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As an emerging therapeutic modality, proteolysis Normal cells
targeting chimeras (PROTACsS) indiscriminately degrade proteins it /_\ {,97
in both healthy and diseased cells, posing a risk of on-target off-site seltimmalaive \

toxicity in normal tissues. Herein, we present the modular

development of enzyme-activatable PROTACs, which utilize 0,6 Concer-associated : Cancer cells
enzyme-recognition moieties to block protein degradation activities Enzyme-activatable Qenzymes
and can be specifically activated by elevated enzymes in cancer cells PROTAC 00O — {
to enable cell-selective protein degradation and cancer targeting.
We identified the methylene alkoxy carbamate (MAC) unit as an
optimal self-immolative linker, possessing high stability and release v Optimal linker for caging ¥ Dual-enzyme activation

eﬂiciency for conjugating enzyme—recognition moieties with ¥ Modular and general platform v In vivo antitumor activity and no off-tumor toxicity
PROTAC:. Leveraging the MAC linker, we developed a series of

enzyme-activatable PROTACS, harnessing distinct enzymes for cancer-cell-selective protein degradation. Significantly, we introduced
the first dual-enzyme-activatable PROTAC that requires the presence of two cancer-associated enzymes for activation,
demonstrating highly selective protein degradation in cancer cells over nonmalignant cells, potent in vivo antitumor efficacy, and
no off-tumor toxicity to normal tissues. The broad applicability of enzyme-activatable PROTACs was further demonstrated by caging
other PROTACsS via the MAC linker to target different proteins and E3 ligases. Our work underscores the substantial potential of
enzyme-activatable PROTACs in overcoming the off-site toxicity associated with conventional PROTACs and offers new
opportunities for targeted cancer treatment.

Degradation

PROTAC, enzyme-activatable, selective protein degradation, methylene alkoxy carbamate, self-immolative linker,
cancer targeting

receptor-directed PROTACs,® and stimuli-activatable PRO-
TACs.” Among them, activatable PROTACs have been highly
appreciated for their ability to control protein degradation
selectively in diseased cells in response to external or
endogenous stimulation conditions, including Iight,10 X-ray,"!
bio-orthogonal reaction,'” reactive oxygen species,"” and
tumor microenvironment,'* while staying inert in healthy cells.

During our efforts in harnessing the chemical and enzymatic
reactivities of biomolecules to activate fluorescent probes,"> we
are particularly interested in enzyme-activatable PROTACs:,
especially considering that enzymes with high expression levels
in cancer cells are widely recognized as promising cancer
biomarkers."® In principle, conventional PROTACs can be
caged by enzyme-recognition moieties to block their protein

Proteolysis targeting chimeras (PROTACs) have emerged as a
promising therapeutic modality to degrade target proteins.
PROTACs consist of two ligands connected by a linker,
allowing them to simultaneously bind with a target protein of
interest (POI) and an E3 ubiquitin ligase, such as von Hippel—
Lindau (VHL) and cereblon (CRBN), to form a ternary
complex that induces ubiquitination and subsequent degrada-
tion of the POI by the ubiquitin-proteasome system.”
PROTACs offer many advantages, including the catalytic-
type mechanism, event-driven pharmacology, and potential to
tackle historically challenging protein targets,” and have
garnered significant interest in both academia and industry,
with numerous candidates entering clinical trials for cancer
treatment.”

Despite these advancements, conventional PROTACs are

degradation capabilities, and elevated enzymes in cancer cells

limited by the risk of on-target off-site toxicity in normal April 3, 2024
tissues,”” " due to lack of tumor specificity and indiscriminate May 10, 2024
degradation of essential proteins in both healthy and diseased May 10, 2024
cells. To overcome this limitation, various approaches have May 16, 2024

been proposed to enhance the targetability of conventional
PROTACs,” including intracellularly generated PROTACs,’
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Figure 1. Enzyme-activatable PROTACs for selective protein degradation. (A) Schematic of enzyme-activatable PROTACs for selective protein
degradation in cancer cells. (B) This work systematically explores the three modules of enzyme-activatable PROTACs.
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Figure 2. Comparison of self-immolative linkers for caging the VHL ligand. (A) Design of PGA-activatable VHL ligands and their activation by
PGA through removal of the PGA-recognition moiety and self-immolation of the linkers. HPLC analyses on the reactions of (B) EaVHL-1, (C)
EaVHL-2, (D) EaVHL-3, (E) EaVHL-4, and (F) EaVHL-S, with PGA. Asterisks in panels (B) and (C) indicate peaks of the generated VH032-Boc.
(G) Stability of EaVHL-1 and EaVHL-2 in cell culture media containing 10% serum at 37 °C.

can remove these moieties, releasing active PROTACs and
enabling selective degradation of POIs in cancer cells, but not
in healthy cells (Figure 1A). However, the rational develop-
ment of enzyme-activatable PROTACs is challenging, and a
modular construction platform that is generalizable to various
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enzymes and PROTACs remains to be established. Addition-
ally, while the VHL ligand of PROTACs represents a
promising hotspot to install caging groups, the most commonly
used linker to connect them with the VHL ligand, that is, the
carbonate unit,”” was found to be labile under physiological
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Figure 3. PGA-activatable EaP-1 enables cell-selective degradation of BRD4. (A) Structures of PGA-activatable EaP-1 and EaP-2 and the activation
by PGA to generate Mzl. (B) Efficiency of PGA-activatable release of Mz1 from EaP-1 analyzed by HPLC. (C) Western blot analysis of BRD4
levels in HEK293T cells treated with indicated doses of Mz1, EaP-1, or EaP-2 for 24 h. (D) Western blot analysis of BRD4 levels in HEK293T-
PGA and HEK293T cells treated with indicated doses of Mz1 or EaP-1 for 24 h. (E) Cell viability of HEK293T—PGA and HEK293T cells after
treatment with Mz1 or EaP—1 for 72 h. (F) Western blot analysis of BRD4 levels in HEK293T—PGA cells after cotreated with EaP—1 (1 yM) and
indicated doses of VH032 for 24 h. (G) Western blot analysis of BRD4 levels in HEK293T-PGA cells after cotreated with EaP-1 (1 M) and

indicated doses of MG132 for 24 h.

conditions,"” probably leading to nonspecific decaging. Given
that the linker structure significantly affects the stability and
activation specificity of enzyme-activatable PROTACs, an
optimal linker for conjugating PROTACs with enzyme-
recognition moieties is desperately needed. Moreover, intra-
cellular enzymes that are preferable to extracellular enzymes in
minimizing the diffusion of activated PROTACs into nearby
healthy cells are still limited for this purpose.® Most
importantly, enzyme-activatable PROTACs that rely on a
single upregulated enzyme in cancer cells may be associated
with unsatisfactory cell selectivity due to the potential for false
positive activation in healthy cells.'” Dual-enzyme-activatable
PROTAC s, which require two cancer-associated enzymes with
an additional activation criterion, offer more accurate
discrimination of cancer cells from normal cells. Nevertheless,
dual-enzyme-activatable PROTACs have not been reported
yet.

Herein, we systematically explore the modular development
of enzyme-activatable PROTACs for cell-selective protein

2566

degradation and cancer targeting. Enzyme-activatable PRO-
TACs involve three modules (Figure 1B): the PROTAC
module, which recruits the VHL or CRBN ligase and POI, the
enzyme-recognition moiety module, which blocks the activity
of the PROTAC and enables recognition and cleavage by the
target enzyme to trigger the decaging process, and the linker
module, which connects the above two modules and undergoes
self-immolation after removal of the enzyme-recognition
moiety to liberate the PROTAC. Through a comprehensive
investigation of these modules (Figure 1B), we revealed the
optimality of the methylene alkoxy carbamate (MAC) unit
with high stability and release efficiency for caging conven-
tional PROTACs, developed a range of enzyme-activatable
RPOTAC:, including the first dual-enzyme-activatable PRO-
TAC that exhibits selective protein degradation in malignant
cancer cells and potent in vivo antitumor activity without
causing off-tumor toxicity, and demonstrated the wide
applicability to distinct VHL- and CRBN-based PROTACsS.
Our findings significantly enhance the repertoire of activatable
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Figure 4. NTR-activatable EaP-3 enables selective degradation of BRD4 in cancer cells in an NTR-dependent manner. (A) Structure of NTR-
activatable EaP-3 and the activation by NTR to generate Mzl. (B) The efficiency of NTR-activatable release of Mzl from EaP-3 analyzed by
HPLC. (C) Western blot analysis of BRD4 levels in HEK293T cells treated with indicated doses of Mz1, EaP-3, or EaP-4 for 24 h. (D, H) Western
blot analysis of BRD4 levels in hypoxic and normoxic (D) HepG2 and (H) HeLa cells treated with indicated doses of Mz1 or EaP-3 for 24 h. (E, I)
Cell viability of hypoxic and normoxic (E) HepG2 and (I) HeLa cells after treatment with Mzl or EaP-3 for 72 h. (F, J) Western blot analysis of
BRD#4 levels in hypoxic (F) HepG2 and (J) HeLa cells after cotreated with EaP-3 (0.5 M) and indicated doses of VHO032 for 24 h. (G, K)
Western blot analysis of BRD4 levels in hypoxic (G) HepG2 and (K) HeLa cells after cotreated with Mzl or EaP-3 (0.5 uM) and indicated doses

of NTR inhibitor DCMA for 24 h.

PROTACs and facilitate their applications in precise protein
degradation and targeted cancer therapy.

Studies have shown that the addition of a bulky group at the
hydroxyl group of the VHL ligand disrupts its binding with the
VHL ligase,*** which has led to the extensive development
of caged PROTACs.®’ However, the carbonate unit almost
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exclusively used for connecting the VHL ligand with cages was
susceptible to hydrolysis under physiological conditions,'”
especially in the presence of ubiquitous esterases and abundant
biothiols,"”" increasing the risk of unintended release of active
PROTAC: in the absence of triggers. We therefore sought to
find a more stable and efficient alternative for caging the VHL
ligand. We chose penicillin G acylase (PGA)*" of Escherichia
coli origin as the model enzyme for its enzymatic activity in
hydrolyzing the phenylacetyl group of its substrate phenyl-
acetamide.”” A series of PGA-activatable VHL ligands, EaVHL-
1-5 (Figure 2 and Schemes S1—S6), were designed and

https://doi.org/10.1021/jacsau.4c00298
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synthesized by incorporating the phenylacetamide moiety at
the hydroxyl group of the VHL ligand VH032-Boc via different
self-immolative linkers,*> including carbonate,”> MAC,**
ethylenediamine-carbamate,” proline-derived carbamate,*
and para-aminobenzyl (PAB).”” It is expected that cleavage
of the phenylacetyl group by PGA generates an amine to
trigger the spontaneous and sequential self-immolation
processes (Figures S1—S5), such as CO, formation (for
carbonate), hemiaminal hydrolysis (for MAC), cyclization (for
ethylenediamine-carbamate and proline-derived carbamate),
and 1,6-elimination (for PAB), to liberate VH032-Boc (Figure
2A). To assess the efficiency of PGA-induced VH032-Boc
release, EaVHL-1—5 were incubated with PGA in an aqueous
buffer and analyzed by high-performance liquid chromatog-
raphy—mass spectrometry (HPLC-MS). The results showed
that EaVHL-1 bearing the carbonate unit was converted into
VHO032-Boc in a high yield (Figures 2B and S1), and that
EaVHL-2 containing the MAC linker quantitatively generated
VHO032-Boc upon incubation with PGA (Figures 2C and S2).
By contrast, although the phenylacetyl group in EaVHL-3 and
EaVHL-4 was removed by PGA and the subsequent 1,6-
elimination of the PAB linker occurred smoothly, the resulting
products were trapped in the amine intermediates without
generation of VHO032-Boc (Figures 2D,E, S3, and S4),
suggesting sluggish self-immolation of the corresponding
linkers. EaVHL-S exhibited a fast decaging by PGA but an
inefficient 1,6-elimination of the PAB linker, yielding a trapped
aniline intermediate without VH032-Boc detected (Figures 2F
and S5). We then examined the stability of EaVHL-1 and
EaVHL-2. The results showed that EaVHL-2 can be
quantitatively recovered upon incubation in cell culture
media containing 10% serum at 37 °C, whereas EaVHL-1
decomposed slowly (Figures 2G and S6). Therefore, these data
indicate that the MAC linker is highly efficient in the release of
the VHL ligand and more stable than the most commonly used
carbonate unit under physiological conditions.

The self-immolative MAC linker has so far not been used to
cage VHL-based PROTACs. To confirm the utility of this
linker, we designed and synthesized a PGA-activatable
PROTAC, named EaP-1 (Figure 3A and Scheme S7), by
installing the PGA-recognition moiety via the MAC linker onto
the VHL ligand of a prototypic PROTAC Mz1,*® the degrader
of a potential cancer therapeutic target bromodomain-
containing protein 4 (BRD4).”” In vitro HPLC-MS analyses
confirmed the excellent stability of EaP-1 in serum-containing
culture media (Figure S7), high efficiency of PGA-triggered
Mzl release (>80% yield) (Figures 3B, S8, and S9), and fast
Mz1 release kinetics with 12 min to reach half of the maximal
yield (Figure 3B).

We then evaluated the capability of EaP-1 for cell-selective
BRD4 degradation. In HEK293T cells lacking PGA expression,
EaP-1 failed to induce BRD4 degradation (Figure 3C) as
expected. Interestingly, the analogous molecule, that is, EaP-2
(Figure 3A and Scheme S7), which was similarly caged via the
most commonly used carbonate unit, reduced BRD4 levels in
HEK293T cells in an efficiency similar to Mzl (Figure 3C),
indicating PGA-independent nonspecific activation of EaP-2
probably due to its limited cellular stability. In contrast, in
HEK293T cells stably expressing PGA (i.e., HEK293T-PGA)
(Figure S10A), EaP-1 exhibited a similar efficiency to Mzl in
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degrading BRD4 (Figure 3D) and a comparable cytotoxicity
(Figure 3E). While Mzl strongly inhibited the growth of
HEK293T cells (ICg, = 200 nM), EaP-1 was found to be much
less cytotoxic in HEK293T cells (IC5, = 12.8 uM) (Figure
3E), in line with the Western blotting results (Figure 3C,D).
Using the free VHL ligand VH032,?" the Cullin neddylation
inhibitor MLN4924, and the proteasome inhibitor MG132, we
confirmed that EaP-l-induced BRD4 degradation in
HEK293T-PGA cells is dependent on VHL, ubiquitination,
and proteasome (Figures 3F—G and S11A,B). The free PGA
recognition moiety was incapable of suppressing the
degradation of BRD4 (Figure S11C), which can be explained
by its role as an active substrate of PGA, rather than a direct
inhibitor. Overall, these results demonstrate that enzyme-
activatable EaP-1 bearing the MAC linker exhibits excellent
stability, high decaging efficiency, and PGA-dependent BRD4
degradation capability. The MAC linker appears to out-
compete the most commonly used carbonate unit to enable
cell-selective protein degradation.

To develop activatable PROTACs that can be specifically
switched on by cancer-associated enzymes, we turned our
attention to nitroreductase (NTR), an enzyme effective at
catalyzing the reduction of nitroaryl groups to amines.”’ The
expression level and enzymatic activity of NTR are elevated in
tumor cells under hypoxia, which is a pathological hallmark
of solid tumors and closely related to tumor progression.”> Our
previous studies identified 2-nitro-N-methyl-imidazolyl as a
highly efficient nitroaryl group for NTR recognition and
reduction.'>* We thus conjugated 2-nitro-N-methyl-imidazolyl
to the hydroxyl group of the VHL ligand in Mz1 through the
MAC linker, generating an NTR-activatable PROTAC, that is,
EaP-3 (Scheme S8), that could be converted into Mz1 by NTR
(Figure 4A). In vitro HPLC-MS analyses showed that EaP-3
was very stable in serum-containing culture media in the
absence of NTR (Figure S12). By contrast, EaP-4, the
analogous compound that was similarly caged via the
carbonate unit (Scheme S9), was less stable and slowly
decomposed to generate Mzl under the same conditions
(Figure S12). We further confirmed that incubation of EaP-3
with NTR efficiently generated Mz1 (Figure S13), the yield of
which was estimated to be 62% after 15 min and reached 91%
after 2 h (Figures 4B and S14).

To examine whether EaP-3 could allow selective BRD4
degradation in NTR-expressing cells, we generated HEK293T
cells stably expressing NTR (i.e, HEK293T-NTR) (Figure
S10B). Compared to HEK293T-NTR cells, the wild-type
HEK293T cells exhibited negligible NTR activity no matter
under hypoxic or normoxic conditions (Figure S10C) and
were thus used as a control. Importantly, EaP-3 was unable to
induce the degradation of BRD4 in wild-type HEK293T cells
lacking NTR activity (Figure 4C). However, the carbonate
counterpart EaP-4 was found to be almost as active as Mzl in
HEK293T cells (Figure 4C), suggesting that EaP-4 was
nonspecifically activated in the absence of NTR. These results
are notably consistent with those shown above for EaP-2
(Figure 3C) and again indicate that the carbonate unit is less
tolerant to cellular contexts. By contrast, in HEK293T-NTR
cells, EaP-3 efliciently induced BRD4 degradation and cell
death in NTR-, VHL-, and proteasome-dependent manners
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(Figure S15), verifying the potential of EaP-3 to degrade
BRD4 selectively in NTR-expressing cells.

We next investigated the potential of EaP-3 for selective
degradation of BRD4 in cancerous HepG2 and HeLa cells that
were validated to have elevated NTR activities during hypoxia
(Figure S16A)."***** We found that EaP-3 dose-dependently
induced BRD4 degradation in both HepG2 and HeLa cells
only under hypoxic conditions but not under normoxic
conditions (Figure 4D,H). The efficacy of EaP-3 in degrading
BRD4 in wild-type HEK293T and cancerous cells (Figure
4C,D,H) was notably correlated with NTR activities in these
cells (Figure S16A). In clear contrast, Mz1 was highly effective
in degrading BRD4 in HepG2 and HeLa cells, no matter under
hypoxic or normoxic conditions (Figure 4D,H). Consistent
with these results, cytotoxicity assays showed that EaP-3 was
comparably toxic to Mzl in HepG2 and HeLa cells under
hypoxia but was much less cytotoxic than Mz1 in these cells
under normoxia (Figure 4E,I). Moreover, EaP-3 was more
cytotoxic under hypoxia than under normoxia in both HepG2
(ICso = 253 nM and 11.3 uM, respectively) and HeLa (ICs, =
227 nM and 10.6 uM, respectively) cells (Figure 4E,I), in line
with its differential capabilities in inducing BRD4 degradation.
Therefore, these data demonstrate the effectiveness of EaP-3 to
selectively degrade BRD4 in hypoxic cancer cells. To
understand the mechanism of EaP-3-induced BRD4 degrada-
tion, we demonstrated that treatment of hypoxic HepG2 and
Hela cells with VHO032 (Figure 4F]J) or MG132 (Figure
S16B,D) alleviated EaP-3-promoted degradation of BRD4 and
that VHO32 increased the IC, values of EaP-3 in these cells
(Figure S16C,E). More importantly, the NTR inhibitor
dicoumarin (DCMA) "> attenuated the ability of EaP-3, but
not that of Mzl, to degrade BRD4 in hypoxic HepG2 and
HeLa cells (Figure 4G,K). Collectively, these results suggest
that EaP-3 can be activated by endogenous NTR to enable
selective BRD4 degradation in hypoxic cancer cells.

Given the excellent cellular activity of EaP-3, we sought to
evaluate its antitumor activity in vivo with a mouse tumor
xenograft model. The HepG2 tumor-bearing mice were
generated via subcutaneous implantation of HepG2 cells.
EaP-3 or Mzl was administered at the onset of palpable
tumors (~90 mm?) through subcutaneous injection. Both the
volume and weight of tumors were significantly reduced in
EaP-3-treated mice compared to those in vehicle-treated mice
(Figure SA-C), suggesting that EaP-3 was activated in vivo to
remit tumor growth with a similar efficiency to Mzl.
Importantly, treatment of EaP-3 did not result in a significant
loss of body weight (Figure SD). The histopathologic analysis
also demonstrated that the administration of EaP-3 exhibited
little damage to major organs such as the heart, liver, spleen,
lung, and kidney (Figure SE), indicating that the observed
tumor shrinkage was not due to systemic in vivo toxicity of
EaP-3. These results demonstrate that the NTR-activatable
EaP-3 efficiently suppresses the growth of HepG2 xenograft
tumors in vivo without severe systemic toxicity.

To further enhance the activation specificity, we continued to
explore dual-enzyme-activatable PROTACs that are expected
to have even lower off-tumor activation owing to the
requirement of successive processing by two cancer-associated
enzymes. For this, we chose cancer-associated histone
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Figure S. NTR-activatable EaP-3 inhibits tumor growth in vivo. (A)
Tumor growth in HepG2 xenograft mice. Mice-bearing HepG2
xenograft tumors were treated with vehicle control, Mz1, or EaP-3 (25
mg/kg/dose) daily via subcutaneous injection for 21 days. (B) Images
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(A), (C), and (D) are mean =+ sd (n = 6 mice per group). Statistical
analyses were performed with one-way ANOVA, ns p > 0.05, *** p <
0.001, *#** p < 0.0001.

deacetylases (HDACs) and cathepsin B (CTSB), both of
which have been considered to be therapeutic targets for
cancer treatment.’”* HDACs are key enzymes in the regulation
of protein structure and function through deacetylation of
lysine residues.” Elevated levels of HDACs are closely related
to tumorigenesis, progression, and metastasis.> CTSB, a
cysteine protease hydrolyzing intracellular proteins with broad
substrate specificity, also has crucial roles in multiple stages of
development and progression, including tumor growth,
angiogenesis, invasion, and metastasis.”” CTSB is frequently
overexpressed in a variety of tumors, especially colorectal
cancers,”*” while the content of CTSB in normal tissues is far
lower and even negligible.”®

To develop dual-enzyme-activatable PROTACs targeting
HDACs and CTSB, we proposed to incorporate &-N-
acetylated lysine-based substrate motifs for HDACs and
CTSB* into the hydroxyproline group of Mzl via the MAC
linker. It was expected that HDACs could first remove the &-N-
acetyl group to unmask the lysine residue, which could be
recognized and cleaved by CTSB™ to initiate the sequential
elimination and liberate Mz1 (Figure 6A). We synthesized a
series of candidates, that is, EaP-5—9 (Scheme S10), bearing
different @-amino substituents (Figure S17), and evaluated
their abilities to degrade BRD4 in human colorectal carcinoma
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Figure 6. Dual-enzyme-activatable EaP-8 enables selective degradation of BRD4 in malignant cancer cells. (A) Structure of the dual-enzyme-
activatable PROTAC EaP-8 and the activation by HDACs and CTSB to generate Mz1. (B) Western blot analysis of BRD4 levels in malignant
HCT116 cells treated with indicated doses of Mzl or EaP-8 for 24 h. (C) Cell viability of nonmalignant Caco-2 cells and malignant HCT116 cells
after treatment with Mz1 or EaP-8 for 72 h. (D) Western blot analysis of BRD4 levels in nonmalignant Caco-2 cells versus malignant HCT116 cells
treated with indicated doses of EaP-8 for 24 h. (E) Western blot analysis of BRD4 levels in HCT116 cells after cotreated with EaP-8 (0.5 yM) and
indicated doses of HDACs inhibitor TSA, CTSB inhibitor CA-074, or both for 24 h. (F) Western blot analysis of BRD4 levels in HCT116 cells
after cotreated with EaP-8 (0.5 M) and indicated doses of VHO032 for 24 h. (G) Western blot analysis of BRD4 levels in HCT116 cells after
cotreated with EaP-8 (0.5 uM) and indicated doses of MG132 for 24 h. (H, K) Western blot analysis of BRD4 levels in malignant (H) HT-29 and
(K) HepG2 cells treated with indicated doses of Mzl or EaP-8 for 24 h. (I, L) Cell viability of malignant (I) HT-29 and (L) HepG2 cells after
treatment with Mz1 or EaP-8 for 72 h. (J, M) Western blot analysis of BRD4 levels in (J) HT-29 and (M) HepG2 cells after cotreated with EaP-8
(0.5 uM) and indicated doses of HDACs inhibitor TSA, CTSB inhibitor CA-074, or both for 24 h.

HCT116 cells that have been reported to express high levels of
HDACs and CTSB." EaP-5—9 exhibited varying efficiencies in
promoting BRD4 degradation that were attributed to different
levels of activation and Mzl release (Figure S17). Hydro-
phobic residues, such as phenylalanines in EaP-8—9 (Figure
S17), substituted on the a-amino group of lysine substantially
increased the efficiency in inducing BRD4 degradation. This is
consistent with previous reports showing that dipeptides
composed of basic and hydrophobic amino acids (e.g., the
phenylalanine-lysine dipeptide) are efficient CTSB sub-
strates.””*!

We focused on EaP-8 for further characterization. Western
blotting and cell viability assays demonstrated comparable
efficiencies of EaP-8 and Mzl in inducing BRD4 degradation
and suppressing cell growth (IC5, = 476 nM and 211 nM,
respectively) in the malignant HCT116 cells (Figure 6B,C).
To examine the selectivity of EaP-8, we used less tumorigenic
colonic Caco-2 cells that are similar to normally differentiated
enterocytes when cultured as confluent cells* and expressed
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basal levels of HDACs and CTSB.** In nonmalignant Caco-2
cells, EaP-8 was much less efficacious in promoting BRD4
degradation than in malignant HCT116 cells (Figure 6D).
Consistently, EaP-8 was much less cytotoxic in Caco-2 cells
(ICs = 10.5 uM) than in HCT116 cells (IC5, = 476 nM)
(Figure 6C), whereas Mz1 was similarly cytotoxic in these two
types of cells (Figure 6C). Moreover, EaP-8 was also shown to
efficiently induce BRD4 degradation and inhibit cell growth in
HT-29 colorectal cancer cells (Figure 6H,I) and HepG2 liver
cancer cells (Figure 6K,L), both of which are malignant cancer
cells having elevated activities of HDACs and CSTB as
well.*9%9*> Therefore, these results demonstrate that EaP-8
exhibits a high degree of selectivity for malignant cancer cells
with increased HDACs and CTSB activities over nonmalignant
cells in mediating BRD4 degradation and cell death (Figure
S18A).

To understand the mechanism and specificity of EaP-8
activation, we employed the pan-inhibitor of HDAC:, that is,
trichostatin A (TSA),** and the selective inhibitor of CTSB,
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that is, CA-074,* in the BRD4 degradation assay. Addition of
TSA or CA-074 attenuated EaP-8-induced degradation of
BRD4 in HCT116 (Figure 6E), HT-29 (Figure 6J), and
HepG2 (Figure 6M) cells. The inclusion of both TSA and CA-
074 even more substantially suppressed EaP-8-mediated
degradation of BRD4 in these cells (Figure 6EJ,M). By
contrast, EaP-8-induced BRD4 degradation was less affected by
Z-FY-CHO, a specific inhibitor of CTSL,** compared to CA-
074 and a broad-spectrum cysteine protease inhibitor E64D*
(Figure S18B). We also showed that VH032, MG132, and
MLN4924 rescued BRD4 degradation in HCT116 cells
(Figures 6F,G and S18C). Similarly, VH032 and MG132
also blocked BRD4 degradation in HT-29 (Figure S18E,F) and
HepG2 (Figure S18H,I) cells. In addition, VHO32 attenuated
the cytotoxicity of EaP-8 in these cells (Figure S18D,G,)J).
These results together suggest that the activities of both
HDACs and CTSB are required for the activation of EaP-8,
leading to BRD4 degradation and cell growth inhibition
dependent on VHL and proteasome.

To assess the in vivo antitumor efficacy of EaP-8, we used a
mouse xenograft model bearing HCT116 cells. The colon
cancer HCT116 cells were subcutaneously injected into the
lower axilla of mice. When small palpable tumors (~90 mm?)
had developed, EaP-8 was administered subcutaneously. Mice
treated with EaP-8 or Mzl developed significantly smaller
tumors in both volume and weight in comparison with vehicle-
treated mice (Figure 7A—C), suggesting that EaP-8 remitted
tumor growth in vivo as efficiently as Mz1. The administration
of EaP-8 appeared to be well tolerated, as judged by body
weight measurements (Figure 7D) and histopathologic
staining of the major organs (Figure 7E).

A highly attractive advantage of enzyme-activatable
PROTAC: is the targeted activation inside tumors leading to
minimal toxicity to normal tissues. We thus assessed the off-
tumor toxicity of the dual-activatable EaP-8. BRD4 depletion
in the skin was shown to cause epithelial hyperglasia, along
with follicular dysplasia and subsequent alopecia.”® We indeed
observed obvious epithelial hyperplasia and overall deterio-
ration of skin health near the injection sites in mice receiving
Mz-1 (Figure 7F,G). In comparison, no such side effects, that
is, increases in epidermal thickness, in skin tissues were
observed in mice receiving EaP-8 and vehicle control (Figure
7F,G). Consistently, the immunohistochemical analysis
showed a significant reduction of BRD4 in skin sections
from Mzl-treated mice (Figure 7H,I), accounting for the
observed phenotype of hyperplasia in the epidermis,***
whereas no significant BRD4 reduction was found in skin
sections from EaP-8- and vehicle-treated mice (Figure 7H,I).
Therefore, these results clearly demonstrate that the dual-
enzyme-activatable EaP-8 exhibits potent in vivo antitumor
efficacy and excellent tumor-specific targeting, and, most
importantly, substantially ameliorates the off-tumor toxicity to
healthy tissues after systemic administration.

To further examine whether enzyme-activatable PROTACs
could be expanded to target other POIs, we chose MS432, a
VHL-based PROTAC for degrading cancer therapeutical
targets mitogen-activated protein kinase 1 and 2 (MEKI and
MEK2, ie, MAP2KI and MAP2K2).” Specifically, we

2571

=
G)

1000 ~o- Vehicle control Fkokk ns
a -= EaP-8 159
é 800 izt / .
£ - Mz 1 3
o " z 104
£ L sk [k 5
3 - 2
g £
g £ 05 . N
5 E
= # =
t T T T T
0 5 10 15 20 00 T T T
Time (day) Vehicle control EaP-8 Mz1
(B) - (D) P Vehicle control
T T v T -
u‘u|uu:unmjummm\nﬁuu . w\nmuulmm.h 24 = EaP8
Vehicle B8R om  a= P B S —— Mz1
control | ) s @ \ 4 @ & =
>
7]
. o P 3
Mz1 ) &6 & & o © >
&
§ 4 @ P [ ®
P @ © ® © ®
= 14 T T T T
0 5 10 15 20
Time (day)
(E) Heart Liver Spleen Lung Kidney
Vehicle
control
Mzt |
EaP-8 [
(F) Vghicle control
ns
(G) ns U}

-3
S
©
S

=3
S
@
S

I
S

40

Ny
oS

20

Epidermal thickness (um)
BRD4 positive area (%)

o

Vehicle Mz1 EaP-8

(H)

Vehicle control

Figure 7. Dual-enzyme-activatable EaP-8 exhibits in vivo antitumor
activity without off-tumor cytotoxicity. (A) Tumor growth in
HCT116 xenograft mice. Mice-bearing HCT116 xenograft tumors
were treated with vehicle control, Mz1, or EaP-8 (30 mg/kg/ dose)
daily via subcutaneous injection for 21 days. (B) Images and (C)
weight analysis of HCT116 tumors from mice receiving vehicle
control, Mz1, or EaP-8 at the end of the experiment. (D) Body weight
changes of tumor-bearing mice during the treatment in panel (A). (E)
H&E staining of major organs from mice receiving vehicle control,
Mz1, or EaP-8 at the end of the experiment. (F) Representative H&E
staining of skin sections from mice receiving vehicle control, Mz1, or
EaP-8, showing epithelial hyperplasia. (G) Epidermal thickness
measured in skin sections shown in panel (F). (H) Immunohis-
tochemical analysis of BRD4 expression shown as brown signals in
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Quantification of BRD4 positive areas in skin sections shown in panel
(H). Data shown in panels (A), (C), and (D) are mean + sd (n =6
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Statistical analyses were performed with one-way ANOVA, ns p >
0.05, ** p < 0.01, *¥**% p < 0,0001.
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Figure 8. Dual-enzyme-activatable EaP-10 enables selective degradation of MEK1/2 in malignant cancer cells. (A) Structure of the dual-enzyme-
activatable PROTAC EaP-10 and the activation by HDACs and CTSB to generate MS432. (B) Western blot analysis of MEK1/2 levels in
malignant HCT116 cells treated with indicated doses of MS432 or EaP-10 for 24 h. (C) Western blot analysis of MEK1/2 levels in nonmalignant
Caco-2 cells treated with indicated doses of MS432 or EaP-10 for 24 h. (D) Cell viability of nonmalignant Caco-2 cells and malignant HCT116
cells after treatment with MS432 or EaP-10 for 72 h. (E) Western blot analysis of MEK1/2 levels in HCT116 cells after cotreated with EaP-10 (0.5
uM) and indicated doses of HDACs inhibitor TSA, CTSB inhibitor CA-074, or both for 24 h. (F) Western blot analysis of MEK1/2 levels in
HCT116 cells after cotreated with EaP-10 (0.5 M) and indicated doses of free VHL ligand VHO032 for 24 h. (G) Western blot analysis of MEK1/2
levels in HCT116 cells after cotreated with EaP-10 (0.5 uM) and indicated doses of MG132 for 24 h. (H) Cell viability of HCT116 cells after
treatment with EaP-10 in the absence or presence of VH032 (10 uM) for 72 h.

synthesized an MS432-derived activatable PROTAC, that is,
EaP-10 (Schemes S11 and 12), by caging the VHL ligand with
the &-N-acetylated lysine-phenylalanine substrate moiety for
HDACs and CTSB via the MAC linker (Figure 8A). As
expected, EaP-10 induced the degradation of MEK1/2 in
malignant HCT116 cells (Figure 8B) and inhibited cell
proliferation as efficiently as the parent molecule MS432
(Figure 8D). EaP-10 failed to degrade MEKI1/2 in non-
malignant Caco-2 cells (Figure 8C) and exhibited a much
weaker cytotoxicity than MS432 (Figure 8D). Inhibitors of
HDACs and CTSB, that is, TSA and CA-074, respectively,
alleviated EaP-10-mediated degradation of MEK1/2 in
HCT116 cells (Figure 8E). In addition, VH032 and MG132
attenuated EaP-10-induced degradation of MEK1/2 (Figure
8F,G) and VHO32 mitigated its cytotoxicity in HCT116 cells
(Figure 8H). Therefore, these results suggest that EaP-10 is
capable of degrading MEK1/2 selectively in malignant cancer
cells in HDACs/CTSB-, VHL-, and proteasome-dependent
manners.
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While the above enzyme-activatable PROTACs are derived
from VHL-based PROTACs, we envisioned that the self-
immolative MAC linker could also be applied to cage the
CRBN ligand that represents another one of the two most
widely used ligands in conventional PROTACs. It is worth
noting that the incorporation of caging groups at the
glutarimide nitrogen of thalidomide and analogues has been
elusive due to unexpected issues in synthesis, release, and
stability.*>'%*'**>° To extend the scope of enzyme-activatable
PROTACs to CRBN-based degraders, we selected a BRD4
degrader SJ995973 that comprises JQl and a novel CRBN
binder, that is, phenyl glutarimide (PG).”° PG analogues were
recently shown to exhibit retained affinity for CRBN, improved
chemical stability, and synthetic feasibility compared with
classical thalidomide analogous ligands.50 However, the
application of PG in activatable PROTACs has by far not
been explored. We thus designed and synthesized an NTR-
activatable PROTAC, EaP-11, by incorporating 2-nitro-N-
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Figure 9. CTSB-activatable EaP-12 enables selective degradation of BRD4 in cancer cells in CTSB- and CRBN-dependent manners. (A) Structure
of the CTSB-activatable PROTAC EaP-12 and the activation by CTSB to generate SJ995973. (B) Western blot analysis of BRD4 levels in
malignant HCT116 cells treated with indicated doses of $J995973 or EaP-12 for 24 h. (C) Western blot analysis of BRD4 levels in nonmalignant
Caco-2 cells versus malignant HCT116 cells treated with indicated doses of EaP-12 for 24 h. (D) Cell viability of nonmalignant Caco-2 cells and
malignant HCT116 cells after treatment with SJ995973 or EaP-12 for 72 h. (E) Western blot analysis of BRD4 levels in HCT116 cells after
cotreated with EaP-12 (0.5 uM) and indicated doses of CTSB inhibitor CA-074 for 24 h. (F) Western blot analysis of BRD4 levels in HCT116
cells after cotreated with EaP-12 (0.5 #M) and indicated doses of free CRBN ligand PG or MG132 for 24 h. (G, J) Western blot analysis of BRD4
levels in malignant (G) HT-29 and (J) HepG2 cells treated with indicated doses of $J995973 or EaP-12 for 24 h. (H, K) Western blot analysis of
BRD4 levels in (H) HT-29 and (K) HepG2 cells after cotreated with EaP-12 (0.5 M) and indicated doses of CTSB inhibitor CA-074 for 24 h. (],
L) Western blot analysis of BRD4 levels in (I) HT-29 and (L) HepG2 cells after cotreated with EaP-12 (0.5 uM) and indicated doses of free

CRBN ligand PG or MG132 for 24 h.

methyl-imidazolyl at the imide moiety of PG in S§J995973 via
the MAC linker (Figure S19A and Schemes S13—14). Western
blotting analysis showed that EaP-11 induced BRD4
degradation in HEK293T-NTR and hypoxic HepG2 cells,
but not in wild-type HEK293T and normoxic HepG2 cells
(Figure S19B—E). Therefore, these data suggest that N-
alkylation at the imide moiety blocks the binding of PG to
CRBN, as for thalidomide.**

To demonstrate the broad applicability, we synthesized a
CTSB-activatable PROTAC, that is, EaP-12 (Scheme S15), by
incorporating a highly specific CTSB-recognition lysine—lysine
dipeptide substrate®” into the PG moiety of $J995973 via the
MAC linker (Figure 9A). EaP-12, like SJ995973, efficiently
degraded BRD4 in malignant HCT116 cells (Figure 9B).
Importantly, EaP-12 degraded BRD4 more efficiently in
HCT116 cells than in nonmalignant Caco-2 cells (Figure

9C). Consistently, cell viability assay indicated similar
cytotoxicity of EaP-12 and $J995973 in HCT116 cells (Figure
9D). The ICs, value of EaP-12 was however much higher than
that of $J99597312 in Caco-2 cells (Figure 9D). Moreover, the
specific CTSB inhibitor CA-074 antagonized the effect of EaP-
12 on BRD4 degradation (Figure 9E), confirming the critical
role of CTSB in activating EaP-12. PG, the free CRBN ligand,
and MG132 inhibited EaP-12-induced BRD4 degradation in
HCT116 cells (Figure 9F), and that PG significantly increased
the ICs, of EaP-12 (Figure S20A), suggesting that EaP-12
degraded BRD4 in CRBN- and proteasome-dependent
manners. Moreover, EaP-12 also efficiently degraded BRD4
(Figure 9G)J) and exhibited comparable cytotoxicity to
$J995973 (Figure S20B,D) in malignant HT-29 and HepG2
cells, which was dependent on the CTSB activity, CRBN, and
proteasome (Figures 9H,LK,.L. and S20C,E). Overall, these
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results demonstrate that EaP-11 and EaP-12 can differentiate
malignant cancer cells from nonmalignant cells to enable
selective BRD4 degradation and that the self-immolative MAC
linker and enzyme-recognition moieties can be applied to cage
the PG ligand for developing enzyme-activatable CRBN-based
PROTAC:Ss.

In conclusion, we report a systematic investigation of the
modular construction of enzyme-activatable PROTACs for
cancer cell-selective protein degradation and precise cancer
targeting. Our findings highlight the superiority of the MAC
structure as a linker for caging the VHL ligand, compared to
the most commonly used carbonate unit that was shown to be
less stable and intolerant to cellular contexts. Using the MAC
linker, we developed a set of enzyme-activatable VHL-based
PROTACs with different enzyme-recognition moieties,
enabling selective protein degradation in cells expressing
distinct intracellular enzymes. Most importantly, we for the
first time introduced dual-enzyme-activatable PROTACs that
are double-locked and operate in an AND logic manner to
enhance specificity for discriminating tumor cells from normal
cells. We experimentally validated that the dual-enzyme-
activatable BRD4 degrader EaP-8 significantly ameliorates
the in vivo off-tumor toxicity associated with the conventional
parent PROTAC. To the best of our knowledge, this is the first
direct experimental evidence to demonstrate the much
improved off-tumor toxicity of activatable PROTACs. More-
over, by enclosing other conventional PROTACs, we
demonstrated that the MAC linker can be applied to the
CRBN recruiter and constructed additional enzyme-activatable
PROTAC: for targeting different proteins through alternative
E3 ligases. Overall, our work thoroughly demonstrates the
modularity, general applicability, and versatility of the chimeric
enzyme-activatable PROTACs, addresses the oft-tumor toxicity
concern of conventional PROTACs, and holds great promise
for PROTAC-based drug development and targeted therapy.
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