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Abstract: Pancreatic adenocarcinoma carries a devastating prognosis. For locally advanced and
metastatic disease, several chemotherapeutic regimens are currently being used. Over the past years,
novel approaches have included targeting EGFR, NTRK, PARP, K-Ras as well as stroma and fibrosis,
leading to approval of NTRK and PARP inhibitors. Moreover, immune check point inhibitors and
different combinational approaches involving immunotherapeutic agents are being investigated in
many clinical trials. MiRNAs represent a novel tool and are thought to greatly improve management
by allowing for earlier diagnosis and for more precise guidance of treatment.

Keywords: pancreatic cancer; miRNAs; chemoresistance; targeted therapy; immunotherapy

1. Introduction

For many years, chemotherapeutic regimens have been the cornerstone of therapy
for inoperable pancreatic adenocarcinoma (PC) (i.e., locally advanced or metastatic) and
evolved as adjuvant or neoadjuvant treatment for resectable pancreatic carcinoma [1,2].
Overall, however, pancreatic carcinoma shows only moderate sensitivity to chemother-
apy [3]. This is reflected by the overall dismal prognosis, that has not improved over the
last years [4]. In the following review of the available literature, we would like to provide a
summary of novel approaches that specifically aim at targeting the malignant cells and their
surroundings, i.e., the microenvironment and the stroma. We will discuss some approaches
over the last years that failed and how the positive results for the PARP inhibitor olaparib
in the POLO trial finally allow for targeted therapy to become clinically useful in PC [5,6].
Other well-investigated targets are EGFR, K-RAS, and more recently, NTRK 8 [2,7,8]. As
extensive fibrosis is a prominent feature of PC, some of the most interesting approaches at
targeting it are included in this review. Immunotherapy has revolutionized the treatment
of many solid tumor entities, starting with melanoma, and expanding further since then.
PC, however, is amongst the less responsive entities and so far, immunotherapy has not
been successful. We summarize novel immunotherapeutic approaches with a focus on
combinations of several agents.

In the 2nd part of our review we are going to discuss micro-RNAs as possible novel
biomarkers and their prognostic and predictive roles in pancreatic cancer. MicroRNAs are
small, approximately 22 nucleotides long non-coding single-stranded RNAs, regulating
gene expression at a posttranscriptional level. MicroRNAs act as tumor suppressors by
negatively regulating oncogenes, i.e., genes that promote aberrant cell proliferation, and
thereby inhibit cell division [9]. Currently, microRNAs are of interest in various cancer
entities for their diagnostic, prognostic and predictive roles as biomarkers.

In PC, a distinct microRNA expression profile compared to benign lesions has been
observed [10]. By using microRNA expression signatures, a clear discrimination between
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healthy, inflamed and cancerous pancreatic tissue can be made [10–12]. These findings are of
clinical relevance, because histological clarification of pancreatic lesions is often challenging,
particularly in tissues obtained by endoscopic ultrasound-assisted fine-needle biopsies. Fur-
thermore, an increasing number of publications in recent years correlate miRNA expression
in PC with resistance or sensitivity towards various chemotherapeutic agents.

2. Targeted Therapy

The following section will describe targeted therapy in depth. A summary of all the
clinical trials discusses in Sections 2 and 3 is provided in Table S1 in the Supplementary
Materials. Figure 1 shows important (immuno-)therapeutic targets in PC.
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2.1. Targeting EGFR

Discussion should start with the first approved targeted therapy for PC, the epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib. In the early 2000s, a
phase III trial showed a statistically significant prolongation of overall survival (OS) by
addition of erlotinib to gemcitabine (6.24 vs. 5.91 months) [13]. Arguably, this difference is
too small to be clinically relevant and given the side effects of erlotinib that mainly affect
the skin, erlotinib is used in routine clinical practice. A later phase III trial investigating the
blockade of EGFR signaling by the monoclonal antibody cetuximab with gemcitabine did
not result in any benefit, and another phase III trial exploring gemcitabine or capecitabine
with erlotinib has reported negative results, too [14,15]. As a side note, addition of erlotinib
to gemcitabine did not show any benefit in OS in the adjuvant setting [16].

2.2. Targeting NTRK

Recently, larotrectinib and entrectinib, inhibitors of the neurotrophic tyrosine receptor
kinase (NTRK) fusion genes, have received approval in many countries for tumors harbor-
ing the mutation, independently of their origin [17–19]. Their gene products, tropomyosin
receptor kinases, have been known protooncogenes for over 20 years due to their capability
to induce signals of proliferation via activation of MAPK, PI3K, and PKC pathways [8].
A small fraction of patients with PC harbors this mutation (<5%) [8]. For larotrectinib, a
pooled analysis of three phase 1 and 2 trials (NCT02122913, NCT02637687, NCT02576431)
included 159 patients, two of them with PC, of which one had a positive response [20].
With an overall response rate of 79% for all tumor types, larotrectinib may become a valid
treatment option for a subgroup of patients with PC. Similarly, an analysis of three phase
1 and 2 clinical trials for entrectinib (ALKA-372–001, STARTRK-1, STARTRK-2) analyzed
54 patients, three of which with PC [7]. The overall response rate was close to 60%.
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2.3. Targeting PARP

Attention has also been brought to the poly(adenosine diphosphate–ribose) poly-
merase (PARP) inhibitors. Prevention of PARP to repair single-strand breaks eventually
leads to accumulation of double strand breaks, to which cells with non-intact double strand
repair, notably because of BCRA1/2 mutation, are sensitive [21]. In addition to being
efficacious in BRCA1/2 positive ovarian carcinoma and breast cancer, olaparib has been
successfully investigated for pretreated pancreatic carcinoma [22]. After a phase III trial
has shown an increase in the median progression-free overall surival (PFS) from 3.8 to
7.4 months for patients receiving four cycles of olaparib as maintenance therapy compared
to best supportive care after a platinum-based first line therapy, it has been approved in
the U.S. for this indication [6]. Overall survival, however, might not be influenced by
the administration of olaparib [5]. Several phase I and II clinical trials have investigated
another PARP inhibitor, veliparib. In 2018, a phase II trial reported stable disease in 25%
of patients for veliparib monotherapy [23]. Following this, veliparib was investigated in
combination with gemcitabine and radiotherapy for locally advanced PC (phase 1) and a
benefit in median OS of 5 months (19 versus 14 months) was reported for patients harboring
mutations affecting DNA repair mechanisms as compared to individuals with wild-type
status of DNA damage repair genes [24]. Veliparib with 5-FU and oxaliplatin for metastatic
disease (phase I/II, single-arm trial) showed an overall response rate (ORR) of 57% for
platinum-naïve patients with these mutations [25]. Another phase II trial, however, did not
observe any improvement in response rates for the addition of veliparib to gemcitabine
plus cisplatin [26]. Further phase III clinical trials are thus needed to clarify the role of
PARP inhibitors in clinical management.

2.4. Targeting K-RAs

In approximately 95% of PC patients, an activating mutation in K-Ras is found and
plays a central role in initiation, maintenance, and progression of disease [27]. For a
long time, approaches to target Ras have failed and Ras was therefore considered to be
undruggable [28]. Around a decade ago, adjuvant treatment with K-Ras vaccines have
brought rather discouraging results in resectable PC [29,30]. One study observed an
immunological response to vaccination, but the median OS in did not significantly increase
for responders and the 5-year survival rate of 20% of the entire cohort increased to 24%
for responders [29]. In another trial, no immunological response was induced by the
vaccine [30]. In PC, also clinical trials to target downstream pathways of K-Ras have
failed so far [27,31]. Recently, this paradigm has been changing. The development of the
K-Ras inhibitor sotorasib demonstrated the possibility of directly targeting K-Ras (although
effective only for the G12C mutation, not the much more common G12D in pancreatic
carcinoma) [32]. The mDC3/8 dendritic cell vaccine designed to target mutant K-Ras is
currently investigated in a phase I trial (NCT03592888).

2.5. Targeting the Stroma, Fibrosis, and Extracellular Matrix

The main factors leading to chemoresistance are to be found in the cancer microen-
vironment and the extensive fibrosis surrounding the tumor, as reviewed in depth by
Schober and colleagues [33]. Naturally, attempts to target the cancer microenvironment
have been made. More than a decade ago, an approach to increase drug delivery into the
tumor included successful experiments with inhibition of hedgehog signaling in mice [34].
Subsequent clinical trials, however, failed to show any benefit [35–37] This includes a
randomized phase Ib/II trial, where addition of vismogedib or placebo to gemcitabine
did not alter OS [35]. For gemcitabine in combination with saridegib (another hedgehog
inhibitor), a decreased OS compared to gemcitabine plus placebo at interim analysis led to
a premature end of the study and subsequently also put a stop to a clinical trial of FOLFIRI-
NOX and saridegib [35,36]. In a more recent phase II study, the addition of vismogedib to
gemcitabine plus nab-paclitaxel as first-line therapy resulted in a median OS of 5.4 months,
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discouraging further research, as the median OS for the chemotherapeutic regimen alone
has been reported to be equal or higher [37,38].

In a similar approach to facilitate chemotherapeutic penetration into tumor tissue,
enzymatic lysis of extracellular hyaluronic acid by PEGPH20 plus gemcitabine was promis-
ing in vitro and in vivo [39]. Investigations carried on, until the HALO 109-301 phase III
trial did not show any benefit in OS and PFS [40].

TGF-beta is a central cytokine in the tumorigenesis of PC, as well as its microenviron-
ment, and three-dimensional in-vitro models for PC underline a direct relation between
TGF-beta and the architecture [41–43]. TGF-beta has recently become of interest as a
therapeutic target: Preclinical experiments demonstrated a reduction of the tumor cells’
aggressiveness, if secretion of TGF-beta in pancreatic stellate was abrogated [44]. Another
interesting aspect lies in the fact that cancer-associated fibroblasts (CAFs), which are cen-
tral for the desmoplastic stroma, rely on TGF-beta signaling and therefore, inhibition of
TGF-beta has been explored as one strategy to target CAFs [45]. A phase Ib/II clinical trial
in patients with unresectable PC reported an increase in OS from 7.1 to 8.9 months for the
addition of the TGF-beta inhibitor galunisertib to gemcitabine [46].

Another attempt of stromal remodeling to increase chemotherapeutic delivery took
advantage of the overexpression of the vitamin D receptor, which according to a mice
model, serves as a transcriptional master regulator of the tumor stroma in this tumor entity,
mainly by affecting PSCs [47]. As preclinical data were promising, many clinical trials have
been started, more recently combining immune checkpoint therapy as well as oncolytic
vaccine therapy with vitamin D analogues [48].

As PSCs also overexpress the vitamin A receptor, and its inhibition decreases the
deposition of extracellular matrix, a phase II clinical trial is currently ongoing to explore
the combination of gemcitabine/nab-paclitaxel and all-trans retinoic acid in patients with
locally advanced and metastatic disease (NCT03307148) [49,50].

Inhibition of neoangiogenesis has been investigated but targeting VEGF with a TKI
(axitinib) or a monoclonal antibody (bevacizumab) plus gemcitabine reported negative
results in terms of no benefit in overall surivival [51,52].

3. Combined Immunotherapies

In addition to fibrosis, the immunosuppressive properties of the microenvironment
are considered crucial for disease progression and resistance to therapy [53–55]. It consists
of a complex network of different immune cell populations, including myeloid-derived
suppressor cells, macrophages, and regulatory T-cells, but not cytotoxic T-cells. As these
are thought to exert their effect by expression of PD-1, CTLA-4, CD-40 as well as secretion
of TGF-beta, many novel approaches have aimed at targeting these proteins, some of which
we will discuss in the following paragraphs [54].

3.1. Targeting PD-L1/PD-1

Tumors characterized by high microsatellite instability (MSI-high) or mismatch-repair
deficiency (dMMR) are susceptible to immune checkpoint therapy [56]. It is thought
that the increased neoantigen expression by the tumor cells is recognized by the immune
system [57,58]. In the phase II KEYNOTE-158 study investigating the PD-1 inhibitor
pembrolizumab for dMMR/MSI-high tumors, 9.4% of the patients included suffered from
PC, making it the third most included tumor entity. With an ORR of 18% and a PFS
of 2.2 months, however, it was among the least responsive tumors, and of the six most
included types of tumors, only brain tumors with an overall response rate of 0% performed
worse [59]. Based on this trial, pembrolizumab has received FDA approval for MSI-high
metastatic tumors for pretreated patients with no effective other line of treatment. For
pancreatic carcinoma, several attempts at targeting PD-L1/PD-1 as part of a combination
are ongoing.

The combination of pembrolizumab with the CXCR4 antagonist motixaforatide (and
chemotherapy) has been investigated in the COMBAT trial (phase IIa) with promising
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results especially in the arm with additional chemotherapy: A disease control rate (DCR)
of 32% was reported for motixaforatide plus pembrolizumab and a DCR of 77% and ORR
of 32% with additional chemotherapy, encouraging further randomized trials [60]. Also, an
increased cytotoxic T-cell infiltration into the tumor and a decrease in immunosuppressive
cells were observed.

Another attempt to increase the efficacy of pembrolizumab by increasing T-cell infiltra-
tion and PD-L1 expression yielded into a phase Ib trial that combined pembrolizmab with
chemotherapy and the oncolytic virus pelareorep. Due to promising results, a phase II trial
(NCT03723915) is now ongoing [61]. The abovementioned PEGPH20 is currently being
evaluated in combination with pembrolizumab as part of a phase II trial (NCT03634332).
As recently reviewed by Arias-Pinilla and Modjtahedi, several other early phase trials
investigating pembrolizumab or nivolumab in combination with olaparib, with paricalcitol
plus gemcitabine and nab-paclitaxel, with a chemokine receptor agonist for CCR2/5, or
with a cytokine receptor antagonist for CXCR1/2 are ongoing [62].

Two other ongoing trials involve the novel PD-1 inhibitor spartalizumab. For the
combination of spartalizumab with the anti-IL-6 monoclonal antibody siltuximab, a phase
Ib/II trial is ongoing (NCT04191421). Another phase I trial is investigating spartalizumab
with nab-paclitaxel, gemcitabine, and the anti Il-1 beta monoclonal antibody canakinumab
(NCT04581343) [62].

For the combination of the anti-PD-L1 monoclonal antibody durvalumab with the
anti-CTLA-4 antibody tremelimumab, a phase II clinical trial reported a discouraging
objective response rate of 3.1% only (and 0% for durvalumab monotherapy) [63].

3.2. Targeting CTLA-4

Ipilimumab, an inhibitory monoclonal antibody targeting CTLA-4, has been unsuc-
cessfully investigated in a phase II clinical trial in advanced PC [64]. The combination
of ipilimumab with the GM-CSF cell-based vaccines (GVAX), however, showed superior
activity in a later trial, encouraging further studies [65]. Taking advantage of the T-cell
priming by GVAX, an additional boost with the listeria monocytogenes-expressing mesothe-
lin vaccine CRS-207 significantly increased overall survival from 4.6 to 9.7 months [66].
Therefore, the combination of GVAX and CRS-207 was evaluated together with ipilimumab,
where, unfortunately, the addition CTLA-4 immune checkpoint inhibition did not prolong
survival [67]. Other recent studies investigated the addition of ipilimumab to gemcitabine
without increasing efficacy, or reported inferiority of ipilimumab with GVAX compared to
continued administration of FOLFIRNOX [68,69]. Four ongoing trials investigate the com-
bination of ipilimumab with nivolumab in PC (NCT04361162, NCT04258150, NCT03104439,
NCT04247165).

3.3. Targeting CD40

Already in 2011, a study involving mice models and human tissue demonstrated that
CD40 agonists could aid at tumor regression in patients with PC by activating macrophages
to fight the tumor and by leading to regression of the stroma [70]. In combination with
chemotherapeutic agents, CD40 agonists have also been shown to help overcome resis-
tance to immune checkpoint inhibitors in mice models [71]. More recently, a proof-of
concept study in a murine model showed that although CD40-agonist monotherapy did
not improve OS, it increased susceptibility of PC to subsequent dendritic cell vaccinations,
arguably by unleashing a T-cell response, and resulted in prolongation of the OS [72].
Despite a phase I trial investigating the combination of CP-870,893 (a CD40 monoclonal an-
tibody) with gemcitabine showed antitumor activity, no further trials have been conducted
so far [73].

3.4. Targeting IL-10

Another attempt to increase T-cell infiltration into the tumor took advantage of re-
combinant Il-10 (pegilodecakin) [74]. Whereas preclinical and early clinical data were
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promising, the phase III SEQUIOA trial failed to show a benefit in OS (5.8 vs. 6.3 months)
and PFS (2.1 months both groups) for the addition of pegilodecakin to FOLFOX [75,76].
For an overview of selected studies discussed in the text, please refer to Table S1.

4. miRNA

Several efforts have been performed during the last years to enable physicians to
diagnose cancer at an earlier stage of disease and to identify biomarkers to guide treatment.
As pancreatic cancer remains asymptomatic over a long period of time, diagnoses at an
early stage of disease is possible in 15–20% of patients only. Only these patients are potential
candidates for curative surgical resection, resulting in a median survival of up to 24 months,
if a R0 resection is achieved [77,78]. Micro RNAs (miRNAs) have been propeosed as
biomarkers potentially allowing for earlier diagnosis and will be discussed in the following
section. A summary of miRNAs can be found in Table S2 in the Supplementary Materials.

4.1. miRNA: Introduction

MicroRNAs are currently under investigation in various cancer entities for their diag-
nostic as well as prognostic and predictive roles [79]. MiRNAs are small, approximately
22 nucleotides long, non-coding single-stranded RNAs that regulate gene expression at a
posttranscriptional level. The human genome may encode for more than 1000 microRNAs
and approximately 60% of human genes are regulated by microRNAs. Besides other functions,
they are known to be involved in tumor evolution including regulation of angiogenesis and
development of treatment resistance [80–82]. Therefore, their respective roles as potential
diagnostic and predictive biomarkers have been evaluated: In PC a distinct microRNA ex-
pression profile compared to benign lesions has been observe [10,11,83,84]. Distinct miRNA
expression profiles correlate to stages of malignant pancreatic disease and hold potentials as
biomarkers [85] There is an existing medical need of biomarkers for early diagnosis. CA19-9
is the only prognostic serum-based tumor marker approved in PC; however, it comes with
several limitations such as a moderate sensitivity and specificity (estimated around 79% and
82%, respectively). Tumor markers do not always accurately reflect the disease burden; e.g.,
PC patients with Lewis blood antigen A do not express CA19-9, and false positive results
are often seen with the co-existence of inflammation or cholestasis e.g., in case of biliary
obstruction [86].

Normally, oncogenes and tumor suppressor genes are regulated at an optimal ac-
tivation/inhibition equilibrium. If downregulation of a specific miRNA increases the
activity of a corresponding oncogene, this is identified as a tumor suppressor miRNA.
On the other hand, if upregulation, it will result in a continuous inhibition of the target
tumor suppressor gene. An increase in the activity of an oncogene target of an miRNA
after knockdown of that miRNA suggests that the miRNA in question acts as a tumor
suppressor and conversely overexpression of that same miRNA would lead to increased
inhibition of that locus An imbalance can result in the loss of controlling specific tumor
formation pathways and can contribute to the development of malignencies [87].

4.2. miRNA in Precursor Lesions and Diagnoses

The development of PC is a multistage process of genetic mutations resulting in
histological and morphological abnormalities within the ductal cells and the acinar cells of
the pancreas [88,89]. These lesions have potential to transform into pre-neoplastic lesions
known as pancreatic intraepithelial neoplasia (PanIN).

MiRNA expression profiles are promising as non-invasive diagnostic markers, as they
can be obtained easily from peripheral blood, saliva, urine or feces in order to detect above
mentioned pre-neoplastic lesions [90]:

Measuring the expression of only 20 to 32 miRNAs could help clinicians in discrimi-
nating between healthy, inflamed and cancerous pancreatic tissue [12]. This hypothesis
is supported by the fact that upregulation (e.g., miR-21, 221 424-5p, 27a, 4295) as well
as downregulation (e.g., miR-124, 203, 150, 218) of miRNAs have been reported to play
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significant roles during initiation on the one hand and progression on the other hand of
pancreatic cancer. Yu et al. investigated the miRNA expression profile in PanIN lesions
and reported the aberrant expression of 35 miRNAs. Among those, miR-196b surfaced as a
potential biomarker in identifying PanIN-3 lesions [91].

Another microarray analysis study compared blood samples of PC patients and healthy
individuals and reported that a distinct miRNA expression profile (miR-22, miR-642b, 10, 752 12
of 22 and miR-885-5p) identified early PC [92].

Furthermore, early stage K-RAS mutations observed in PanIN lesions can directly
affect the levels of specific miRNAs as investigated by Humeau et al. [93]. An upregulation
of miR-205, miR-200, and miR-21 was detected in early adenocarcinoma lesions in a K-
RAS(G12D) mouse model, where miRNA production could be measured in pathological
and nonpathological ducts [94].

Increased levels of miR-155 and miR-210 in the serum of pancreatic cancer patient
have been reported in various studies [95,96] suggesting a potential role as biomarkers for
the diagnosis of early pancreatic neoplasia [95].

Li et al. evaluated a total of 735 miRNAs in the serum of pancreatic cancer patient. This
analysis led to the identification of miR-1290 as a promising biomarker [97]. Furthermore,
it is reported that miR-1290 displays higher sensitivity (81%) and specificity (80%) when
compared to healthy control groups [97,98].

Wang et al. demonstrated that aberrant expression of miR-21, miR-155, miR-196a and
miR-210 in plasma can easily distinguish PC patients from healthy controls [99]. Higher
than normal levels of miR-210, miR-192 and miR-18a in the serum of PC patients may also
be exploited as diagnostic markers [96,100,101].

Another approach in the field of biomarker research is combining various biomarkers
or combining them with tumor markers in order to enhance the sensitivity and specificity.
Recently, it was reported that the combination of CA 19.9 with miR-16 and miR-196a allows
to distinguish between PC patients and healthy controls [102,103]. Similarly, when the
expression profile of miR-27a-3p was coupled with CA 19.9, PC patient and healthy controls
could be differentiated with a sensitivity of 85.3% and specificity of 81.61% [103,104].

These findings are of utmost clinical relevance, because histological clarification of
pancreatic lesions is often challenging, particularly if only small tissue can be obtained
by endoscopic ultrasound-assisted fine-needle biopsies. However, no currently existing
miRNA panel is endorsed by any guidelines for clinical use to assess response to therapy.

4.3. miRNA and Therapy Response

Beyond the diagnostic value of miRNA expression profiles, they might also play a role
in the prediction of chemoresistance as well as responsiveness to systemic therapy. MiRNA
could help clinicians to choose a combination of various therapies in order to overcome
therapeutic resistance.

The predictive value of miRNAs for the response to a therapy with gemcitabine
was extensively shown in vitro and in vivo. An overexpression of miR-21 and miR-10b
and a downregulation of miR-34a has previously been linked to worse survival under
gemcitabine chemotherapy [105–109]. In addition, miRNA-320c has been reported to be of
predictive significance for a response to gemcitabine [110].

Furthermore, an irregular expression of miRNA was found in a gemcitabine-resistant
cell line, including downregulation of miRNA-200b, miRNA-200c, let-7b, let-7c, let-7d and
let-7e in gemcitabine-resistant cells [111]. Similarly, miRNA-33a is also downregulated
in gemcitabine-resistant cells, and upon the restoration of normal levels, gemcitabine
sensitivity could be restored [112].

In a recent meta-analysis Royam et al. studied a total of 48 miRNAs and reported a
downregulation of 23 and upregulation of 25 miRNAs [113]. In particular, nine upregulated
miRNAs (15b, 17-5p, 21, 155, 181c, 203, 221,320c and 1246) exhibited chemotherapeutic
resistance and six upregulated miRNAs (21, 33a, 138-5p,509-5p, 1207 and 1243) exhib-
ited chemotherapeutic sensitivity. In contrast, nine downregulated miRNAs (7, 100, 124,
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210, 200c, 205, 220b, 374b-5p and 497) exhibited chemotherapeutic resistance and nine
downregulated miRNAs (101, 101-3p, 153, 203, 205-5p, 494, 506, 3656, let-7a) exhibited
chemotherapeutic sensitivity.

This above-mentioned meta-analysis included studies using gemcitabine, 5-FU, capecitabine,
and erlotinib. The pooled hazard-ratio (HR) value for OS was 1.603; (95% confidence interval
(CI) 1.2–2.143; p-value: 0.01), with the subgroup analysis for miR-21 showing a HR for resistance
of 2.061; 95% CI 1.195–3.556; p-value: 0.09.

Altered expressions of several miRNAs including miR-21-5p, miR-10b-5p, and miR-
34a-5p have previously been linked to a worse response to gemcitabine [105–109]. Our
group, however, could show that high and low expressions of these three miRNAs have
no influence on the outcome of treatment with FOLFIRINOX regarding PFS and OS, in
contrast to treatment with gemcitabine [114].

Another study reported by Meijer et al. demonstrated that a decline in plasma
miR-181a-5p levels after five to six cycles of FOLFIRINOX was associated with better
prognosis [115]. This association was not observed in a second cohort of patients treated
with gemcitabine plus nab-paclitaxel. In-vitro analyses detected an increased sensitivity of
PC cells lines to oxaliplatin when miR-181a-5p was inhibited. However, to our knowledge
there are no miRNA data currently available on response prediction of novel chemotherapy
regimens such as nab-paclitaxel or nano-liposomal irinotecan.

A summary of all above-mentioned micro-RNA results can be found in Table S2 in the
Supplementary Materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom11101469/s1, Table S1: Overview of selected studies, Table S2: Aberrant expression of
micro- RNA.
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