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Abstract

Introduction: Interleukin (IL)-37 is a newly identified member of the IL-1 family,

and shows a growing role in a variety of diseases. This review aims at summarizing

and discussing the role of IL-37 in cardiovascular diseases.

Methods: Data for this review were identified by searches of MEDLINE, Embase,

and PubMed using appropriate search terms.

Results: IL-37 is a newly identified cytokine belonging to the IL-1 family and is

expressed in inflammatory immune cells and several parenchymal cells. It has

potent anti-inflammatory and immunosuppressive properties, with two mecha-

nisms underlying this function. IL-37 is produced as a precursor and then cleaved

into mature form in the cytoplasm by caspase-1, translocating to nucleus and

suppressing the transcription of several pro-inflammatory genes by binding

SMAD-3. Besides, IL-37 can be secreted extracellularly, and binds to IL-18Ra chain

and recruits Toll/IL-1R (TIR)-8 for transducing anti-inflammatory signaling.

IL-37 is upregulated in an inducible manner and negatively regulates signaling

mediated by TLR agonists and pro-inflammatory cytokines. The cytokine has been

shown to inhibit both innate and adaptive immunological responses, exert

antitumor effects, and act as a prognostic marker in a variety of autoimmune

diseases.

Conclusions: Recent studies have suggested that IL-37 plays a role in

cardiovascular diseases. In this review, we provide an overview of the cytokine

biology, discuss recent advances made in unraveling its cardio-protective effects,

and suggest guidelines for future research.

Introduction

Interleukin-37 (IL-37) was originally discovered in silico in

2000 by three independent groups [1].It was formerly called

as IL-1 family member 7 (IL-1F7), or referred to as FIL-1z/

IL-1H4/IL-1H/IL-1RP1, until more recently it was named as

IL-37 [2, 3]. IL-1F members can be categorized into three

subfamilies: IL-1, IL-18, and IL-33. IL-37 belongs to the

IL-18 subfamily, which only contains IL-18 and IL-37 [1, 4].

As a newly identified member of the IL-1 family, IL-37

consists of 12 b-barrel strands that has IL-18-like structural

pattern [1]. The cytokine is expressed at low levels in various

tissues in the body, including tonsils, esophagus, placenta,

melanoma, breast, brain, colon, prostate, as well as heart,

among others [1, 4]. Many cells, including epithelial cells,

keratinocytes, renal tubular epithelial cells, monocytes,

activated B cells, plasma cells, DCs, macrophages, and

CD4þ Tregs, are found to express IL-37 [1, 4–6]. The

cytokine can be upregulated in an inducible manner by

IL-1FR ligands and TLR agonists, while IL-4, IL-12, IL-32,

and GM-CSF downregulate its expression [7].

There are five transcripts for the human IL37 gene

(IL-37a-e), among which IL-37b is the largest cytokine

member and is encoded by five of the six exons spanning the

gene [8]. IL-37a and d may be functional, which is

undetermined. IL-37 c and e are non-functional due to their

abnormal folding [9]. It is reported that mature IL-37b can

translocate into the nucleus via a caspase-1-dependent

process [10]. Consequently, IL-37b is the isoform that is

biologically functional and can produce homodimers. The
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protein processing starts with the production of initial

precursors, whose signal sequence lacks the pro-peptide

domain [11]. The IL-37 precursor has been observed to be

abundant in the cytoplasm. It depends on caspase-1 to cleave

the peptide to turn intomature form [12]. Both the precursor

and the mature cleaved forms of IL-37 are biologically active;

however, the mature form binds the receptor more efficiently

than the precursor form does [13].

The primary function of IL-37 is to reduce excessive

inflammatory responses in a negative feedbackmechanism that

plays an important role in both innate and adaptive immune

systems [14]. There are twomechanisms for this effect. Thefirst

mechanism is based on SMAD-3, a member of the SMAD

family of transcription factors/regulators that play a role in

transduction of TGF-b1-mediated signals. Importantly, about

25% of the cleaved/mature form of IL-37 binds with SMAD-3

in the cytoplasm, translocates to the nucleus, and inhibits

transcription of genes for several pro-inflammatory cytokines

and chemokines, such as TNF-a, IL-6, among others [3]. The

second mechanism is based on IL-37–IL-1R8–IL-18Ra

complex. It is demonstrated that after binding with the

IL-18Ra chain, IL-37 recruits TIR-8/IL-1R8/SIGIRR, assembles

on the cell surfaces, and forms the tripartite complex. There

may be other accessory proteins such as TIGIRR- 1 and

TIGIRR-2 that may also be recruited, which leads to the

activation of the anti-inflammatory cascade [15]. The tripartite

complex increases the activity of STAT3 andPTENand inhibits

transcription factor NF-kB. The enhancement of STAT3

activity induces the polarization of macrophages and DCs

from a pro-inflammatory state toward an anti-inflammatory

state. Simultaneously, PTEN inhibits the PI3K/Akt/mTOR

pathway, thus inhibiting NF-kB and pro-inflammatory

cytokine production, including IL-6, TNF-a, and IL-1b.

IL-37–IL-1R8–IL-18Ra complex also inhibits the NF-kB

pathway by inhibiting an adaptor kinase- TAK1 [15, 16].

Many papers have reported upregulation of IL-37 in

human diseases, including acute coronary syndrome [17],

rheumatoid arthritis [18, 19], and hepatocellular carci-

noma [20]. In addition, downregulation of IL-37 is also

associated with diverse diseases including psoriasis [21] and

asthma [22]. From the researches done so far, the anti-

inflammatory characteristics of IL-37 have made it a

potential therapeutic target for autoimmune diseases, acute

or chronic inflammatory disorders, and cancer.

The Role in Cardiovascular Diseases

There have been a multitude of studies done to look into

the role of IL-37 in cardiovascular diseases (reviewed in

Table 1).

An increase in IL-37 expression has been seen in certain

cell types involved with cardiovascular diseases [4, 23],

which has made IL-37 a potential target in pathogenesis.

This present review discusses the molecular mechanisms

encompassing experimental models and human beings and

provides the first comprehensive summary of how IL-37

plays a protective role in cardiovascular diseases.

Atherosclerosis

Atherosclerosis is considered a chronic inflammatory

disorder in many ways. It is characterized by extensive

accumulation of cells, cholesterol, and extracellular matrix,

which result in the formation of atherosclerotic plaque in

the intima and hardening of the arterial wall [24]. It is

demonstrated that IL-37 ameliorated inflammatory re-

sponses in epithelial cells, macrophages, and dendritic cells,

indicating its potential role in atherosclerosis [23]. Endo-

thelial dysfunction caused by inflammation is a key initiating

event in atherosclerotic plaque formation [25]. Xie et al. [26]

found IL-37 decreased both NF-kB and ICAM-1 expression

upon TLR2 activation in human coronary artery endothelial

cells (HCAECs). The suppression may be due to the

inhibitive effect of IL-37 on NF-kB [3]. This result suggests

IL-37 could prevent atherosclerosis by inhibiting inflamma-

tion in endothelial cells. Activated macrophages accumulate

in atherosclerotic lesions and play an indispensable role

throughout the different stages of atherosclerosis, from the

occurrence of fatty streaks to plaque rupture and thrombo-

sis [27]. M1/M2 cell differentiation plays a critical role in the

pathogenesis and progression of atherosclerosis [23]. Bor-

aschi et al. [11] found that IL-37 was expressed in the foam-

like cells of atherosclerotic coronary and carotid artery

plaques, suggesting that IL-37 is associated with the

activation of macrophages and the shift from macrophages

to foam cells. Huang et al. [28] found IL-37 effectively

decreased the area ratio between the aorta plaque and

vascular cavity. They also observed IL-37 inhibited M1

Table 1. The studies and mechanism of IL-37 in cardiovascular diseases.

Disease model Effect Reference

Atherosclerosis "M1!M2
# NF-kB, #ICAM-1
#Inflammatory cytokines
#Calcification areas

[26, 28, 38, 39]

Myocardial infarction "Tregs, #MPO, #ROS
#Myocardial fibrosis
#Cardiomyocyte apoptosis
#Infarct size
"Left ventricular function

[17, 44, 46]

Ischemia/reperfusion
(I/R)

#Inflammation
"Tregs "FoxP3, and CTLA-4
#Cardiomyocyte apoptosis
#Infarct size
"Left ventricular function

[60, 61]
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macrophages induction from peripheral monocytes by ox-

LDL and facilitated the transformation of macrophages into

M2 cells [28]. These results indicate that IL-37 may prevent

atherosclerosis by modulating macrophage polarity. In

addition, the activation of mature DC promotes the

secretion of pro-inflammatory cytokines and is critical for

T-cell activation and the production of Th1 and Th17

cytokines, which possesses potentially pathogenic properties

in atherosclerosis and atherosclerosis related disease,

whereas immature DC have been found to secrete anti-

inflammatory cytokine IL-10, induce the generation of

regulatory T cells and therefore effectively ameliorate

atherosclerosis [29]. IL-37 can modulate the maturation

of DC [30], suggesting its protective effect on atherosclerosis

via influencing DC.

Blocking the effects of IL-18 reduces the atherosclerotic

lesion size and induces a switch to a stable plaque phenotype,

whereas both endogenous and exogenous IL-18 accelerated

atherosclerosis development [31, 32], suggesting IL-37 may

play a protective role in atherosclerosis via inhibiting IL-18.

Animal experiments have confirmed that pro-inflammatory

cytokines, such as tumor necrosis factor (TNF)-a and IL-6,

promote the differentiation of vascular smooth muscle cells

(VSMCs) into osteoblast-like cells and exacerbate the arterial

calcification process [33, 34]. Clinical studies have found

that circulating inflammatory mediators, such as C-reactive

protein (CRP) and TNF-a, are independently associated

with an increased incidence of arterial calcification [35, 36].

A recent growing body of evidence indicates that RANKL-

induced arterial calcification is mediated by IL-6 and

TNF-a [37]. Higher concentrations of IL-37 were detected

in calcified samples, compared with that in normal arteries,

and macrophages and vascular smooth muscle cells were the

main source of IL-37 [38]. Animal experiments done by

Chai et al. [39] also suggested IL-37 significantly limited

calcification areas and decreased plaque size of the

atherosclerotic lesions. These results indicated that IL-37

could attenuate not only atherosclerosis, but also vascular

calcification. Therefore, IL-37 may play a protective role in

atherosclerosis through inhibition of inflammatory cyto-

kines production and suppression of macrophage and DC

activation [23].

Myocardial infarction

Recent study revealed that IL-37 level increased obviously in

peripheral blood of acute myocardial infarction (MI)

patients [17]. Acute MI can cause serious myocardial

ischemia, thus activating autoimmunity, which recruits a

large number of inflammatory cells to the infarction area and

releases plenty of cytokines participating in inflammatory

response [40]. Excessive inflammatory cytokines are

demonstrated to produce toxic effect on myocardial cells,

accelerate myocardial cell apoptosis and, eventually impair

the heart function [41]. Numerous inflammatory cells

infiltration may also release abundant inflammatory

mediators such as MPO to participate in inflammation.

These inflammatory mediators take part in myocardial cells

necrosis and apoptosis, as well as endothelial cell dysfunc-

tion [42]. It was also reported that MPO enzyme was an

independent predictor for acute coronary artery syndrome,

closely associated with acute MI [43]. Studied done by Xu

et al. [44] indicated that IL-37 played an anti-inflammatory

role by inhibiting MPO expression in acute MI mice.

Excessive immune-mediated inflammatory reactions can

cause myocardial cell hypertrophy and apoptosis, and affect

the myocardial systolic function, therefore leading to the

occurrence of ventricular remodeling and heart failure [45].

It is indicated by Zhu et al. [46] that IL-37 decreased infarct

size and myocardial fibrosis and inhibited cardiomyocyte

apoptosis. This effect is possibly via the increased Tregs

induced by tolerogenic DCs [46].

It also proved the activation of NF-kB signaling pathway

after MI, and the inhibition of this signaling pathway can

improve cardiac function after MI and prognosis [47]. NF-

kB is an important nuclear transcription factor, as it not only

plays an important role in inflammation, but also relates to

myocardial cell apoptosis and myocardial remodeling

process after MI [48]. Given the fact that IL-37 could

modulate the expression of NF-kB, IL-37 may attenuate

remodeling after acute MI through the inhibition of NF-kB.

Angiogenesis, the formation of new blood vessels from

pre-existing vasculature, is tightly controlled by pro-

angiogenic and anti-angiogenic cytokine [49]. Angiogenesis

was promoted by many cytokines of the interleukin-1 (IL-1)

family, such as IL-1a, IL-1b, IL-18, and IL-33 [50–52].

Different cytokines seem to have a role in angiogenesis

through the use of different pathways to regulate the

immune microenvironment [53]. Yang et al. [54] found that

the upregulation of IL-37 under hypoxic conditions

enhanced endothelial cell proliferation, capillary formation,

migration, and vessel sprouting from aortic rings. Further

showed, in the mouse model of retinal vascular develop-

ment, neonatal mice administrated with IL-37 displayed

increased neovascularization [54]. These findings are similar

to those from the studies done by Zhao et al. [55], the only

contradiction is that Zhao et al. found the IL-37 pro-

angiogenic effect correlated with level of VEGF-A andAng-2,

but the studies done by Yang et al. [54] showed the

expression of IL-37 in HUVECs was not affected by VEGF.

The discrepancymay be due to the different types of cells and

the different concentrations of treated IL-37. In addition, it

was also found that serum IL-37 level had a negative

correlation to VEGF and Ang-2 levels. The tube formation of

HUVECs was suppressed by the rhIL-37 pretreatment [56].

The biphasic pro-angiogenic effect of IL-37 might be due to

X. Zhuang et al. IL-37 in cardiovascular diseases
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its different expression level. In summary, IL-37 protects MI

and contributes to heart function by reducing infarction size,

as well as to the prognosis of remolding by inhibiting NF-kB

and promoting angiogenesis.

Ischemia/reperfusion (I/R) injury

IR injury is caused by hypoxia and cessation in blood flow,

followed by an intense inflammatory response upon

reperfusion [57]. Pro-inflammatory chemokines and cyto-

kines, like TNF-a, macrophage inflammatory protein (MIP-

2) and KC, are involved in reperfusion injury [58]. A study

was done to investigate the effects of IL-37 on hepatocytes

and hepatic inflammation induced by ischemia/reperfusion

(I/R) [59].This study found that the production of these pro-

inflammatory mediators was reduced in vivo with IL-37

treatment, and the successive neutrophil recruitment was

also weakened. Our study also found that mice treated

with recombinant human IL-37 before reperfusion showed

I/R injury amelioration, compared with vehicle-treated

mice [60].The size of the infarcted area was decreased,

cardiac troponin T levels were reduced, and cardiac function

was improved in the IL-37 treated mice. The protective

properties of IL-37 against I/R injury were attributed to the

suppression of pro-inflammatory cytokine, chemokine, and

neutrophil infiltration, which resulted in a reduction of ROS

production and cardiomyocyte apoptosis. In addition, it was

also found that TLR-4 expression andNF-kB activation were

inhibited by IL-37 after I/R while IL-10 level was increased .

In keeping with that, the study carried out by Xu et al.

showed that IL-37 had protective effect on myocardial

infarction microcirculation reperfusion injury, the possible

mechanism may be to promote Treg cells, inhibit inflam-

matory reaction (decreased IL-6 and TGF-a) and the

expression of CTLA-4 and FoxP3 [61]. On the basis of this

ability to modulate a number of cytokines, IL-37 may be a

novel therapeutic candidate for myocardial I/R injury.

Conclusion

Although IL-37 is a novel interleukin in the field of

immunology, it has been found to be a key regulator in both

innate and adaptive immunities. Even with all the IL-37

researches done since its discovery in cardiovascular

diseases, much still needs to be elucidated. The mechanism

of action by which it exhibits its anti-inflammatory and

cardio-protective properties has yet to be completely

determined. In addition to its anti-inflammatory and

immune-deviatory effects, IL-37 also exerts effects on

metabolic activity both on the cellular and organismal

levels. IL-37 transgenic mice are resistant to the metabolic

effects caused by LPS. The transgenic mice are also relatively

less susceptible to obesity-induced inflammation and insulin

resistance [62]. These results suggest the potential role of

IL-37 in diabetic cardiomyopathy. Whether IL-37 exerts a

protective role in hypertension, autoimmune myocarditis,

and heart failure has not been clearly investigated. Therefore,

further studies are needed to fully understand the therapeutic

potential of IL-37.
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