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Abstract

The use of chemical warfare agents is an ongoing, significant threat to both civilians and 

military personnel worldwide. Nerve agents are by far the most formidable toxicants in 

terms of their lethality and toxicity. Nerve agents initiate neurotoxicity by the irreversible 

inhibition of acetylcholinesterase and resultant accumulation of acetylcholine in excitable tissues. 

The cholinergic toxidrome presents as miosis, lacrimation, diarrhea, fasciculations, seizures, 

respiratory arrest and coma. Current medical countermeasures can attenuate acute mortality and 

confer limited protection against secondary neuronal injury when given rapidly after exposure. 

However, there is an urgent need for the development of novel, add-on neuroprotective therapies 

to prevent mortality and long-term toxicity of nerve agents. Increasing evidence suggests 

that pathways other than direct acetylcholinesterase inhibition contribute to neurotoxicity and 

secondary neuronal injury. Among these, oxidative stress is emerging as a key therapeutic target 

for nerve agent toxicity. In this review, we discuss the rationale for targeting oxidative stress in 

nerve agent toxicity and highlight research investigating antioxidant therapy as a neuroprotective 

medical countermeasure to attenuate oxidative stress, neuroinflammation and neurodegeneration.
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1. Introduction

Preparedness against chemical warfare threats represents a critical, yet unmet need of 

current research efforts. To this end, in 2006 the National Institutes of Health launched 

the Countermeasures Against Chemical Threats (CounterACT) Program to encourage the 

identification of mechanisms of toxicity and the development of medical countermeasures to 

mitigate consequences of such exposures (Jett and Yeung, 2010). Chemical warfare agents 

are highly toxic compounds, exposure to which has the potential to result in mass causalities. 
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Exposure to such chemicals can be accidental or intentional, as was highlighted recently by 

the 2013 sarin gas attack on Syrian civilians (Dolgin, 2013).

Chemical weapons vary in their mechanisms of action, target organs and lethality. 

Organophosphorus (OP) nerve agents such as sarin, soman, and VX are by far the most 

formidable in terms of their toxicity and lethal effects. In addition, OP pesticides, which 

share a common mechanism of action as OP nerve agents, are a significant threat from 

occupational, accidental and intentional exposures. The primary mechanism of toxicity in 

acute exposures to these compounds is the irreversible inhibition of acetylcholinesterase 

(AChE) in the nervous system and resultant over-activation of cholinergic tone via 

acetylcholine (ACh) accumulation. Depending on the degree and route of exposure, over­

activation of cholinergic receptors can cause a myriad of clinical symptoms ranging from 

mild to severe. Perhaps the most prominent of the severe symptoms are seizures that rapidly 

progress to a period of unremitting seizure activity known as status epilepticus (SE). The 

sequelae of toxicity includes the early events of AChE inhibition and SE, delayed events 

such as cellular, metabolic and inflammatory changes and late outcomes i.e. neuropathology 

and long-term cognitive impairment. Increasing evidence suggests that other pathways play 

an important part in mediating the sequelae of toxicity resulting from such exposures. In this 

review, we discuss how early events lead to cellular oxidative stress and how targeting this 

phenomenon can alter delayed and functional outcomes (Fig. 1).

2. Redox imbalance

Oxidative stress occurs when the balance between oxidant production and antioxidant 

defenses is perturbed, resulting in the disruption of redox circuitry and macromolecular 

damage (Kemp et al., 2008). Free radicals derived from molecular oxygen and nitrogen 

are produced as a natural by-product of aerobic metabolism and other bodily processes 

by both enzymatic and non-enzymatic reactions (Turrens, 2003). The collective term, 

reactive species (RS), refers to oxygen radicals such as superoxide (O2·−) and hydroxyl 

radicals (·OH), oxidizing non-radicals such as hydrogen peroxide (H2O2), and reactive 

nitrogen species such as nitric oxide (NO·) and peroxinitrite (ONOO−). In the body, 

the major sources of RS are mitochondria, NADPH oxidases (NOX), halo-peroxidases 

and the nitric oxide synthases (NOS). At low levels, RS are indispensable to host 

defense and signal transduction. However, increasing steady-state levels of RS results 

in oxidative damage to cellular lipids, proteins, sugars and DNA bases with deleterious 

consequences to tissue health culminating in disease (Bae et al., 2011). Their production 

is therefore tightly regulated by the availability of endogenous antioxidants such as the 

superoxide dismutases (SOD), catalase, glutathione peroxidase (GPx), peroxiredoxins, and 

non-enzymatic antioxidants. Relative to other organs, the brain is relatively sparse in 

antioxidant defenses. This, together with the abundance of polyunsaturated lipids and high 

metabolic demand makes the brain particularly susceptible to RS-induced damage. Under 

physiologically low levels of RS, neurons are typically able to minimize RS-induced damage 

to cellular macromolecules through available antioxidant defenses or repair processes. Under 

pathological conditions when RS production is excessive and/or antioxidant and repair 

processes may be compromised, cellular damage causing altered cellular function can result. 

Specifically, damage to membrane lipids can lead to altered membrane fluidity, permeability, 
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and structure of membrane proteins which can in turn alter neurotransmitter uptake and 

release in addition to the maintenance of proper ionic gradients (Wong-ekkabut et al., 

2007). Oxidative damage to cellular proteins can alter their structure and function, thereby 

increasing their susceptibility to proteolytic degradation and disturbing signaling pathways 

(Stadtman and Levine, 2000). When produced in close enough proximity, RS can damage 

nuclear or mitochondrial DNA. If oxidative DNA damage exceeds what can properly be 
repaired by excision repair processes, the result is activation of cell death pathways (Duprez 

et al., 2009; Ott et al., 2007). Neuronal cell death and inflammation are hallmark features of 

nerve agent toxicity and recent evidence suggests that targeting oxidative stress can attenuate 

these processes (Liang et al., 2018a; Liang et al., 2018b; Zaja-Milatovic et al., 2009).

3. Sources of RS formation following OP nerve agent exposure

The earliest event that occurs following OP nerve agent exposure is accumulation of 

the toxicant in target tissues. This is followed rapidly by the inhibition of AChE and 

accumulation of ACh in brain and plasma. Modest evidence suggests that mere exposure 

to OP toxicants is sufficient to produce signs of oxidative stress (Giordano et al., 2007; 

Zepeda-Arce et al., 2017). This includes studies of subacute and chronic exposures in 

pesticide workers where evidence of altered antioxidant status and oxidative damage is 

reported in the absence of AChE inhibition (Zepeda-Arce et al., 2017). Additionally, in an 

in vitro model of OP toxicity, indices of oxidative stress were found even in the presence 

of cholinergic receptor antagonists (Giordano et al., 2007). This suggests that despite the 

absence of AChE inhibition or ACh over-activation, oxidative stress occurs and is sufficient 

to result in damage, although the clinical relevance of this damage is unclear. Importantly, as 

subacute and chronic exposures are not associated with overt seizure activity, these studies 

suggest that seizure activity induced by OP nerve agent exposure is not the sole mechanism 

driving oxidative stress in these models. Nonetheless, most studies of subacute and chronic 

exposures have shown that the degree of AChE inhibition in human blood or rodent blood, 

liver and brain show a strong positive correlation with the appearance of oxidative stress 

markers in these regions (Akhgari et al., 2003;Kazi and Oommen, 2012;Ranjbar et al., 

2002;Ranjbar et al., 2005). Thus, as AChE inhibition increases, so does the appearance of 

oxidative stress.

AChE inhibition and resultant ACh receptor hyperactivation stimulates the initiation of 

seizures in vulnerable brain regions (McDonough and Shih, 1993; Shih and McDonough, 

1997; Shih et al., 1991). This activity is strengthened by the glutamatergic system and 

the resultant hyperactivation of NMDA receptors can lead to the production of RS 

through multiple mechanisms (Girouard et al., 2009; Gunasekar et al., 1995; Shih and 

McDonough, 1997). First, activation of these receptors in hippocampal CA1 neurons for 

example, allows for a massive influx of extracellular calcium into the cytosol (Deshpande 

et al., 2010;Deshpande et al., 2014). Increased intracellular calcium can promote the 

conversion of xanthine dehydrogenase to xanthine oxidase thereby initiating the excessive 

production of O2·− and H2O2 (McCord, 1985). Additionally, cytosolic calcium accumulates 

in mitochondria and deranges normal calcium signaling processes leading to further 

production of RS. Indeed, exposure to OPs has been shown to result in sustained elevations 

of intracellular calcium, achieved initially through NMDA receptors but maintained for up 
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to weeks following exposure by calcium-induced calcium release from the endoplasmic 

reticulum (Deshpande et al., 2010; Deshpande et al., 2014). Inhibition of this calcium 

plateau with dantrolene is neuroprotective in the paraxon model of OP toxicity suggesting 

its potential clinical relevance (Deshpande et al., 2016a; Deshpande et al., 2016b). It 

is possible that this protection may be in part due to dantrolene’s effect on oxidative 

stress (Büyükokuroğlu et al., 2008). This suggests a potentially important relationship 

between initial NMDA receptor activation, elevated intracellular calcium, oxidative stress 

and neurodegeneration. Another consequence of activation of NMDA receptors or excessive 

intracellular calcium is the production of NO (Bredt, 1999; Garthwaite et al., 1989; Girouard 

et al., 2009). NO reacts with O2·− to form the highly toxic ONOO− (Beckman and 

Koppenol, 1996). Increasing evidence suggests that targeting NO production may have 

anti-seizure and neuroprotective effects in OP models (Gupta et al., 2001b; Kim et al., 1997; 

Kim et al., 1999). Thus, activation of NMDA receptors sets into motion multiple pathways 

leading to the production and exacerbation of RS.

Another major cause of RS formation upon exposure to toxic levels of OPs are the seizures, 

most commonly continuous seizures or status epilepticus (SE), they elicit. During a seizure, 

cerebral metabolism is increased to meet the bioenergetic demands of synchronous neuronal 

firing (Engel et al., 1982a, b). Since a single episode of OP exposure is sufficient to result 

in chronic epilepsy, it is plausible that the underlying epileptogenic insult also shares the 

metabolic signatures observed in epilepsies from other etiologies (De Araujo Furtado et 

al., 2010; Kadar et al., 1992). One common metabolic signature associated with human 

epilepsy is an increase in glucose utilization during ictal phases followed by glucose 

hypometabolism during the interictal phases (Chugani et al., 1994; Engel et al., 1982, 

1982; Gaillard et al., 1995). Although an increase in blood flow may compensate for any 

bioenergetics mismatch, these energy demands can cause an imbalance in ATP production 

thereby depleting high energy phosphates and impairing regulated neuronal firing (Gupta et 

al., 2001a; Zaja-Milatovic et al., 2009). Periods of ictal hypermetabolism followed by long 

periods of hypometabolism provide an ideal setting for increased steady-state levels of RS 

through multiple cellular sources.

Several mechanisms may contribute to increased steady-state levels of cellular O2·− 

following OP nerve agent exposure. NOX2 activation, a primary source of O2·−, is known 

to increase in various models of SE (Di Maio et al., 2011; Kim et al., 2013; Patel et 

al., 2005; Pecorelli et al., 2015; Pestana et al., 2010). Mitochondria are also potential 

sources of SE-induced O2·− and H2O2 due to heightened electron leakage from the electron 

transport chain and transfer to molecular oxygen to form O2·−. Additionally, SE can inhibit 

complex I via oxidative modification and inactivate the iron-sulfur center of mitochondrial 

aconitase, leading to secondary generation of O2·− and H2O2, respectively (Liang et al., 

2000; Ryan et al., 2012). Indeed, in models of chemically-induced SE and OP toxicity, 

O2·− levels are increased and contribute to neurodegeneration (Liang et al., 2000; Rieger 

et al., 2017). O2·− serves as the precursor for much more toxic RS. H2O2, generated by 

spontaneous or enzymatic dismutation and peroxidases in the presence of ferrous iron via 

the Fenton reaction can produce the highly reactive HO· that readily oxidizes proteins, 

lipids, and DNA (Fenton, 1894; McCord and Day, 1978). O2·− reacts with NO to produce 

another highly reactive product, ONOO−. Both HO· and ONOO− are potent oxidizing agents 
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and evidence suggests that these molecules are produced as a consequence of OP-induced 

seizures (Jacobsson et al., 1999; Kim et al., 1997; Kim et al., 1999).

Damage to cellular macromolecules and resultant neurodegeneration induced by RS is 

exacerbated when antioxidant defenses are inhibited. Data from this laboratory have 

demonstrated that acute exposure to a convulsive dose of the model organophosphate, 

diisopropylfluorophosphate (DFP), or the OP nerve agent, soman is sufficient to alter the 

ratio of oxidized to reduced glutathione (GSH) in favor of oxidized glutathione (GSSG) 

(Liang et al., 2018a; Liang et al., 2018b). These alterations to GSH/GSSG in addition to 

protein nitration, occur in a time- and brain region-dependent manner (Liang et al., 2018a; 

Liang et al., 2018b). Oxidative stress is apparent 24 and 48 h following exposure but not 

at 6 or 12 h, in vulnerable brain regions such as the hippocampus and piriform cortex but 

not the frontal cortex (Liang et al., 2018a; Liang et al., 2018b). In addition to serving as a 

specific and reliable indicator of ongoing oxidative stress in these models, the abundance 

of GSSG suggests a redox environment that favors oxidative stress. A common finding in 

most studies of OP toxicity in the brain is alterations to endogenous antioxidant systems 

(Brocardo et al., 2007; Brocardo et al., 2005; Giordano et al., 2007; Gupta et al., 1992; 

Kaur et al., 2007; Lukaszewicz-Hussain, 2008; Trevisan et al., 2008; Tüzmen et al., 2007). 

Interestingly, alterations to brain antioxidant systems are not specific to acute exposures but 

encompass subconvulsive and chronic exposures (Lukaszewicz-Hussain, 2008; Slotkin et 

al., 2007; Trevisan et al., 2008; Tüzmen et al., 2007). This suggests that seizures are not 

necessarily the only driving force behind OP-induced oxidative stress.

Secondary to toxicant accumulation in target tissues, receptor activation and seizures, 

exposure to nerve agents results in extensive neuropathology in vulnerable brain regions. 

Gliosis and neuronal degeneration begin to appear in a region dependent manner starting 

as early as 4 to 8 h following exposure (Li et al., 2011). By 24 h after exposure, neuronal 

degeneration is apparent in the amygdala, hippocampus, piriform cortex and thalamus and 

largely co-localizes with TUNEL staining, a marker of apoptotic cell death (Li et al., 

2011). Oxidative stress and neuroinflammation, known contributors to neurodegeneration 

also rise dramatically during this time. In the DFP and soman models, significant oxidative 

damage is observed in the piriform cortex and hippocampus, two particularly vulnerable 

brain regions, as early as 12 to 24 h following exposure (Klaidman et al., 2003; Liang 

et al., 2018a; Liang et al., 2018b; Pazdernik et al., 2001). Markers of neuroinflammation 

such as gliosis or increased levels of pro-inflammatory cytokines in these models typically 

dramatically increase at 24 h and can persist for weeks following exposure (Li et al., 2015; 

Li et al., 2011; Liang et al., 2018a; Liang et al., 2018b). Pro-inflammatory cytokines and 

chemokines can induce RS production and conversely, excessive RS production can induce 

inflammation. Therefore, the persistent neuroinflammation and oxidative stress seen in these 

models converge in a feed forward cycle, accumulating cellular damage leading to both 

acute and delayed neuropathology. Given that this neuropathology occurs in brain regions 

imperative to normal cognitive function, damage to these areas is likely to confer functional 

deficits in cognition and emotionality. Indeed, survivors of nerve agent exposures often have 

some degree of cognitive dysfunction such as deficits in learning and memory and are more 

likely to have psychiatric disorders (Dolgin, 2013; Miyaki et al., 2005; Proctor et al., 2006). 

Neuropathology could therefore be thought of as a surrogate to, or indicative of, functional 
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outcomes. Evidence supporting this is beginning to emerge in the literature (Flannery et al., 

2016). Medical countermeasures that attenuate or inhibit neuropathology likely confer at 

least some protection against cognitive and psychiatric impairment (Pearson et al., 2015).

4. Antioxidant strategies

Due to the accumulating evidence that oxidative stress plays an important part in mediating 

OP and nerve-agent induced toxicity, the potential to target RS pharmacologically has 

attracted growing interest (Table 1). Among many available strategies, the most common is 

to mitigate oxidative stress in these models using small molecule antioxidant compounds 

with drug-like properties (Patel, 2016). Examples of small molecule antioxidants that 

scavenge RS in a stoichiometric manner include α-tocopherol (vitamin E or its water­

soluble form, Trolox), ascorbate (vitamin C) and thiols (e.g. N-acetyl cysteine or glutathione 

esters). Catalytic mechanisms can be ascribed to non-metal (e.g. nitroxides and fullernes) 

or metal based (e.g. metalloporphyrins and salens) compounds. Vitamin E is lipid soluble 

dietary antioxidant, which can access the blood brain barrier and inhibit brain lipid 

peroxidation. In the DFP and carbofuran rat models of OP toxicity, treatment with Vitamin 

E attenuated ATP depletion, oxidative damage and neurodegeneration (Gupta et al., 2001a; 

Gupta et al., 2001b; Jaiswal et al., 2014; Zaja-Milatovic et al., 2009). Vitamin E interacts 

with lipid peroxyl radicals stochiometrically, or on a 1:1 basis, it therefore needs to 

be present in large amounts and in combination with ascorbate to successfully prevent 

membrane oxidative stress and resultant lipid damage (Matsuo et al., 1989). Additionally, in 

the above mentioned studies, Vitamin E was given as a pre-treatment which is typically not 

feasible in the case of accidental or intentional exposure of civilians to OP nerve agents or 
pesticides.

Catalytic antioxidants, on the other hand, contain redox-active metal centers that catalyze 

the dismutation reaction of RS similar to the ability of endogenous antioxidants, allowing 

for regeneration of the parent compound which increases efficacy and reduces the dosage 

required for protection (Day, 2004). These molecular mimetics of SOD and catalase 

therefore hold particular promise to prevent free-radical mediated damage. Manganese 

(III) meso-tetrakis (di-N-ethylimidazole) porphyrin or MnIIITDE-2-ImP5+ (also denoted 

in the literature as AEOL 10150) is one such metalloporphyrin antioxidant which has 

been shown to catalytically remove O2·−, H2O2, lipid peroxides and ONOO− (Day et al., 

1999; Kachadourian et al., 2004). It possesses a manganese moiety which functions in 

the dismutation reaction with O2·− by alternate reduction and oxidation in a mechanism 

similar to endogenous SODs. Its SOD activity exceeds that of CuZnSOD when compared 

on a weight basis (Kachadourian et al., 2004). In addition to the Mn center, the extensive 

conjugated ring system of MnIIITDE-2-ImP5+ allows for reversible one-electron oxidations 

and likely confers its catalase-like activity of H2O2 detoxification (Day et al., 1997). 

MnIIITDE-2-ImP5+, in conjunction with endogenous antioxidants, acts as a ONOO− 

decomposition catalyst and inhibits lipid peroxidation with potent IC50s (Day et al., 1999; 

Lee et al., 1998). Thus, MnIIITDE-2-ImP5+ combines the catalytic efficiency of endogenous 

antioxidants with the broad spectrum of reactivity against several biologically important RS. 

Together, these features make it an ideal candidate therapeutic to test the role of oxidative 

stress initiated by OP exposures. In the following section, the effects of MnIIITDE-2-ImP5+ 
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are described as an example of one redox based therapeutic to counteract the toxicity of 

surrogate nerve agents (pilocarpine or DFP) and soman.

In the soman and DFP models of cholinergic toxicity, MnIIITDE-2-ImP5+ has demonstrated 

favorable pharmacokinetics in both plasma and brain (Liang et al., 2018a; Liang et al., 

2018b). MnIIITDE-2-ImP5+ accesses the blood brain barrier at concentrations shown to 

be clinically relevant in control animals and in those exposed to soman the nerve agent 

surrogates DFP and pilocarpine (Liang et al., 2018a; Liang et al., 2018b; Pearson et al., 

2015). In the pilocarpine rat model, when injected one hour following administration of SE 

and every 4 h thereafter, MnIIITDE-2-ImP5+ significantly attenuated mortality, hippocampal 

oxidative stress, neurodegeneration, and learning and memory impairment (Pearson-Smith 

et al., 2017; Pearson et al., 2015). Importantly, an analysis of EEG power in groups treated 

with vehicle or MnIIITDE-2-ImP5+ revealed no effect of drug treatment on the intensity or 

duration of SE, thus suggesting that the beneficial effects of the compound can be directly 

attributed to its antioxidant capabilities (Pearson et al., 2015). Similarly, in the DFP model, 

treatment with MnIIITDE-2-ImP5+ did not affect brain or plasma AChE activity, suggesting 

that it does not act as a direct scavenger of DFP or otherwise alter AChE activity (Liang et 

al., 2018b). Therefore, MnIIITDE-2-ImP5+ not only has therapeutic potential in OP toxicity 

but can also serve as a tool to probe the role of oxidative stress in OP nerve agent models.

Given the pharmacokinetic profile of MnIIITDE-2-ImP5+ in surrogate and nerve agent 

models, comprehensive studies were performed to determine the optimal therapeutic 

window of the compound. In the pilocarpine model, MnIIITDE-2-ImP5+ significantly 

attenuated indices of oxidative stress in both pre-exposure (30 min before pilocarpine) 

and post-exposure (60 or 90 min after pilocarpine) treatment paradigms (Pearson-Smith 

et al., 2017; Pearson et al., 2015). Although neuropathology was not investigated in the 

pretreatment paradigm, treatment with MnIIITDE-2-ImP5+ when initiated 60 min following 

pilocarpine significantly attenuated inflammatory cytokine production, microgliosis, mTOR 

activation, neurodegeneration and cognitive dysfunction (McElroy et al., 2017; Pearson 

et al., 2015). When treatment with the compound was initiated 90 min after pilocarpine, 

microgliosis and neurodegeneration were modestly but significantly attenuated (Pearson­

Smith et al., 2017). Thus, in the pilocarpine model, the therapeutic window of MnIIITDE-2­

ImP5+ extends up to 90 min post-exposure, with optimal protection exerted when treatment 

with the compound is initiated 60 min after pilocarpine. In the DFP and soman rat models, 

treatment with MnIIITDE-2-ImP5+ significantly attenuated indices of oxidative stress in the 

hippocampus and piriform cortex when given 1, 5, or 15 min after the initiation of SE 

(Liang et al., 2018a; Liang et al., 2018b). Optimal protection against neuroinflammation 

and neurodegeneration in these models was observed when treatment with the compound 

began 5 min after SE initiation. SE typically develops within 10 min following exposure to 

DFP or soman, thus, the therapeutic window for MnIIITDE-2-ImP5+ in these models extends 

up to 25 min following exposure. It is perhaps unsurprising that the therapeutic window 

of MnIIITDE-2-ImP5+ shortens as the toxicity and perhaps intensity of SE induced by the 

toxicant increases. Of note, all rats in the above-mentioned studies received the same dose of 

toxicant, which would be virtually impossible in a real world scenario of chemical weapons 

exposure. In the case of an actual incident, people would be exposed to varying doses of 

the toxicant depending on a number of factors, including the proximity to the release of 
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the toxicant. Consequently, victims would present along a spectrum of toxicity and the 

therapeutic window of MnIIITDE-2-ImP5+ would vary by person. Victims exposed to the 

highest doses would presumably have the shortest therapeutic window while those exposed 

to lower doses would have the longest therapeutic windows.

The utility of MnIIITDE-2-ImP5+ extends beyond OP exposures with the ability to 

limit toxicity resulting from other chemical agents in post-exposure treatment paradigms. 

MnIIITDE-2-ImP5+ has been demonstrated to improve mortality and inhibit lung, skin and 

nasal damage resulting from exposure to the vesicating and alkylating agent, sulfur mustard 

and its analog, 2-chloroethyl ethyl sulfide (CEES) (McElroy et al., 2016; O’Neill et al., 

2011; O’Neill et al., 2010; Tewari-Singh et al., 2014). The compound was also found 

to protect the lung from exposure to chlorine gas (McGovern et al., 2011). Similarly, 

MnIIITDE-2-ImP5+ improved mortality and mitigated lung damage resulting from an acute 

fatal dose of radiation in non-human primates (Garofalo et al., 2014; MacVittie et al., 

2017). Sulfur mustard, chlorine and acute doses of radiation induce an acute respiratory 

distress syndrome (ARDS) that can be fatal and for which there are currently no U.S. Food 

and Drug Administration (FDA)-approved mitigating drugs. The Medical Imaging Products 

Division of the FDA has therefore granted MnIIITDE-2-ImP5+ Fast Track designation 

as a radioprotectant (IND#112,103). Thus, MnIIITDE-2-ImP5+, and perhaps antioxidant 

therapies in general, may be useful in situations where exposure to a chemical or radioactive 

weapon is suspected but the identity of the weapon is unknown or in the case of suspected 

use of more than one chemical weapon.

An unfortunate real world example of the practicality of MnIIITDE-2-ImP5+ as a treatment 

for suspected chemical weapons exposure comes from the April 2017 attack on civilians in 

Khan Shaykhun, Syria, which left several dozen dead and hundreds injured (Gulland, 2017). 

Victims presented with pinpoint pupils and muscle spasms, consistent with exposure to a 

nerve agent such as sarin. Other victims smelt of bleach, indicative of exposure to chlorine. 

Médecins Sans Frontières later determined that at least two chemical weapons were used. In 

a situation such as this, a broad spectrum countermeasure such as MnIIITDE-2-ImP5+ could 

be administered without prior knowledge regarding the nature of the toxicant. MnIIITDE-2­

ImP5+ is stable at room temperature for at least two years (stability testing is ongoing) in 

light resistant containers so storage in ambulances or a hospital setting is feasible (Zhang 

et al., 2018). It may be used at the site, ambulance or in the hospital setting as it targets 

late effects; however, earlier intervention with daily injectable dosing would be optimal. In 

animals, MnIIITDE-2-ImP5+ was effective at protecting the lung and skin when given at 

5 mg/kg up to one hour after exposure to sulfur mustard or CEES (McElroy et al., 2016; 

O’Neill et al., 2011; O’Neill et al., 2010; Tewari-Singh et al., 2014). Doses ranging from 

5 to 7 mg/kg were sufficient to protect the brain from nerve agents and their surrogates 

when given 15 min to one hour following exposure (Liang et al., 2018a; Liang et al., 2018b; 

Pearson et al., 2015). In mice, MnIIITDE-2-ImP5+ was well tolerated with a no observable 

adverse effect level (NOAEL) of 40 mg/kg/day and a maximum tolerated dose (MTD) 

of 160 mg/kg/day (McGovern et al., 2011). In human clinical studies, MnIIITDE-2-ImP5+ 

was safe and well tolerated in 9 healthy subjects receiving ascending single doses (25, 

50 and 75 mg), 12 patients with Amyotrophic Lateral Sclerosis (ALS) receiving multiple 

doses over 7 days and 28 ALS patients receiving a single dose (Zhang et al., 2018). Thus, 
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MnIIITDE-2-ImP5+ has been shown to be safe in human studies and can protect multiple 

organ systems from the toxic effects of at least two classes of chemical warfare agents. 

Based on the available data and information, further development of antioxidant compounds 

such as MnIIITDE-2-ImP5+ as medical countermeasures is warranted.

5. Limitations of antioxidant compounds in treating OP nerve agent 

toxicity

Although we provide a strong rationale for antioxidant therapies in OP nerve agent 

toxicity, several barriers to effective treatment must also be considered. First, any potential 

therapeutic compound must possess rapid entry and maintain sufficient concentrations in the 

brain to counteract the CNS effects of nerve agent exposure. While MnIIITDE-2-ImP5+ is 

able to reach the rodent brain within ~15 min (unpublished data; Patel laboratory), whether 

other antioxidant compounds can achieve sufficient concentrations in varying post-exposure 

periods must be established. One of the major limitations of natural antioxidants such as 

Vitamins E and C are their large size, which limits cell permeability. To overcome this, SOD 

mimetics such as MnIIITDE-2-ImP5+are generally of low molecular weight, allowing for 

improved access to the brain and intracellular compartments. Delivery of therapeutics past 

the blood brain barrier (BBB) is also likely aided by increased BBB permeability caused by 

seizure activity (Gupta et al., 1999;Han et al., 2017;Song et al., 2004). Additionally, a newer 

class of mitochondria-targeted antioxidants such as mitoquinone mesylate (MitoQ) and its 

analogs have been developed by covalently binding ubiquinone to a triphenylphosphonium 

(TPP+) cation (Kelso et al., 2001). This allows for the delivery of antioxidants to the 

mitochondria, the major site of RS production at concentrations far exceeding what has been 

previously possible. One caveat of these compounds is that their uptake is dependent upon 

an active mitochondrial membrane potential which may or may not be affected in nerve 

agent exposures. Whether mitochondria-targeted antioxidant therapy confers any added 

protection over SOD mimetics in nerve agent toxicity remains to be elucidated.

Another challenge to antioxidants as an add-on neuroprotective strategy for OP nerve agent 

toxicity is the time course of oxidative stress in these models. We have demonstrated that 

oxidative stress extends beyond the first 24 h following OP or nerve agent exposure (Liang 

et al., 2018a;Liang et al., 2018b). It is therefore necessary to administer antioxidant therapy 

over extended periods to mitigate oxidative damage. Indeed, one of the major limitations 

of MnIIITDE-2-ImP5+is it’s short half-life which necessitates injections every four hours. 

While repeated administration of therapeutics is feasible in a hospital setting, antioxidant 

compounds with a longer half-life necessitating fewer injections would be ideal. Finally, 

safety studies of the compound alone or in combination with other adjuvants would be 

needed to guide future development.

6. Concluding remarks

There are multiple shared mechanisms by which redox imbalance and oxidative stress 

occurs following exposure to chemical warfare agents. In models of OP toxicity, oxidative 

stress regardless of its source, can lead to secondary neuronal injury. Antioxidant treatment 
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strategies therefore, represent a novel and promising approach to target secondary neuronal 

injury and exert neuroprotection.
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Fig. 1. 
Simplified schematic of how nerve agent exposure leads to delayed injury and functional 

outcomes. Red denotes processes shown to be inhibited by antioxidant therapy.
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