show that p1–p6 within NCp15 is disor-
dered in solution and that short-lived �-helices are formed
in p1–p6 upon long-range and transient contacts with the
NCd, linking p6 to NCd and likely promoting the binding
of p6 to its partners. Using NMR and microcalorimetry, we
also demonstrate that this dynamical behavior changes the
thermodynamics of the NCd interaction with SL3. Indeed,
we uncover an entropic penalty to RNA-binding higher for
the NCd precursors than for its mature form. We propose
that during assembly and budding of virions, concomitant
with Gag oligomerization, the transient interactions be-
tween NCd and p1–p6 become salient and responsible for (i)
a higher level of p6 structuration favoring recruitment of its
budding partners and (ii) a higher entropic penalty to NCd
RNA-binding at specific sites leading to non-specific RNA-
binding of NCd at a multitude of sites on gRNA neces-
sary during assembly. The maturation by the protease cleav-
ing off p6 and p1 from NCd eventually reverts the RNA-
binding specificity of the mature NCd, ie the NCd no longer
binds to multiple sites, but binds to discrete specific sites on
gRNA containing unpaired guanine.

MATERIALS AND METHODS

Expression and purification of recombinant HIV-1 NCp7,
NCp9 and NCp15

NCp7, NCp9 and NCp15 (HIV-1 strain NL4-3) were ex-
pressed without any tag either at their N- or C-termini in
Escherichia coli from plasmids built into a pET-3a vector
(Novagen). Mutants of NCp9 were generated by PCR am-
plifications using specific primers (55). NCp7 and NCp9
were overexpressed in E. coli BL21(DE3)pLysE strain while
NCp15 was overexpressed in E. coli BL21(DE3)star. NCp7
was overexpressed isotopically 15N-labeled and 13C–15N-
labeled as previously described (47,56). The same protocols
were used for NCp9. For NCp15, the protocols of purifi-
cation were modified since NCp15 presented a lower ex-
pression level and was more sensitive to proteolysis. Briefly,
the cells were resuspended in a lysis buffer containing 50
mM Tris–Cl (pH 8.5), 10% glycerol, 100 mM NaCl, 10 mM
EDTA, 10 mM �-mercaptoethanol, 1 mM PMSF, 5 �g/ml
pepstatin A and one protease inhibitor tablet at 4◦C. The
cells were sonicated and then centrifuged at 45 000 g for 30
min at 4◦C. The supernatant was collected and the nucleic
acids were precipitated by adding 5% polyethyleneimine
dropwise to a final concentration of 1%, and the mixtures
were stirred for 45 min before centrifugation at 45 000 g for
30 min at 4◦C. The supernatant was collected and loaded
onto a 53 ml Q-Sepharose (HiLoad 26/40, HP, GE Health-
care) equilibrated in buffer A (50 mM Tris–Cl pH 8.5,
10% glycerol, 100 mM NaCl, 10 mM EDTA, 10 mM �-
mercaptoethanol, 1 mM PMSF). The fractions containing
NCp15 were pooled and the sample was supplemented with
ammonium sulfate to a final concentration of 1 M before
loading it onto a 53 ml phenyl-Sepharose (HiLoad 26/10,
HP, GE Healthcare). The protein was eluted with a 500
ml gradient of 30–70% buffer B (50 mM Tris–Cl pH 8.5,
10% glycerol, 1 M ammonium sulfate, 5 mM EDTA, 10
mM �-mercaptoethanol). The fractions containing NCp15
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were pooled and loaded onto a 320 ml Superdex75 (HiLoad
26/60, Prep Grade, GE Healthcare) equilibrated in buffer
C (50 mM Tris–Cl pH 8.5, 10% glycerol, 100 mM NaCl, 10
mM �-mercaptoethanol, 0.1 mM ZnCl2). The eluted pro-
tein was pooled and loaded onto a column of 5 ml Hep-
arin Sepharose (HiTrap Heparin, HP, GE Healthcare) equi-
librated with buffer D (50 mM Tris–Cl pH 8.5, 100 mM
NaCl, 10 mM �-mercaptoethanol, 0.1 mM ZnCl2). The
protein was eluted with a 200 ml gradient of 15% to 30%
buffer E (50 mM Tris–Cl pH 8.5, 1 M NaCl, 10 mM �-
mercaptoethanol, 0.1 mM ZnCl2). The fractions containing
NCp15 were pooled, concentrated and dialyzed against the
NMR buffer (25 mM deutered sodium acetate pH 6.0, 25
mM NaCl, 0.1 mM ZnCl2 and 0.1 mM �-mercaptoethanol)
using an amicon unit of 3 kDa (Millipore).

RNA sample preparation

The SL3 RNA stem–loop, in its extended version, 5′-G
GACUAGCGGAGGCUAGUCC-3′ was purchased, de-
protected and desalted, from Dharmacon Research®. The
RNA sample was heated at 90◦C for 5 min and cool on ice
quickly for 10 min. It was then lyophilized and dissolved in
the NMR buffer.

NMR experiments

NMR spectra of NCp7, NCp9 and NCp15, unless other-
wise stated, were recorded at 10◦C on Bruker 950 MHz
spectrometer equipped with a cryogenic probe. NMR data
on complexes with SL3 were recorded at 25◦C and 950
MHz. Some data were also recorded on Bruker 600 or 700
MHz spectrometers, only the 600 MHz spectrometer being
equipped with a cryogenic probe.

Analysis of NMR chemical shifts

Backbone chemical shift assignments of NCp7, NCp9 and
NCp15 were performed using standard 3D NMR experi-
ments (57). The backbone NMR chemical shifts of NCp15
were deposited to BMRB (entry code 26843). Combined
NMR chemical shift perturbations of amide groups �� (in
ppm) were derived from 1H and 15N chemical shift differ-
ences as �� (H,N) = √

[(�15N * WN)2 + (�1H * WH)2],
where � = � protein 1 - � protein 2 (difference of chemical shifts
between protein 1 and protein 2) and WH = 1 and WN =
1/6. A statistical analysis of these chemical shift perturba-
tions is presented in Supplementary Figure S8BC.

Secondary structure propensity (SSP) scores were calcu-
lated using C�, C �, CO and H� chemical shifts, five-residue
weighted averaging, and all other default parameters (58).

15N NMR relaxation experiments

The 15N backbone relaxation experiments were performed
on 0.9–1 mM samples of 15N-uniformly labeled NCp15,
NCp9 and NCp7. The T1, T2 and hetNOE 15N experiments
have been performed using the standard Bruker pulse se-
quence libraries. All the experiments were recorded with a
relaxation delay of 4s between two successive scans. The T1
data were collected using 20, 50 (repeat), 80, 100, 150, 200,

250, 300, 400 (repeat), 500, 700, 800, and 3000 ms for the
values (13) of recovery delay. The T2-CPMG experiments
were collected with 10 values of 16, 32, 64, 80, 128 (repeat),
160, 208 (repeat), 256, 320 and 400 ms. CPMG pulse trains
were used with a 0.9 ms delay between successive 15N 180◦
pulses. The 15N-{1H} NOE (HetNOE) values were taken
as the ratio between the intensities recorded with and with-
out saturation of the amide protons. In all experiments, the
points corresponding to the different relaxation delays were
acquired in an interleaved manner.

The experiments were processed using NMRPipe (59)
and SPARKY (60) was used to measure the intensities val-
ues of cross-peaks at the different relaxation delays. Curve-
Fit (AG. Palmer Lab) and PYTHON (www.python.org),
R (www.r-project.org) scripts were used to determine the
R1 and R2 relaxation rates as well as the associated uncer-
tainties from the single-exponential decay. Additionally, re-
duced power spectral density mapping for the determina-
tion of J(0) were used using the strategy designed by Farrow
et al. (61) and PYTHON scripts to achieve the procedure.
The uncertainties in the calculated spectral density values
were obtained from Monte Carlo simulations using the er-
rors deduced from the preceding fits of R1 and R2 values
and the spectral noise errors for HetNOE experiments. Us-
ing these errors, 500 synthetic files were generated for each
observable (T1, T2, HetNOE) and after extraction of the 500
J(0) values, these later were examined and the means and
standard deviations extracted. The whole calculations were
achieved using PYTHON and R scripts. A statistical anal-
ysis of the variations of HetNOE within the NCd between
the three forms of the NC protein is presented in Supple-
mentary Figure S8A.

Isothermal titration calorimetry (ITC)

Dissociation constants for NCp7, NCp9 and NCp15 bind-
ing to SL3 were recorded on a MicroCal® ITC200 system.
SL3 RNA and the protein samples were extensively dialyzed
against the ITC buffer (25 mM Na-acetate pH 6.0, 25 mM
NaCl, 0.1 mM TCEP, 0.1% Tween, 0.1 mM ZnCl2) prior to
titration. Heats of reaction were measured at 30◦C for 15
injections of 2.54 �l of one NC protein (in the syringe at a
concentration between 60 and 70 �M) into 280 �l of SL3
RNA (in the cell at a concentration of 5 �M). The heats
of dilution were obtained by titrating the identical protein
sample into a cell containing the ITC buffer and was sub-
tracted from the raw data. The ITC data were analyzed with
the software ORIGIN® using a single set of sites model.
The standard errors were estimated from the data spread
and from the uncertainty of the titrant concentration deter-
mination as previously described (62). A statistical analysis
of the variations of the thermodynamic functions measured
for the three complexes with SL3 is presented in Supplemen-
tary Figure S8D.

RESULTS

p1–p6 within NCp15 is largely disordered, but presents re-
gions that transiently adopt �-helical structures

We explored the conformational landscape of NCd by a
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comprehensive NMR dynamic study of NCd in its differ-
ent stages of maturation. We thus expressed without any
tags, purified and assigned the NMR backbone resonances
of NCp7, NCp9 and NCp15 proteins that correspond to the
three states of maturation of NCd by the HIV-1 protease
(BMRB entry number 26843, (63)).

The limited frequency dispersion of the resonances from
p1–p6 (Supplementary Figure S1) within NCp15, is char-
acteristic of an intrinsically disordered domain (IDD). The
secondary structure propensity (SSP) score (58) calculated
from NMR chemical shifts of NCp15 (Figure 1C) and the
15N-{1H} NOE (HetNOE) (Figure 1D and Supplementary
Figure S2DE) support this trend, but highlight several re-
gions in p1–p6 with a significant propensity to form sec-
ondary structures. Indeed, helical propensities of 17%, 14%
and 11%, were estimated for regions 4, 2 and 3 respectively.
The conversion of the measured 15N T1, T2 and HetNOE
data into spectral densities at zero-frequency, J(0), gives in-
formation on the motional restriction at single residue res-
olution. Basically, higher J(0) values are a hallmark of re-
gions displaying well-folded or transient secondary struc-
tures. These latter regions are characterized by the occur-
rence of J(0) maxima in their center (64,65). In p1–p6, J(0)
maxima were observed for regions 1, 2, 3 and 4 (Figure 1E).
p1–p6 within NCp15 is thus largely disordered, but presents
regions that transiently adopt secondary structures, notably
in regions known to interact with protein partners (TSG101
with region 3 and ALIX and Vpr with region 4 of p6).

The NMR data of the NCd within NCp15 (Figure 1 and
Supplementary Figure S2) showed that the two zinc knuck-
les (ZKs) define two well-structured regions (high HetNOE
and J(0) values) separated by a more flexible linker. Similar
data were obtained for NCp7 (51) and NCp9 (Supplemen-
tary Figure S3), showing that the global folding and dynam-
ics of the NCd is conserved in the three forms. However, the
precursor NCp15 is more rigid in the N-terminal part and
globally more flexible for residues of the ZKs and of the
linker (Figure 1F). In addition, the J(0) values for residues
of the NCd increased by 2.5 fold when comparing NCp15 to
NCp7, related to the presence of the disordered p1–p6 tail
(Supplementary Figure S3). The motions of the NCd and
p1–p6 are thus coupled, suggesting that transient contacts
between NCd and p1–p6 could occur.

Long-range transient interactions occur between p1 or p1–p6
and the NCd

As suggested by the dynamics of NCp15, we next inves-
tigated whether the NMR data could provide evidence of
transient interactions between p1–p6 and NCd as some-
times observed between a structured domain and an un-
folded tail of a protein (66).

Since p1–p6 is disordered within NCp15, when one com-
pares the NMR chemical shifts of the NCd residues within
NCp7 and NCp15, the chemical shift changes observed for
NCd residues that are not sequentially close to the last C-
terminal residue of NCp7, namely residue 55, are indicative
of transient long-range interactions with the part of the pro-
tein that is absent in NCp7, therefore p1–p6. Globally, the
presence of p1 in NCp9 leads to large chemical shift vari-
ations for K3, G4, F16, N17, C18, A25, K33 and K38 in

NCd, whereas the presence of p6 in NCp15 causes addi-
tional chemical shift perturbations mainly for A25 and K38
(Figure 2AB and Supplementary Figure S4C). Such pertur-
bations are also observed for residues L57, I60 and W61
of p1, which exhibited chemical shift variations in NCp15
compared to their chemical shifts in NCp9 (Figure 2A and
Supplementary Figure S4A).

To determine whether any persistent inter-residue con-
tact was detectable between p1 or p1–p6 and NCd, we mea-
sured 3D 15N- and 13C-edited NOESY-HSQCs. Only intra-
residue and nearest-neighbour inter-residue 1H–1H NOEs
were observed in the p1 and p1–p6 domains, and no long-
range NOEs were detected between p1 and NCd or p1–p6
and NCd. These data confirm that there is no evidence of
any persistent structural element within p1 or p1–p6, and
show that there is no long-lived interaction between p1–p6
and NCd. Weak 1H–1H NOEs could be detected and as-
signed in 2D (1H,1H)-NOESY spectra of NCp9 recorded
in D2O with mixing times of 150 or 300 ms in order to ob-
tain enhanced sensitivity for the weak NOEs (Figure 2C).
Indeed, the Hε3 proton of W37 exhibits cross-peaks with
both methyl groups of L57 and with the �1 methyl group
of I60, demonstrating proximity between W37 in NCd and
L57 and I60 in p1. The introduction of the L57A, I60A and
W61A point mutations in NCp9 confirmed the assignment
of these NOEs (Supplementary Figure S5). These NOEs are
also observable in 2D (1H,1H)-NOESY spectra of NCp15
measured in D2O (Supplementary Figure S5A). Overall,
these data show that p1 transiently interacts with a region
of the NCd defined by F16, N17, A25, C18, A25, K33 and
K38, both in NCp9 and NCp15 and that p6 reinforces these
interactions.

Interactions between p6 and the NCd were not clearly
revealed by chemical shift variations which implies that p6
interacts at multiple sites on the NCd like commonly ob-
served for fuzzy complexes (67). Indeed, p1–p6 rapidly in-
terconverts between an ensemble of conformations that are
partially restrained by transient interactions with the NCd.
This ensemble may involve binding of the flexible p1–p6
at one predominant site or at multiple sites on the NCd.
In NCp15, the N-terminal residues are globally less flexi-
ble than in NCp7 (Figure 1F) and NCp9. This restriction
in mobility is likely due to transient interactions between
acidic residues of p6 and the N-terminal basic residues of
NCd within NCp15. The NMR data collected for the three
proteins are thus in agreement with p1 transiently interact-
ing with the NCd at one site described by the NMR chem-
ical shift perturbations, whereas the acidic p6 domain has
multiple sites of interaction in the N-terminal tail which is
unfolded and positively charged (Figure 2D).

Changes in fast dynamics observed for the different states
of maturation of the nucleocapsid domain correlate with
changes in entropy penalty for SL3 binding

We next investigated whether these transient interactions
could impact the interaction of NCd with SL3, the major
component of the gRNA encapsidation signal, by NMR
and ITC. The NMR chemical shift perturbations measured
on NCd amide groups upon binding to SL3 were very sim-
ilar regardless of the maturation state of this domain (Fig-
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ure 3A and Supplementary Figure S6). Therefore, SL3 is
very likely positioned into the hydrophobic plateau of the
NCd using the same specific interactions, independently of
its maturation state. Moreover, p1–p6 did not show large
chemical shift perturbations upon SL3 binding (Figure 3B),
showing that they do not participate directly in SL3 bind-
ing. Overall, this shows that the NCd is involved in SL3
binding in both the precursor or mature forms of this do-
main and that the SL3-binding interface is virtually identi-
cal in the three complexes.

We used ITC to gain insight into the thermodynamics
of the SL3/NCd interaction (Figure 3C and Supplemen-
tary Figure S7). In agreement with the NMR structure of
NCp7/SL3 complex (47), the stoichiometry of binding is 1
to 1 (Supplementary Figure S7B). The free energies of bind-
ing (�G) of NCp7, NCp9 and NCp15 to SL3 complexes
were similar (≈-10 kcal/mol). However, the enthalpy and
entropy contributions to the free energy of binding differed
remarkably (Figure 3C). To be precise, in the constructs
containing p1 or p1–p6, a higher -T�S penalty was mea-
sured for SL3 binding (2 kcal/mol for NCp9 and 4 kcal/mol
for NCp15 compared to NCp7) which was compensated by
a higher enthalpy of interaction, showing that both p1 and
p6 contribute to changes in the entropic penalty (Figure
3C). An entropy change could arise from a number of fac-
tors, the major ones being differences in solvent entropy or
conformational entropy of binding that reflects the changes
in dynamics between the free and bound states of interact-
ing species (68). Although we cannot definitively rule out
that differences in solvation upon SL3 binding contribute
to this entropic penalty, it is reasonable to assume that the
changes in solvent entropy upon ligand binding are simi-
lar in the three complexes, given that both the ligand and
the ligand-binding interface are identical. Moreover, it was
previously shown that the binding of NCd to nucleic acids
(NA) notably results in a loss of motion of the NCd ZKs
and linker (3). Therefore, the differences between the three
complexes in the entropic contribution to RNA binding
most probably arise from differences in the conformational
entropy as previously observed in other complexes (68,69).
Indeed, it was recently shown that changes in conforma-
tional entropy originate from enhanced pico to nanosecond
internal motions and that fast timescale dynamics tune the
entropic contribution of ligand affinity (68–71). In NCp15,
transient interactions are responsible for a higher flexibil-
ity of the ZKs and the linker (Figure 1E). Changes in fast
dynamics observed for the different states of maturation of
the nucleocapsid domain correlate with changes in entropic
penalty for SL3 binding. Therefore, the resulting increase in
global flexibility of the ZKs and of the linker that occur in
the fast timescale (ns–ps) do not change the affinity of NCd
to SL3 but result in a conformational entropic penalty to
SL3 binding by the precursors.

DISCUSSION

The C-terminal domain of Gag is a platform for molecu-
lar interactions involved in the binding of gRNA, ALIX,
TSG101 and Vpr. In this work, we have studied the C-
terminal part of Gag encompassed in NCp15 and we re-
port the first comprehensive study that analyses the con-

formational landscape of each step of maturation of the
NCd (NCp15, NCp9 and NCp7) together with their inter-
actions with SL3. It was previously shown using NMR on
a large HIV-1 Gag fragment containing MA-CA-p2-NCd,
but lacking p1 and p6, that each folded domain (MA, CA
and NCd) exhibit the same fold as their isolated counter-
parts and that they reorient semi-independently from each
other through unfolded spacers that linked them together
(3). Moreover, in presence of NA mimicking the gRNA, it
was shown that a 1:1 Gag/NA complex is formed involv-
ing NCd and that a secondary weak interaction site involv-
ing MA can be observed at high concentration of NA (3)
in agreement with the property of MA to bind NA. In cells,
it was demonstrated that MA binds tRNAs (12). Globally,
these previous studies demonstrate that the dynamic and
binding properties of NCp15 that we uncover in this work
are conserved in the context of Gag.

Our work thus provides a new picture of the structural
and dynamic properties of the NCd during the assembly,
budding and maturation of the virions (Figure 4). Indeed,
we have demonstrated that p1–p6 within NCp15 is an IDD
that experiences transient folding and long-range transient
interactions with the NCd. p6 interacts at multiple sites
within the positively-charged unstructured N-terminal part
of NCp15 (Figure 4A). Interestingly, previous NMR stud-
ies on p6 or parts of p6 in various media (29,72) iden-
tified helices in the regions 3 and 4 where we uncovered
transient helical propensities (Figure 1), but no significant
amount of secondary structures was found for p6 in aque-
ous buffer. This strongly suggests that the transient folding
of p6 occurs concomitantly to its short-lived contacts with
the NCd. This behavior resembles that of multifunctional,
intrinsically disordered proteins (IDPs) of HCV virus such
as NS5A in which a network of electrostatic long-range
interactions channels the transient folding of charged ele-
ments (73). The influence of the distribution of residues with
opposite-charged residues on the conformations of IDPs
appears to be a general feature of this class of proteins (74).
Note also that similarly to the NS5A protein, p6 contains
a large number of phosphorylation sites that could bring
further negative charges (75–77). It is also interesting to un-
derline the hydrophobic character of most of the residues
of p1 involved in the transient contacts wih the NCd (L57,
W61), in agreement with the fact that p1 is rather poor
in charged residues. The synergy between hydrophobic and
charged residues to mediate the transient contacts between
NCd and p1–p6 is reminiscent to that observed within the
intrinsically disordered DNA-binding inhibitory elements
of the Ets-1 transcription factor (67).

In nucleocapsid proteins of retroviridae, interactions be-
tween ZK2 and residues just after this ZK were previously
shown for MMTV (78) and MPMV (79). In both cases, the
C-terminal extension that is organized, either as a reverse-
turn like structure or as a �-hairpin, forms a compact struc-
ture with ZK2. In the case of HIV, the interactions are tran-
sient, but one could imagine that these interactions are a
general feature shared by nucleocapsid proteins in retroviri-
dae.

The long-range transient interactions of p1–p6 with the
NCd lead to significant changes in the NCd dynamics (Fig-
ure 1E). Indeed, in the NCp15 precursor form, the N-
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terminal part of NCd is significantly less flexible than the
mature NCp7 form whereas the two ZKs and the linker ex-
hibit a higher flexibility. The resulting increase in global flex-
ibility of the ZKs and of the linker within NCp15 do not
change the affinity of NCd to SL3 but result in an entropic
penalty to SL3 binding.

These results can have several implications for the under-
standing of the function of Gag and NCd throughout the
viral replication cycle (Figure 4). Prior to virion assembly,
Pr55Gag exists as a diffuse pool of monomers or low-order
multimers in the cytoplasm of infected cells with its NCd
bound to discrete sequences on the gRNA (i.e. � and RRE).
These binding sites strikingly also coincide with the major
sites of NCd binding in mature virons; NCd being in the
NCp7 form at this step (12). This result is in agreement with

our study showing that the precursor NCd form (NCp15) is
able to bind SL3 with the same affinity as the mature NCd
form (NCp7). During assembly, as Gag molecules become
more tightly packed, coincident with higher-order multi-
merization at the plasma membrane, Gag binds to multi-
ple sites on the gRNA, independently of �, and this loss of
specificity facilitates genome packaging (12). To constrain
thousands of Gag molecules into a pseudo-curved array in-
duces a dramatic increase of local concentration of the C-
terminal part of Gag consisting of NCd-p1–p6 at this step
of the viral cycle. We speculate that this will enhance the
transient interactions between p1–p6 and NCd leading to
two non-related consequences (Figure 4C): (i) a higher level
of p1–p6 folding and (ii) a higher entropic penalty for NCd
binding to RNA. Regarding the first point, the regions of
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p6 exhibiting larger propensities to form transient helical
conformations are located in the binding sites of TSG101,
ALIX and Vpr. Therefore, the enhancement of these tran-
sient foldings during assembly and budding could help the
recruitment of p6 partners (Figure 4D) that are essential
during these steps of the viral cycle. This can explain how
the NCd cooperate with p6 to recruit ESCRT proteins.

For point (ii), the entropic penalty could become so high
that the enthalpy might no longer compensate for this in-
crease, leading to a loss of affinity of the NCd in the precur-
sors for its specific RNA binding sites and thus a redirec-
tion of NCd-binding to non-specific binding sites (Figure
4C, D). This could explain how the necessary non-specific
binding to RNA genome is achieved at this step of the
virion formation. This model is in agreement with a recent
study that shows that oligomeric-capable Gag displayed ∼3-
times stronger binding affinity for non-specific RNA motifs
over the cytosolic specific target of NCd. This was not ob-
served for oligomerization-impaired forms of Gag, and for
Gag lacking p6 capable of high-order Gag oligomerization,
showing that p6 has a role in facilitating the binding of non-
specific RNA to oligomeric forms of Gag (80). The process-
ing by the protease will cleave off p1 and p6 from the NCd
allowing it to bind again to its specific targets (Figure 4E).

We have thus shed light on the fine regulation of the NCd
dynamics and of its RNA-binding properties by p1–p6 and
by the maturation process orchestrated by the protease. The
concept that IDD could mediate and/or regulate protein-
protein or protein-NA interactions through transient con-
tacts with others structured regions of a protein is now sup-
ported by a number of reports (81–85). The use of a highly
disordered domain in the fine regulation of the RNA recog-
nition for the various steps of maturation of the NCd adds
to the known repertoire of the unstructured protein’s roles.
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