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Abstract: Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pul-
monary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the
pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic
targets for cardiovascular pathophysiology has extended in many directions. However, studies
focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because
AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK
is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular
energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated
in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the
intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating
energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such
as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK ac-
tivation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways
in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH
development. This review describes the main findings related to AMPK participation in HPH and
its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the
less-studied HAPH context.

Keywords: AMPK; hypoxic pulmonary hypertension; high altitude; cardioprotection

1. Introduction

Pulmonary artery hypertension (PAH) is the diagnosis given to patients at rest pre-
senting an increased mean pulmonary arterial pressure (mPAP) due to an increase in
pulmonary vascular resistance, vasoconstriction and/or hyperproliferative remodeling
of the pulmonary artery, which lead to right ventricular hypertrophy, heart failure and
premature death [1–3]. In the 6th World Symposium on Pulmonary Hypertension in 2018,
the hemodynamic definition of PAH was changed, lowering the mPAP threshold from
≥25 mmHg to >20 mmHg [4]. However, high-altitude pulmonary hypertension (HAPH) is
still defined as PAPm ≥ 30 mmHg according to the International Experts Consensus [5].
PAH is classified into five types depending on the cause. Hypoxic pulmonary hypertension
(HPH) describes group 3, in which PAH is associated with lung disease and/or hypoxia,
chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, obstructive sleep ap-
nea (OSA) and long-term exposure to high altitude [4,6]. In the past three decades, several
studies have focused on identifying an ideal therapy for PAH [7], which has been a great
challenge, especially for the HAPH subtype, because little is known about it [2]. HAPH is
associated with long-term exposure to hypobaric hypoxia, and it is estimated that more
than 140 million people worldwide currently live, work or participate in sports at altitudes
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over 2500 m [3,8]. The general worldwide prevalence of HAPH has been estimated to be
between 10% and 15% [5], and the prevalence varies by type of high-altitude exposure.
For example, people who permanently live at high altitudes have an HAPH prevalence
of 5–18% [5,9–12], people who visit high-altitude destinations or participate in sports at
high altitude have an HAPH prevalence of 4% [13], and those who work at high altitude
have an HAPH prevalence of 9% [3]. Based on work-related HAPH observed over the
past 20 years, a new type of hypoxia exposure has been described in South America called
long-term chronic intermittent hypoxia, and this HAPH subtype has been found in in-
dividuals who commute to a work site at high altitude but live at sea level. The rate of
hiring people to work under these conditions has increased over time [14]. Therefore,
the study of cardiovascular damage due to exposure to high altitude is an important and
relevant endeavor.

AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase consisting of
catalytic subunits α and 2 and regulatory subunits β and γ, and it is expressed in various
tissues and subcellular locations [15]. AMPK is best known as a sensor of cellular energy
status and is involved in restoring energy metabolism homeostasis in cells and whole
organs, but AMPK has been implicated in changes to vascular tone and remodeling [16–19].
Therefore, most researchers have chosen AMPK as the therapeutic target to study cardiovas-
cular diseases, mainly PAH. However, whether AMPK activation mitigates or contributes to
the development of HPH continues to be debated. AMPK is activated by drugs, xenobiotics
and many physiological factors that increase ATP consumption (heat shock, contraction
of skeletal muscle, hypertrophy and cell proliferation) or that decrease ATP production
(hypoxia, ischemia and hypoglycemia). These changes lead to an increase in the intracel-
lular ADP/ATP or AMP/ATP ratio, which is detected by AMPK, which then restores the
cellular ATP level [20]. Thus, AMPK activates energy-producing catabolic pathways, such
as fatty acid and glucose oxidation pathways, and inhibits energy-consuming anabolic
pathways of cell growth that deplete energy sources and promote protein synthesis, leading
to protection of the cardiovascular system. In HPH, both an increase and decrease in AMPK
activation have been observed, and the effect of hypoxia on these changes is still unclear.
Studies on the regulation of cardiovascular AMPK activity have reported contradictory con-
clusions regarding the true effect of AMPK in hypertension; however, most of the literature
has focused on AMPK as a potent molecule that mitigates HPH. In recent years, the role
of AMPK in HAPH has rarely been studied, and a few HAPH reports have indicated that
AMPK activation protects against HAPH. In this review, we describe the main molecular
findings related to AMPK participation in HPH pathology and the potential of AMPK as a
therapeutic target, and we compare different treatments used to investigate HPH, which
has allowed us to understand HAPH despite the lack of information on the function of this
kinase in this pathology.

2. Structure and Cellular Locations of AMPK
2.1. Structure of AMPK

AMPK is a serine/threonine (Ser/Thr) protein kinase that is composed of a het-
erotrimeric complex comprising α, β and γ subunits; the α subunit has a catalytic function,
and subunits β and γ have a regulatory function. Each subunit can be produced in two or
more isoforms (α1, α2, β1, β2, γ1, γ2 and γ3), which are differentially expressed in various
tissues and at different subcellular locations. Each subunit isoform is encoded by multiple
genes and can form as many as 12 heterotrimeric AMPK combinations [21–23]. All three
subunits are required for full AMPK activity. Evidence has shown that heterotrimeric
combinations are preferentially activated and play specific roles and that AMP can be
regulated by numerous AMPK subunit combinations [21,23,24]. The α subunit contains
a canonical N-terminal Ser/Thr kinase domain (KD); an autoinhibitory domain (AID);
an adenine nucleotide sensor segment termed an α-linker; and a β subunit-interacting
C-terminal domain (α-CTD), which contains an ST loop that harbors the site proposed to be
phosphorylated by AKT (also known as protein kinase B (PKB)) [25,26], cAMP-dependent
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protein kinase (PKA) [27] or glycogen synthase kinase (GSK) [28] and includes the im-
portant regulatory threonine 172 (Thr172) residue that is phosphorylated by upstream
kinases Ca2+/Calmodulin-dependent protein kinase β (CaMKKβ) [29] or liver kinase B1
(LKB1) [30]. The β subunits are composed of a myristoylated, unstructured N-terminus;
a carbohydrate-binding module (CBM), sometimes referred to as the glycogen binding
domain (GDB); a scaffolding β C-terminal domain (β-CTD) that interacts with both the γ

subunit and the α-CTD; and an extended β-linker loop that connects the CBM with the
β-CTD. The three alternative γ subunits contain four conserved cystathionine-β-synthase
(CBS) domains, which are involved in nucleotide binding (AMP/ADP/ATP) [26,31,32].
The γ subunit of AMPK was first identified by Bateman [33], and it contains four repeats
that form two domains. Each of these domains binds one molecule of AMP or an ATP ion
in a mutually exclusive manner, consistent with findings showing that high concentrations
of ATP antagonize AMPK activation induced by AMP [34].

2.2. Localization of AMPK Isoforms in Cardiovascular Tissue

The localization and activation of AMPK follow distinct patterns. The AMPK com-
plex containing the α2 subunit is mainly located in tissues with high energy demands
(e.g., muscle, brain and liver), and the α1 subunit seems to be more widespread and
accounts for the majority of the AMPK activity in tissues such as the pancreas and in leuco-
cytes, smooth muscle cells (SMCs) and endothelial cells (ECs), particularly ECs in tissues
expressing the α2 subunit [24,35]. In the lung, both α1 and α2 are ubiquitously expressed in
pulmonary vessels [36–38]. Thus, AMPKα1 is the predominant subunit in ECs and SMCs
derived from the pulmonary microvasculature, and AMPKα2 is the predominant subunit in
conduit-pulmonary-artery-derived ECs and SMCs [39,40]. In the heart, all AMPK subunit
isoforms, except γ3, are expressed. The γ1 isoform seems to be the major regulatory subunit
in all cells; γ2 is highly expressed in the heart, and γ3 is almost exclusively expressed in
fast-twitch skeletal muscle [21,41]. Although the γ2 AMPK subunit does not exert the
most powerful regulatory effect, it is widely expressed, and the allosteric activation of
AMPK complexes containing the γ2 subunit is higher than that of those containing the γ1
subunit [34]. Mutations in the protein kinase AMP-activated noncatalytic subunit gamma 2
(PRKAG2) gene, which encodes the γ2 subunit, cause hypertrophic cardiomyopathy [42];
these mutations are exclusively found in nucleotide-binding domains, and some of the
resulting mutants are directly involved in binding nucleotides, AMP or ATP [43]. Inter-
estingly, AMPK complexes with different γ subunit isoforms (γ1, γ2 or γ3) display subtle
variations in the responses to increases in AMP and ADP, suggesting that AMPK complexes
at different locations can be tuned to respond differently to changes in adenine nucleotides,
depending on the γ subunit isoform expressed [17,18].

3. Function and Regulation of AMPK

AMPK is best known as a sensor of cellular energy status and is involved in the
regulation of cellular and whole-organ energy homeostasis [17–19,44]. It is activated by
energy stress in response to increased ATP consumption (e.g., exercise, cell proliferation
and anabolism) or decreased ATP production (e.g., hypoxia, oxidative stress and low glu-
cose levels). Therefore, when the concentration of ATP decreases in a cell, the activation
of AMPK is required for restoring ATP levels. Upon activation, AMPK phosphorylates
downstream targets to modulate the activities of rate-limiting metabolic enzymes; transcrip-
tion and translation factors, affecting proliferation and growth pathways either directly or
indirectly; and epigenetic regulators. The overall effect of AMPK activation is based on
both the cessation of ATP-consuming anabolic pathway activities, such as glucose, protein,
cholesterol, triglyceride, fatty acid and ribosomal RNA (rRNA) synthesis, and the promo-
tion of ATP-producing catabolic pathway activities, such as fatty acid and glucose uptake
and oxidation and autophagy, to decrease cell growth and proliferation rates [45–49]. The
activation of AMPK is dependent on cellular energy status and the activity of upstream
stimulatory and inhibitory signaling pathways.
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Regulation of AMPK by Hypoxia

In mammalian cells, various types of metabolic stresses, drugs and xenobiotics activate
AMPK through two main mechanisms: the classical or “canonical” activation pathway,
which was the first pathway to be described, is triggered by increases in cellular AMP, ADP
or Ca2+ to activate LKB1 and CaMKKβ, respectively, and the “noncanonical” pathway,
which was recently discovered, is triggered by reactive oxygen species (ROS), such as
hydrogen peroxide (H2O2) [50].

The main identified upstream kinases that activate AMPK are LKB1, CaMKKβ and
TGF-β-activated kinase 1 (TAK1) [51]. The canonical mechanism explains nucleotide-
dependent AMPK activation, i.e., basal AMPK activity is low in cells without stress, but the
ATP concentration is decreased under conditions of metabolic stress, and the intracellular
ADP/ATP or AMP/ATP ratio is therefore increased; moreover, AMPK has the capacity to
detect changes in ATP concentration and reestablish ATP levels [24,30,52–55]. In cells with
a low ATP level, AMPK is activated by three mechanisms:

(I) AMP or ADP binds to the CBS domains of the γ subunit, revealing the Thr172
(human α1 T174) residue in the KD domain of the catalytic α subunit, which is then
phosphorylated by LKB1 [17,18,29,56–60].

(II) AMP or ADP binding inhibits Thr172 dephosphorylation by protein phosphatases
(PPs) [17,18,30,61–63], in contrast to ATP binding, which competitively antagonizes
allosteric activation [44,64].

(III) AMP mediates allosteric regulation [17,18,30].

Notably, the degree of allosteric activation depends on the composition of the AMPK
complex and, in the case of AMP, is influenced by the concentration of ATP [17,18,59,65].

Hypoxia activates AMPK in various tissues and cell types [66,67]. Specifically, in
response to hypoxia, AMPK activity is closely coupled to the inhibition of mitochondrial
oxidative phosphorylation through the action of LKB1, the principal upstream kinase
that contributes to AMPK activation under metabolic stress conditions [22,29]. The LKB1
complex (comprising LKB1 and accessory subunits STRAD and MO25) [68] appears to be
constitutively active under normal conditions [69], and AMPK activation is modulated by
adenine nucleotide binding to AMPK [70]. Another canonical mechanism independent
of bioenergetic changes involves CaMKKβ, which activates AMPK by phosphorylating
Thr172 in the activation loop of the catalytic α-subunit in response to increased cytosolic
Ca2+ levels [71,72]. The CaMKKβ-AMPK pathway represents an alternate Ca2+-activated
pathway that induces AMPK activation mediated by hormones that release Ca2+ from
intracellular stores; these hormones include thrombin [73], ghrelin [74], vascular endothe-
lial growth factor (VEGF) [75], bradykinin [76] and estrogen [77] and are also activated
by hypoxia [66,78]. Recent reports have suggested that acute or moderate hypoxia leads
to increases in cytosolic calcium, activating AMPK via the upstream kinase CaMKKβ

in several cell lines, which operates independently of the AMP/ATP ratio by opening
calcium-release-activated calcium (CRAC) channels and inhibiting Na/K-ATPase activity
through mitochondrial ROS (mtROS) [66,78]. In addition, ROS are involved in AMPK acti-
vation via the noncanonical pathway mediated through an AMP- and LKB1-independent
mechanism [79–81], suggesting that AMPK is redox-sensitive and functions independent
of adenine nucleotides [82]. Studies have shown that mtROS generated as a result of
the interaction between nitric oxide (NO) and mitochondrial cytochrome c oxidase acti-
vate AMPKα1 in human umbilical vein endothelial cells (HUVECs) under low-oxygen
conditions (i.e., 3%) [80,83]. Additionally, H2O2 has been reported to activate AMPK via
oxidative modification of α subunit cysteines; however, the physiological relevance of
these modifications has not been fully characterized [64,84]. In addition, TAK1, another
kinase capable of direct AMPK activation [85], has been shown to phosphorylate the same
site in AMPKα as that phosphorylated by other kinases in an energy-independent man-
ner [86]. TAK1 is a Ser/Thr protein kinase in the mitogen-activated protein kinase (MAP3K)
family that plays a crucial role in regulating cell survival, differentiation, apoptosis and
inflammatory responses [87]. Both AMPK and TAK1 have been reported to be activated
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by cytokines such as interleukin-1 (IL-1), tumor necrosis factor (TNF)-α and transforming
growth factor-β (TGF-β) [88]. Thus, TAK1 is critical for AMPK phosphorylation under
specific conditions, such as inflammation [89]. Figure 1 summarizes the upstream pathways
implicated in AMPK activation under hypoxic conditions.
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4. Hypoxic Pulmonary Hypertension (HPH)

HPH is a common clinical pathophysiological process as well as an important patho-
logical contributor to the development of various heart and lung diseases, such as COPD,
chronic pulmonary heart disease and HAPH. Treating PAH is quite challenging, and treat-
ing high-altitude-related HPH is even more challenging [90]. However, the treatment
strategy for HPH is, in general, similar to that for PAH [91]. HPH is characterized by a
progressive increase in pulmonary vascular resistance, pulmonary artery vasoconstriction,
perivascular inflammation, hyperproliferative remodeling (including medial hypertrophy
with an increase in the number and size of pulmonary artery smooth muscle cells (PASMCs)
and intimal proliferation) and PASMC resistance to apoptosis, and these effects increase the
pressure of the pulmonary artery and lead to right heart failure and early death [3,92–97].
These processes are mainly caused by EC dysfunction, deregulation of the interaction
between pulmonary artery endothelial cells (PAECs) and PASMCs, activation of various
pathway kinases and ROS production under hypoxic conditions [98–101]. Hypoxia directly
stimulates the endothelium of pulmonary arteries, which results in shear stress modulated
by hemoconcentration and increased ROS levels, leading to an imbalance in the expression
and secretion of vasoactive molecules and, ultimately, in endothelium impairment and
dysfunction [102–104]. The consequences include pulmonary vasoconstriction, pulmonary
artery remodeling and PAH development [105]. Hypoxic pulmonary vasoconstriction
(HPV) is an intrinsic local and adaptive physiological response to alveolar hypoxia that
causes constriction of pulmonary arteries to optimize ventilation/perfusion matching, gas
exchange and systemic oxygen delivery, as well as to divert blood to better-oxygenated
lung segments [106–109]. The initiation phase of acute HPV is primarily driven by SMC
constriction [110]. However, this homeostatic physiological mechanism is damaged un-
der pathological conditions characterized by global and persistent hypoxia, such as lung
disease and/or hypoxemia during ascent to altitude, promoting sustained pulmonary
vasoconstriction and vascular remodeling, which can cause HPH and right heart fail-
ure [2,109,111]. Hypoxia alters the production of endothelial vasoactive mediators such
as NO and endothelin-1 (ET-1), induces oxidative stress and decreases EC viability. These
changes result in vascular inflammation and damage [112]. Hypoxia-induced vasocon-
striction is believed to be a result of released EC-derived contraction factors. The factors
identified to date include ROS such as superoxide anions (O2

−), which act by scaveng-
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ing NO, H2O2 and endoperoxide; thromboxane A2 (TXA2); and endothelins [113,114].
The scientific consensus indicates that the main factors involved in HPH progression are
increased ROS levels, hypoxia-inducible factor (HIF) stabilization and voltage-gated potas-
sium channel Kv1.5 suppression, calcium channel opening and increased intracellular
calcium concentration in PASMCs under hypoxia, leading to HPV [115–119]. Previous
studies have described the “ROS hypothesis”, suggesting that hypoxia increases mito-
chondrial ROS generation and elevates the intracellular calcium concentration [120] by
inhibiting the activity of Kv channels located in pulmonary arterioles while stabilizing
HIF activity. Decreased Kv activity may explain the early pulmonary vascular constriction
reaction under hypoxia, and the stabilized HIF axis may activate downstream genes to
promote the expression of various hypoxia-related proteins that participate in pulmonary
vascular remodeling during HPH through an “ROS/Kv/HIF axis” [119]. ROS affect cell
sensitivity to oxidative stress, cell migration, proliferation, apoptosis and matrix protein
deposition, all of which are related to vasoconstriction and vascular remodeling [121–123].
Thus, HIF-1 contributes to ET-1 expression activation in ECs [124]. In animal models,
acute and mild degrees of hypoxia have been shown to cause the rapid expression (within
hours) of predominantly vasoconstricting agents such as ET-1, whereas chronic and se-
vere oxygen deprivation stimulates the generation of mitogens such as platelet-derived
growth factor-B (PDGF-BB), leading to SMC proliferation and remodeling of the vessel
wall. Given that ET-1 is a potent vasoconstrictor that may reduce blood supply to tissue, its
increased excretion by ECs into the hypoxic or ischemic environment may be considered
representative of EC dysfunction [125]. EC dysfunction deregulates the interaction between
PAECs, and PASMCs play crucial roles in the development of PAH [98,99]. Additionally,
cytokines/chemokines and growth factors regulate pulmonary endothelial function and
influence the development of PAH [126]. Endothelial dysfunction is considered a key
underlying feature in most forms of clinical and experimental PAH and is enhanced by
inflammatory cytokines/chemokines and growth factors [126,127]. Pulmonary EC dys-
function in PAH patients enhances pulmonary vascular remodeling through an impaired
release of vasodilators, such as NO and prostacyclin [128–130].

4.1. AMPK in HPH

The AMPK molecular pathway involved in HAPH has rarely been studied, and further
investigation is needed. Therefore, this section focuses on different AMPK pathways in
HPH, comparisons between different hypoxia experiments that induce HPH and the
contradictory roles played by AMPK.

AMPK is involved in the response to hypoxia in organ-specific cells such as carotid
body type I cells [131], pulmonary arterial SMCs [110] and ECs [132], which monitor O2
supply and modulate cardiorespiratory function to maintain arterial partial pressure of
oxygen (PaO2) within physiological limits [133].

In recent years, studies have determined the key role played by AMPK in HPH
and have proposed it to be a therapeutic target in this pathology. Most of the literature
indicates that AMPK plays a vital role in vascular homeostasis, especially under hypoxia,
protects against the progression of HPH by activating different signaling pathways and
profoundly contributes to cardiovascular protection [15,134–136]. However, other authors
have indicated that AMPK activation can promote HPH development [51]. In addition,
although hypoxia has been shown to activate AMPK in several tissues, at the cardiovascular
level in HPH, AMPK activity can be both instigated and inhibited.

4.1.1. AMPK and Pulmonary Artery Vasoconstriction

AMPK plays an important role in HPV due to its high sensitivity to metabolic and
oxidative stress under hypoxic conditions [137]. Contradictory mechanisms involve
AMPK in HPV, as described by various authors, to promote vasoconstriction or activate
vasodilation pathways.
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AMPK activation in ECs responds to physiological stimuli, including hypoxia and ox-
idative stress [138], as well as shear stress [139]. Here, we discuss how AMPK promotes HPH.

With respect to vasodilatation, the main pathway by which AMPK confers protection is
related to its antiapoptotic effect on ECs [140] and the activation of endothelial NO synthase
(eNOS) upon AMPK phosphorylation at serine 1177, leading to the formation of NO, which
is the main vasodilator molecule in the vasculature [141–144]. At the vascular level, both
EC NO production and NO-mediated signaling in SMCs are targets and effectors of the
AMPK signaling pathway [142]. Additionally, AMPK exerts a redox-regulatory function
by inhibiting the formation of ROS, such as O2

−, through inhibition of the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex [145] and an increase in the
expression of antioxidant and anti-inflammatory enzymes, such as superoxide dismutase
2 (SOD2), in ECs [146,147]. Nevertheless, many authors have reported a decrease in EC
AMPK activation in the pulmonary artery in PAH. Omura et al. [144] found that EC AMPK
activity is reduced in distal pulmonary arteries of PAH patients and an experimental mouse
model with chronic normobaric hypoxia (10% O2)-induced PAH at 4 weeks; specifically,
PDGF-BB and fibroblast growth factor-2 (FGF-2) expression in PASMCs was increased,
promoting HPH development. This decrease in AMPK activity has been attributed to
increased serum levels of inflammatory cytokines, including interferon-γ (IFN-γ) and
TNF-α, in PAH patients, demonstrating that inflammatory cytokines impair EC function
and phenotype in PAH; however, AMPK activation has been shown to mitigate HPH [144].
Similarly, another study showed that both the activity and expression levels of AMPK
were decreased in PAECs in mice with pulmonary hypertension induced by fetal ductus
arteriosus constriction; in this case, the decrease in AMPK was attributed to increased ex-
pression of protein phosphatase 2A (PP2A) and protein phosphatase 2C (PP2C), and AMPK
activation ameliorated PAH [148]. Notably, excessive PP2A activation under pathological
conditions results in EC damage or dysfunction by inhibiting AMPK activity [149]. PPs
are members of the Ser/Thr protein kinase family and are involved in major intermediary
metabolic pathways [150]. At the cardiovascular level, PP2A and PP2C dephosphorylate
the Thr172 residue to inhibit AMPK activity [151].

In contrast, some studies have demonstrated that AMPK activation induces vasocon-
striction and promotes HPH development [152]. Previous studies have established that
hypoxia promotes Ca2+-dependent pulmonary artery constriction [115–119]. Notably, both
AMPKα1 and AMPKα2 have been described as activated to various degrees depending on
the hypoxia level. For example, under mild and severe hypoxia, expression of the AMPKα1
subunit is required to promote HPV, but AMPKα2 subunit expression is only required
during severe hypoxia to promote HPV. Thus, it has been shown that AMPKα1 activation
induced by LKB1 inhibits Kv1.5 channel currents in PASMCs and leads to pulmonary vaso-
constriction in response to moderate and severe hypoxia [117,153]. Evans et al. [39] also
postulated that AMPK activation in hypoxia leads to the initiation of Ca2+ signaling mecha-
nisms to promote HPV; they proposed that AMPK activation initiates cADPR-dependent
Ca2+ release from ryanodine-sensitive sarcoplasmic reticulum (SR) stores in PASMCs [39].
Interestingly, Robertson et al. [154] determined that the activation of AMPK is a key event
in the initiation of the pulmonary contractile response to acute hypoxia. These findings are
supported by some studies that indicate that AMPK is activated in acute hypoxia in the
heart and pulmonary artery but not in chronic hypoxia [155–157]. These findings indicate
that AMPK is essential for the initiation of adaptation to hypoxia at the pulmonary level.
The determination of the time of activation of AMPK in acute to chronic hypoxia is still
unclear and differs from the methodology used. For example, Viganò et al. [155] observed
that acute normobaric hypoxia lasting 48 h at 8% O2 in mice causes an increase in AMPK
activation, but chronic continuous hypoxia for 10 days at 8% O2 does not cause such signif-
icant changes. In addition, Kolar et al. [157] showed a decrease in AMPK activation after
21 days of chronic hypoxia. Nevertheless, considering the findings in the literature, the
degree and type of hypoxic stress that an individual experiences may also differ, and these
differences need to be considered [152]. The finding that AMPKα1 is critical to both Kv1.5
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inhibition and HPV is very intriguing. The discovery of single nucleotide polymorphisms
(SNPs) in the PRKAA1 gene (encoding AMPKα1) in native Andean populations that live at
and are adapted to high altitude is also interesting [158]. These studies reflect the true roles
played by AMPK. Other researchers have shown that the progression from acute to chronic
HPH results from excessive repression of AMPK expression in the pulmonary vasculature
during sustained chronic hypoxia. Hence, it seems plausible that cardiorespiratory adapta-
tion to hypoxia at altitude and HPH induced by other factors may be driven by cell-specific
changes in AMPK subunit expression and/or AMPK activity [159]. Figure 2 depicts the
mechanisms implicated in the vasodilatory actions of AMPK.
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4.1.2. AMPK and Pulmonary Artery Remodeling

The proliferation and migration of PASMCs are critical processes underlying pul-
monary vascular remodeling in HPH [160–162]. Therefore, attenuation of PASMC prolifer-
ation and pathogenic vascular remodeling is critical for both the prevention and treatment
of HPH [163]. PASMCs express both the AMPKα1 and α2 isoforms [164], and various
mechanisms are involved in AMPK antiproliferative effects, as confirmed by the activa-
tion of AMPK with pharmacological agents. Notably, AMPKα1 has been reported to
be involved in decreasing pulmonary artery remodeling by exerting an antiproliferative
effect [165,166]. Additionally, Wang et al. [136] showed that knocking out AMPKα2 expres-
sion in mice (AMPKα2−/−) exacerbated HPH development. After 4 weeks of exposure
to normobaric hypoxia, AMPKα2−/− mice exhibited more severe pulmonary vascular
remodeling and PASMC proliferation than did wild-type (WT) mice. In this case, the
mTOR/Skp2/p27kip1 signaling axis played a fundamental role. Interestingly, loss of
AMPKα2 has been associated with increased phosphorylation of the mammalian target
of rapamycin (mTOR), which upregulated S-phase kinase-associated protein 2 (Skp2) and
downregulated cyclin-dependent kinase inhibitory protein (p27kip1) expression in PASMCs
under hypoxia [136], consistent with previous observations of PASMCs in culture [167].
The mTOR pathway is a major growth-regulating pathway controlled by AMPK. mTOR
has been described as a central regulator of protein synthesis; cell growth, proliferation
and survival; and autophagy [168]. p27kip1, a cyclin-dependent kinase (CDK) inhibitor,
is a critical regulatory protein that exerts an inhibitory effect on mammalian cell prolif-
eration [169], and Skp2 regulates p27kip1 degradation [170]. The inhibitory action of
AMPK on the mTOR/Skp2/p27kip1 pathway has been observed with the activation of
AMPKα2, which inhibited mTOR activity and downregulated Skp2 expression, preventing
p27kip1 degradation and cell proliferation [171]. AMPK can inhibit mTOR activity through
phosphorylation and activate tuberous sclerosis complex 2 (TSC2), which together with
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TSC1 can suppress mTOR activation [172]. Similarly, another study showed that activation
of AMPKα2 blocked mTOR phosphorylation in response to PDGF. PDGF activates the
PI3K/Akt/mTOR signaling pathway, which in turn upregulates Skp2 and subsequently
reduces p27kip1 expression, leading to PASMC proliferation [173,174]. In addition, the
PI3K/AKT/mTOR pathway in PASMCs has been shown to be activated through various
stimuli, such as ET-1 [175,176], stress and hypoxia [173,177,178]. Additionally, in PAH
patients, the mTOR pathway promoted the activation of growth factors such as PDGF,
epidermal growth factor (EGF) and FGF, leading to PASMC proliferation [179]. Another
interesting molecular pathway in model rats exposed to chronic normobaric hypoxia in-
volved κ-opioid receptor stimulation with U50,488H, a specific κ-opioid receptor agonist,
which protected the rats against HPH via AMPK/mTOR pathway activation, inhibiting
pulmonary artery remodeling, suppressing PASMC proliferation and inducing PASMC
apoptosis [180]. However, in cell culture experiments, both PASMCs and PAECs responded
to chronic hypoxia through Akt and mTORC1 activation, which was required for increased
proliferation and vascular remodeling [177,181,182]. These results demonstrate the impor-
tance of increased AMPKα1/α2 activity, which may indicate a novel therapeutic strategy
for the management of HPH.

Another recently proposed AKPK mechanism that may also be a novel therapeutic
target in HPH involves the inhibition of ADAM metallopeptidase through thrombospondin
type 1 motif 8 (ADAMTS8), a secreted disintegrin that is specifically expressed in the
lung and heart. ADAMTS8 expression has been shown to be increased under hypoxia,
promoting the proliferation of PASMCs, extracellular matrix (ECM) remodeling and EC
dysfunction through autocrine/paracrine signaling. The upregulation of ADAMTS8 ex-
pression in PASMCs downregulated AMPK, reduced the apoptosis rate (determined by an
increase in the (B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax)) ratio) and en-
hanced NOX4-mediated ROS production and PASMC proliferation in patients and animal
models within 4 weeks of chronic-hypoxia-induced PAH [183]. Bax promotes cell death,
while Bcl-2 prevents apoptosis by inhibiting the activity of Bax [184]. Additionally, NOX4
was upregulated in the PASMCs of mice exposed to chronic normobaric hypoxia, as well as
in the lungs of PAH patients [185]. Interestingly, NOX4 has been described as an activator
of the mammalian target of rapamycin complex 2 (mTORC2), promoting proliferation
and apoptosis-resistant phenotype acquisition by PAH-PASMCs via downregulation of
AMPK signaling; in this case, mTORC2 acted as an upstream negative regulator of AMPK
signaling, resulting in the activation of mTOR complex 1 (mTORC1) and elevated cell pro-
liferation [186]. Additionally, mTORC1 has been recently described to be a direct inhibitor
of AMPK by phosphorylating the α1Ser347/α2Ser345 residues, which is associated with
reduced phosphorylation of the Thr172 activation loop. Thus, AMPK and mTOR showed
inverse regulatory effects [187]. mTOR is a direct sensor of cellular ATP [188], whereas
AMPK is a direct sensor of cellular AMP [57]. Additionally, it has also been described that
under severe hypoxia, there is a decrease in cellular ATP, an increase in AMPK activity and
inhibition of mTOR activity [189,190]. However, Arsham et al. [191] demonstrated that the
hypoxic regulation of the mTOR pathway may be dependent on O2 levels and independent
of ATP levels, since they observed that mTOR was activated only at low levels of hypoxia,
which may subsequently inhibit AMPK activity.

Moreover, AMPK activation or inhibition under hypoxic conditions depends not
only on the O2 level but also on other factors, such as the redox state of the cell. For
example, Awad et al. [192] showed that in a PASMC culture under hypoxia (10% O2) for
72 h, increased ROS levels triggered AMPK activation to protect against oxidative stress,
which in turn triggered the expression of the transcription factor forkhead box protein O1
(FoxO1) to upregulate catalase (CAT) expression, the major endogenous enzyme scavenger
of ROS, including H2O2. Although this homeostatic mechanism was insufficient to pro-
tect PASMCs from hypoxia-induced oxidative stress, the addition of an AMPK activator
increased FoxO1/CAT pathway activity, enhancing antioxidant defense. Interestingly,
H2O2 treatment significantly decreased the activation of the AMPK/FoxO1/CAT pathway.
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Considering these findings, it is clear that ROS production is mediated by hypoxia and that
ROS are important in the regulation of survival- and growth-related signaling in SMCs;
however, when their production exceeds cellular antioxidant defenses, ROS cause severe
damage [193,194] by promoting the progression of pulmonary vascular remodeling in
persistent pulmonary hypertension. These data suggested that hypoxic conditions generate
an unfavorable cellular environment that leads to excessive ROS production, affecting
AMPK activation and reducing its protective effect. In this context, efficient activation of
AMPK may trigger a required compensatory mechanism that reestablishes ROS homeosta-
sis and, thus, counteracts HPH progression [192]. Figure 3 depicts the molecular pathways
implicated in the inhibitory effect of AMPK on SMC remodeling under hypoxia.
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In contrast to other findings regarding the protective effect of AMPK, some researchers
postulate that AMPK plays a key role in PAH development by promoting the survival
of PASMCs under hypoxic conditions. For example, Ibe et al. [164] demonstrated that
mice with chronic-normobaric-hypoxia-induced PAH exhibited increased activation of
AMPKα1/α2 in PASMCs and that the addition of the AMPK inhibitor compound C inhib-
ited the activity of both of these isoforms and partially reversed HPH. They observed that
the AMPKα1 and AMPKα2 isoforms played differential roles in the survival of PASMCs
in HPH. Specifically, activation of AMPKα2 prevented apoptosis, whereas activation
of AMPKα1 promoted PASMC survival [164]. In another study, the α-enolase (ENO1)
pathway was found to be involved in an AMPK-related mechanism that supports HPH
progression; Dai et al. [195] showed that ENO1 levels were elevated in patients with id-
iopathic PAH (IPAH) and in model mice with normobaric-hypoxia-induced PAH. The
overexpression of ENO1 promoted the acquisition of either a proliferative or apoptotic-
resistant phenotype in PASMCs via the AMPK-Akt pathway. Because PAH PASMCs exhibit
constitutively high AMPK phosphorylation, ENO1 may be critical for maintaining the
activation of the AMPK-Akt-GSK3β axis during PAH [195].

5. Potential Candidates for HPH Treatment: AMPK as a Therapeutic Target

Over the past 25 years, a large number of investigations into PAH pathology have led
to the identification of several effective therapeutic targets, which are mainly found in the
endothelin, prostacyclin or NO pathways, and these studies have led to great progress in
conventional therapy application and new targeted therapy development. Many of these
therapies are based on attenuating the imbalance in the vasoactive mediators that play
primary roles in the development and progression of a series of pathological changes in
PAH [196–199]. In this context, AMPK activation has been proposed to be a possible target
molecule to reduce pulmonary artery vasoconstriction and vascular remodeling. The true
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role played by AMPK is still under scrutiny by many researchers trying to develop an
effective treatment for HPH; the main findings are described in the following section.

5.1. Pharmacological Treatment

Many therapeutic agents used in the treatment of diabetes and atherosclerosis, such as
metformin (MET), 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), thiazolidine-
diones and statins, have been studied in the PAH context because they exert their vasculo-
protective effects through activation of AMPK, potentially conferring protection against
PAH [149,200,201]. MET has been assessed and widely used, mostly as a type 2 diabetes
drug, for more than 30 years, and AMPK is the central target molecule of MET. The
MET mechanism of action involves inhibiting mitochondrial ATP synthesis by inhibit-
ing the activity of complex I in the respiratory chain, thus reducing cellular energy and
activating AMPK [202,203]. MET has been demonstrated to activate AMPK in many tis-
sues [204–206]. Furthermore, many researchers have shown evidence supporting MET
protection against PAH through AMPK activation via different pathways to exert vasodila-
tory and anti-proliferative effects [174,207–209]. The upregulation of AMPK activity in
PASMCs induced by MET contributed to decreasing pulmonary vessel remodeling and
HPH in rats. Liu et al. [210] presented support for the hypothesis suggesting that MET
inhibits HPH in rat models exposed to chronic normobaric hypoxia by inhibiting collagen
deposition and proliferation of PASMCs. Another pathway in a nonhypoxic model was
found to induce monocrotaline-induced PAH, and AMPK activation induced by MET
inhibited pulmonary artery remodeling, leading to a decrease in matrix metalloproteinase-2
(MMP-2) and MMP-9 activity and the expression of tissue inhibitor of metalloproteinase-
1 (TIMP-1) [208]. The expression of TIMP-1 in the lungs has been shown to modulate
MMP function, which can directly and indirectly regulate the proliferation, migration and
apoptosis of ECs and SMCs; hence, MMPs play an important role in the development of
PAH [211,212]. The effect of MET via AMPK induction restored angiogenesis and increased
the bioavailability of NO, increasing the activity and expression of both eNOS and SOD2
and disrupting the eNOS-caveolin-1 association in ECs [148]. These results indicate that
EC AMPK plays protective roles against hypoxia-induced PAH and would be a novel
therapeutic target for the treatment of HPH [144].

Another pharmacological agent, AICAR, is an AMP analog and is widely used to
activate AMPK in experiments. Studies have indicated that AMPK activation by AICAR
significantly attenuates HPH in mice. AICAR has been observed to reduce mPAP, PASMC
proliferation and the degree of vascular remodeling in lungs via increased protein ex-
pression and phosphorylation of AMPKα1 in rats exposed to 8 hr of chronic intermittent
normobaric hypoxia per day for 4 weeks. In this case, although hypoxia increased the
activation of AMPK, AICAR was required to sufficiently enhance its activation to reduce
vascular remodeling [165]. In a similar experiment, rats with PAH exposed to 8 hr of chronic
intermittent normobaric hypoxia per day were treated with the pharmacological agents
salidroside and AICAR, which confers protection against HPH by inducing AMPKα1
activation in PASMCs; in summary, these agents may have reduced cell proliferation by
affecting the P53-P21/P27-PCNA pathway and may have enhanced cell apoptosis by af-
fecting the P53-Bax/Bcl-2-caspase 9-caspase 3 pathway [166]. AMPK plays an important
role in the regulation of p53 and p21, as observed by Zhuang et al. [213], who also found
that AMPK-p53-p21 pathway activation was downregulated in the lungs and pulmonary
arteries of rats with monocrotaline-induced PAH. Specifically, this group showed that
the activation of AMPK increased the expression of p53 and p21 and inhibited PASMC
proliferation that had been induced by PDGF-BB [213]. Another mechanism mediating
the beneficial effects of AMPK on HPH involves AMPK-ACE2 axis activation. Specifically,
AMPK activated by AICAR phosphorylates angiotensin-converting enzyme 2 (ACE2) at
Ser680 in ECs and inhibits the murine double minute 2 (MDM2)-mediated ubiquitination
of ACE2, thereby mitigating pulmonary hypertension in patients with idiopathic PAH and
mice with HPH by increasing vasodilation [214–216]. Additionally, ACE2 stability was
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increased under conditions in which AMPK was activated by MET treatment [202,217].
MDM2 is an E3 ubiquitin ligase with increased expression in patients and animal models of
PAH, and it ubiquitinates ACE2, contributing to PAH development [215]. Statins may also
be a promising therapeutic treatment for HPH related to their anti-inflammatory action and
metabolic regulatory effects mediated via AMPK [218]. In addition, several small molecules
that directly activate AMPK have been identified, such as A769662, 991 and MT 63-78, and
have been shown to ameliorate HPH [59,219,220].

5.2. Phytochemical Treatment

Some phytochemicals are candidates for possible PAH prevention. For example, resver-
atrol (RSV), a polyphenolic compound found at high concentrations in grapes and red wine,
has antihypertensive, antioxidant and anti-inflammatory properties and can upregulate
eNOS expression and scavenge OH/O2

− and peroxyl radicals, which can inhibit lipid
peroxidation [221,222]. Thus, RSV may reverse pulmonary vasculature remodeling and
alleviate the HPH severity induced by chronic hypobaric and normobaric hypoxia [162,223].
Interestingly, the activation of AMPK by RSV inhibited SMC contractility by inhibiting
Ang-II-induced phosphorylation of myosin phosphatase-targeting subunit 1 (MYPT1) and
myosin light chain [224]. At the endothelial level, RSV has been shown to increase NO pro-
duction and promote vasodilation through activation of the LKB1/AMPK/eNOS signaling
axis [221,225–227]. Berberine is another phytocomposite found in plants from the family
Berberis with anti-inflammatory and antioxidant activities, including beneficial vascular
effects in hypertension. For example, berberine reduced endothelium-dependent contrac-
tions, probably by activating AMPK, thus inhibiting endoplasmic reticulum stress and
subsequently promoting ROS scavenging and leading to downregulated cyclooxygenase-2
(COX-2) expression [228].

5.3. Adipokine Treatment

Adipokines are derived from adipose tissue [229,230]. The effects of certain adipokines
on the activation of AMPK in the vascular system and PAH mitigation have been studied.
For example, apelin was found to be a potent regulator of vascular function. Notably,
exogenous apelin administration exerted a vasodilatory effect via eNOS pathway activa-
tion [231–234]. Apelin has been recently described as a ligand for the G-protein–coupled
receptor APJ (APLNR) [235], and both apelin and APLNR are highly expressed in the lungs,
especially in the endothelium of the pulmonary vasculature [236]. Chandra et al. [237]
demonstrated that mice lacking the Apelin gene developed worsened PAH in response
to hypoxia and that this outcome was mediated by downregulation of eNOS expression.
Previous studies presented in this review indicated that this effect was caused by decreased
AMPK activation, which may have led to both decreased expression of KLF2 and reduced
eNOS phosphorylation, suggesting that AMPK is a critical intermediary mediator of Apelin-
APJ signaling in PAECs. In addition, patients with PH were found to have significantly
reduced levels of serum apelin, suggesting that disruption of apelin signaling contributes
to the pathogenesis of the clinical disease [237]. Adiponectin, another adipokine thought
to prevent PAH through AMPK activation, is secreted in large quantities from adipose
tissue. Upon binding to its receptors AdipoR1 and R2, adiponectin initiates a series of
tissue-dependent signal-transduction-triggered processes, including AMPK phosphoryla-
tion [238]. Adiponectin has been considered a potent biomarker of PAH [239]. Adiponectin
exerts pleiotropic effects on inflammation and cell proliferation and, thus, plays a potential
role in maintaining pulmonary vasculature integrity [179]. Nakagawa et al. [240] reported
that the intravenous administration of adenovirus harboring full-length mouse adiponectin
in mice exposed to chronic normobaric hypoxia (10%) led to ectopic adiponectin expression,
which significantly suppressed pulmonary arterial wall thickening and right ventricular
hypertrophy (RVH). The adiponectin/AMPK activation pathway would be a potential ther-
apeutic target in PAH. Lou et al. [241] developed a treatment that involved a combination
of adipose-derived stem cells (ADSCs) with adiponectin. Specifically, the transplantation of
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ADSCs containing adiponectin suppressed PASMC proliferation in PAH rats by activating
the AMPK/BMP/Smad pathway. The BMP/Smad signaling pathway is downstream of
AMPK signaling in the adiponectin regulatory pathway, which plays a crucial role in the
antiproliferation of PASMCs [241]. Another adipokine with vasculoprotective effects is
C1q/TNF-related protein-9 (CTRP9). CTRP9 is a member of the adipokine family and has
been identified as an adiponectin paralog [242,243] involved in lipid metabolism [244] and
cardiovascular protection [245,246]. The vasorelaxative adipocytokine CTRP9 promoted
endothelium vasorelaxation mediated via the AdipoR1/AMPK/eNOS/NO signaling path-
way [243] to protect against endothelial impairment and vascular remodeling [247]. Inter-
estingly, in a rat model of HPH induced by exposure to chronic intermittent hypobaric
hypoxia (8 h/day), a dose-dependent decrease in the serum concentration of CTRP9 was
observed, and the overexpression of CTRP9 in lung tissues was induced by an adeno-
associated virus (AAV-CTRP9) vector that mitigated HPH by reducing ET-1 production
and inactivating ERK1/2 in pulmonary ECs [91]. Another adipokine, omentin, has been
observed to exert an anti-inflammatory effect on vascular ECs to prevent TNF-α-induced
COX-2 expression by inhibiting JNK activation, presumably through the activation of
the AMPK/eNOS/NO pathway [248]. It was recently observed that omentin may confer
protection against hypertension development by inhibiting vascular structural remodeling
and inhibiting PDGF-BB-induced vascular SMC migration by mediating an antioxidative
mechanism [249]. Another factor that exerts protective effects in HPH is fibroblast growth
factor 21 (FGF21), which has the beneficial effect of protecting blood vessels. FGF21 is a
member of the fibroblast growth factor family and is an endocrine factor secreted primarily
by the liver. FGF21 is expressed in the AMPK/PGC-1α pathway and promotes peroxisome
proliferator-activated receptor γ (PPARγ) expression, a ligand-activated nuclear transcrip-
tion factor, and in HPH model mice exposed to chronic intermittent normobaric hypoxia
(10%) for 8 h/day, FGF21 effectively inhibited PH [250]. Figure 4 summarizes the main
candidates for HPH treatment through AMPK activation.
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6. Conclusions

This review aimed to provide a better understanding of the role of AMPK functions
in HPH. Despite some controversial findings, the majority of available data indicate that
AMPK plays a key role in antiproliferative, antihypertrophic and antioxidant pathways in
the pulmonary vasculature and support the notion that its activation may be a potential
therapeutic target in the treatment of HPH. The review also provides information that may
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be useful to explain the role of AMPK in the HAPH context, which has been insufficiently
studied to date.

Limitation

Little information is available to explain the role of AMPK in HAPH.
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Abbreviations

ACE2 angiotensin-converting enzyme 2
ADAMTS8 ADAM metallopeptidase with thrombospondin type 1 motif 8
ADSC adipose-derived stem cells
AICAR 5-aminoimidazole-4-carboxamide ribonucleotide
AID autoinhibitory domain
AKT protein kinase B
AMPK AMP-activated protein kinase
Ang II angiotensin II
Angiotensin (1-7) Ang (1-7)
APLNR G-protein–coupled receptor APJ
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
CBM carbohydrate-binding module
CBS cystathionine-β-synthase
CaMKKβ Ca2+/Calmodulin-dependent protein kinase β

CAT catalase
COPD chronic obstructive pulmonary disease
COX-2 cyclooxygenase-2
CRAC calcium-release-activated calcium channel
α-CTD α C-terminal domain
CTRP9 C1q/TNF-related protein 9
ECs endothelial cells
ECM extracellular matrix
EGF epidermal growth factor
ENO1 α-enolase
eNOS endothelial NO synthase
ET-1 endothelin-1
FGF-2 fibroblast growth factor-2
FoxO1 forkhead box protein O1
GDB glycogen-binding domain
GSK glycogen synthase kinase
HAPH high-altitude pulmonary hypertension
HIF Hypoxia-inducible factors
HPH hypoxic pulmonary hypertension
HPV hypoxic pulmonary vasoconstriction
HUVECs human umbilical vein endothelial cells
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H2O2 hydrogen peroxide
IFN-γ interferon-γ
IL-1 interleukin-1
KD kinase domain
LKB1 liver kinase B1
MAP3K mitogen-activated protein kinase kinase kinase
MDM2 murine double minute 2
MET metformin
MMP-2/9 matrix metalloproteinase-2/9
MYPT1 myosin phosphatase-targeting subunit 1
mtROS mitochondrial ROS
mTOR mammalian target of rapamycin
mTORC2 mammalian target of rapamycin complex 2
mTORC1 mammalian target of rapamycin complex 1
NADPH oxidase nicotinamide adenine dinucleotide phosphate oxidase
NO nitric oxide
OSA obstructive sleep apnea
O2 oxygen
O2
− superoxide anions

PAPm mean pulmonary arterial pressure
PAECs pulmonary artery endothelial cells
PAH pulmonary artery hypertension
PASMCs pulmonary artery smooth muscle cells
PaO2 arterial partial pressure of oxygen
PDGF-BB platelet-derived growth factor-BB
PKA cAMP-dependent protein kinase
PPs protein phosphatases
PP2A protein phosphatase 2A
PP2C protein phosphatase 2C
PRKAG2 protein kinase AMP-activated noncatalytic subunit gamma 2
p27kip1 cyclin-dependent kinase inhibitory protein
rRNAs ribosomal RNAs
ROS reactive oxygen species
RSV resveratrol
RVH right ventricular hypertrophy
Skp2 S-phase kinase-associated protein 2
SMCs smooth muscle cells
SNPs single nucleotide polymorphisms
SOD2 superoxide dismutase 2
SR sarcoplasmic reticulum
TAK1 TGF-β-activated kinase 1
TGF-β transforming growth factor-β
TIMP-1 tissue inhibitor of metalloproteinase-1
TNF-α tumor necrosis factor-α
TSC1 tuberous sclerosis complex 1
TXA2 thromboxane A2
TSC2 tuberous sclerosis complex 2
VEGF vascular endothelial growth factor
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