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IntroductIon
Acute ischemic stroke happened when blood vessels were 
suddenly occluded by a thrombus or embolism followed 
by the immediate lack of oxygen and glucose to the brain 
(Lakhan et al., 2013). A major goal for the treatment of 
acute ischemic stroke is to promote arterial recanaliza-
tion to salvage the ischemic penumbra (Ramos-Cabrer et 
al., 2011), which is a region of ischemic brain tissue with 
sufficient energy for short-term survival (Hakim, 1998). If 
ischemia persists, the penumbra will progress to permanent 
damage, primarily driven by ischemia-induced hypoxia and 
the subsequent energy failure (Dirnagl et al., 1999). This 
penumbra concept has inspired the development of two 
main categories of drugs to treat stroke in the acute phase: 
drugs interrupting cell death pathways (Reza Noorian et al., 
2011) and drugs inducing reperfusion in the ischemic zone 
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(Barreto and Alexandrov, 2012). Neuro-protection alone 
without restoration of tissue perfusion and vascular integrity 
may not be adequate for treatment of acute stroke (Zhang et 
al., 2012). However, when reperfusion is attained, additional 
irreversible damage can also develop following reperfusion 
due to a mechanism of reperfusion injury including inflam-
mation, oxidative stress and excitatory injury (Schaller 
and Graf, 2004; Pan et al., 2007). Therefore, combination 
therapy targeting both ischemia- and reperfusion-induced 
nerve and blood vessel damage is needed.

EffEct of normobarIc hypEroxIa (nbo) trEatmEnt 
on IschEmIc strokE   
Improving tissue oxygenation has been studied for many 
years as a simplistic but plausible treatment strategy to re-
duce ischemic injury. NBO has been suggested as a practical 
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acute-phase treatment to slow down the onset of irreversible 
injury of the penumbra, thus potentially allowing for delayed 
or more effective treatment as it is readily available, safe and 
can be initiated promptly after stroke onset by paramedics 
(Kim et al., 2005; Henninger and Fisher, 2006; Liu et al., 
2009a). When used as a monotherapy, NBO preserves the 
ischemic penumbra and reduces ischemic lesion volumes 
(Singhal et al., 2005; Chiu et al., 2006; Liu et al., 2006; 
Henninger et al., 2007; Shin et al., 2007; for review see Qi 
et al., 2013). The effect is attributed to the ability of NBO 
to improve energy metabolism in the ischemic penumbra, 
as evidenced by elevated interstitial oxygen partial pressure 
(Liu et al., 2006), increased cerebral blood flow and O2 
delivery (Shin et al., 2007), and reductions in acidosis and 
ATP deletion (Sun et al., 2011). More importantly, oxygen 
therapy does not increase production and damage induced 
by reactive oxygen species in focal cerebral ischemia (Sun 
et al., 2014). However, NBO-afforded early cerebral protec-
tion could diminish over time during reperfusion (Kim et 
al., 2005; Esposito et al., 2013), the mechanism of ischemia/
reperfusion damage to the blood-brain barrier (BBB) may 
account for this phenomena (Aronowski et al., 1997). 

EffEct of nbo on prEsErvatIon of thE bbb 
IntEgrIty and thE ExtEnsIon of thE thrombolytIc 
tImE wIndow
BBB damage and the strategy to protect vascular integrity
Over decade, monotherapy focusing on only neurons has not 
yielded promising results for human stroke. Expanding the 
research focus to include other cells and matrix may obtain 
a more comprehensive and realistic view of treatment of 
human brain injury (Lo et al., 2004).

The presence of a salvageable penumbra has been widely 
agreed as the premise for thrombolytic therapy (Foley et al., 
2010), however, BBB integrity is considered to be central to 
the risks of vasogenic edema and hemorrhage transformation 
(HT), which are the most feared complication of thrombolytic 
therapy (Del Zoppo et al., 2009). BBB damage is a progres-
sive process, with an initial injury resulting from ischemia 
(Simard et al., 2007; del Zoppo, 2013), aggravated by reper-
fusion (Jung et al., 2010). Due to direct contribution to edema 
and HT, reperfusion-associated BBB injury has been a topic 
of intensive investigation, which leads to the identification of 
several mechanisms accounting for reperfusion BBB injury, 
such as oxidative stress damage due to increased free radical 
generation (Liu and Rosenberg, 2005), inflammatory injury 
(Schofield et al., 2013), vascular activation and dysregulated 
extracellular proteolysis (Rosenberg and Yang, 2007; Jung 
et al., 2010; Moskowitz et al., 2010). 

Ischemia-induced BBB damage in the early stroke stages 
is increasingly appreciated to negatively impact the safety 
and efficacy of thrombolytic therapy for ischemic stroke (Jin 

et al., 2014). In the early stage of acute stroke, ischemia-
induced hypoxia and the subsequent bioenergetic failure 
induced irreversible damage to the penumbra, therefore, 
providing O2 as soon as possible (through NBO treatment) 
to alleviate the ischemia induced brain injury and extend 
the time window of tPA treatment.
 
Tissue-type plasminogen activator (tPA) thrombolysis and HT
tPA dissolves blood clots to restore blood flow to the isch-
emic brain region and salvage the ischemic brain tissue 
(Wardlaw et al., 2012; Chapman et al., 2014). Until now, 
thrombolysis with tPA within 3 or 4.5 hours after symptom 
onset is the only FDA approved treatment for acute isch-
emic stroke (Hacke et al., 2008; Del Zoppo et al., 2009). 
However, brief therapeutic window and the high incidence 
of HT have profoundly constrained the clinical use of tPA 
in ischemic stroke patients.

Effect of NBO on extension of tPA thrombolytic window 
Since NBO treatment during cerebral ischemia significant-
ly alleviates BBB disruption and reduces edema formation 
(Liu et al., 2008; Liu et al., 2009b) and delaying  thrombo-
lytic therapy dramatically increases the risk of hemorrhage 
(Hatcher and Starr, 2011), it is rational to combine NBO 
with tPA to reduce thrombolysis reperfusion-associated 
complications (Liu et al., 2009a; Sun et al., 2011).   

The potential of the combination NBO treatment with 
tPA thrombolysis was recognized several years ago (Hen-
ninger and Fisher, 2006; Fujiwara et al., 2009). A previous 
study has demonstrated that a combination treatment with 
NBO and delayed tPA treatment at 4.5 hours after stroke 
onset significantly reduces tPA-associated mortality, allevi-
ates cerebral edema following hemorrhage, and decreases 
MMP-9 augmentation in a rat model of stroke (Liu et al., 
2009a). It has been reported that a combination therapy of 
NBO and tPA does not increase hemorrhage volume at 10 
hours or occurrence of confluent petechial hemorrhages at 
24 hours in a rat model of thromboembolic stroke (Hen-
ninger et al., 2009). NBO can increase the safety of delayed 
tPA thrombolysis in stroke (Liu et al., 2009a), extend the 
time window for tPA, but not increase superoxide genera-
tion or MMP-9 in the brain (Kim et al., 2005). Therefore, 
co-administration of NBO to tPA is safe. NBO treatment 
shortly after ischemia onset and tPA therapy at a dealyed 
time point may represent a safe and effective strategy for 
acute stroke treatment (Henninger et al., 2009). 

Recently, Liang et al. (2015) showed that early NBO 
treatment alleviated ischemic BBB damage and signifi-
cantly improved the outcome of delayed tPA treatment, 
providing new evidence supporting NBO as an effective 
adjunctive therapy to expand the therapeutic time window 
of acute ischemic stroke for tPA.
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Nonaka and colleagues showed that combination therapy of 
NBO plus edaravone showed more beneficial effects than 
monotherapy by preventing the neuronal damage after fo-
cal cerebral ischemia and reperfusion in mice. Their results 
showed significantly better neurological functions, less 
infarct volume as well as less TUNEL-positive cells in the 
ischemic boundary zone both in cortex and subcortex at 22 
hours after reperfusion than the two monotherapy groups 
(Nonaka et al., 2008). These results suggest that combination 
therapy with NBO plus edaravone prevented the neuronal 
damage after focal cerebral ischemia and reperfusion in mice.

NBO plus melatonin
Melatonin is a potent free radical scavenger with excellent 
BBB permeability (Galano et al., 2014), which has been 
shown to protect brain against focal cerebral ischemia 
in both mice (Zou et al., 2006; Tai et al., 2010; Yang et 
al., 2014) and rats (Pei et al., 2003; Villapol et al., 2010; 
Jang et al., 2012). Therefore, melatonin may augment the 
survival-promoting action of NBO. Beker and colleagues 
have examined the effect of NBO treatment alone or in 
combination with melatonin after focal cerebral ischemia. 
They reported that combined NBO and melatonin syner-
gistically reduces neuronal injury after mild focal cerebral 
ischemia induced by 30-minute MCAO. Combination 
therapy of NBO and melatonin regulated levels of phos-
phorylated Akt, antiapoptotic Bcl-xL, pro-apoptotic Bax 
and endothelial NO synthase, as well as reduced neuronal 
injury, neurological deficits, infarct volume and BBB per-
meability which has been found by NBO and particularly 
melatonin treatment alone (Beker et al., 2015). 

NBO plus cilostazol
Cilostazol, a selective inhibitor of phosphodiesterase-3, has 
been reported to exert neuroprotection against acute brain 
injury after cerebral ischemia in rodents (Choi et al., 2002; 
Lee et al., 2003). Nonaka and colleagues demonstrated that 
after focal cerebral ischemia, acute and subacute lesion vol-
umes were significantly reduced in the combination group 
but not in the two monotherapy groups. Compared to the 
monotherapy, the combination therapy increased endothelial 
nitric-oxide synthase (eNOS) activity in the lesion area after 
ischemia. Combination therapy with NBO plus cilostazol 
protected against focal cerebral ischemia/reperfusion injury 
in mice by improvement of regional cerebral blood flow 
(rCBF) after reperfusion, in part in association with eNOS 
activity (Nonaka et al., 2009).  

NBO plus ethonal (EtOH)
EtOH consumption is inversely associated with the risk 
of ischemic stroke, suggesting a neuro-protection as a 
potential neuroprotectant for acute ischemic stroke (Wang 

combInatIon trEatmEnt wIth nbo 
Until now, researchers have failed to translate over 1,000 
experimental treatment methods in cells and rodents to 
therapy of humans (O'Collins et al., 2006). Since the 
monotherapy did not work as expected, combinational 
therapeutic approaches targeting different stages of acute 
stroke may be an ideal strategy (Rogalewski et al., 2006; 
Zhang et al., 2012). 

NBO has been shown to effectively reduce tissue infarc-
tion and protect the BBB in animal ischemic stroke models 
(Singhal et al., 2002; Jin et al., 2013; Liang et al., 2015). 
The neuro- and vaso-protection make NBO a promising 
approach to expand the narrow time window of the reperfu-
sion therapies for ischemic stroke (Henninger and Fisher, 
2006; Liang et al., 2015). But its effect was diminished 
with extension of ischemia and reperfusion. Therefore, 
either combating inflammation, clearing the free radical, 
antagonizing glutamate, inhibiting the platelet accumula-
tion, or reducing excessiveγ-aminobutyrie acid (GABA)-
mediated tonic inhibition (ethonal treatment) will reduce 
the reperfusion-induced damage (Clarkson et al., 2010).

NBO plus minocycline 
Inflammatory reactions occurring in the brain after 
ischemia may contribute to secondary damage to BBB 
and brain tissue (Wang et al., 2007). Minocycline, a tet-
racycline antibiotic, has been shown to protect against 
reperfusion-induced injury through its anti-inflammatory 
(Yrjanheikki et al., 1999), anti-apoptotic (Arvin et al., 
2002; Friedlander, 2003), and BBB-protecting actions 
(Wang et al., 2002; Xu et al., 2004). Animal studies and 
early phase clinical trials showed that minocycline, even 
when administered at delayed time points, is neuroprotec-
tive (Xu et al., 2004; Hewlett and Corbett, 2006; Hayakawa 
et al., 2008; Fagan et al., 2010). 

Jin and colleagues demonstrated that the combination of 
NBO and minocycline results in greater neuroprotective 
effects than each individual treatment in a rat model of 
transient focal cerebral ischemia, NBO plus minocycline 
effectively provides greater neuro- and vaso-protective 
effects than monotherapy by inhibiting matrix metallo-
proteinsase (MMP)-2/9-mediated occludin degradation 
and attenuation of caspase-dependent and independent 
apoptotic pathways (Jin et al., 2013).

NBO plus edaravone     
Besides inflammation, reperfusion produces a lot of free 
radical and free radical could damage the brain (Liu and 
Rosenberg, 2005). An alternative strategy to reduce reperfu-
sion induced injury is to clear the free radical. Edaravone, 
a potent scavenger of hydroxyl radicals, has been demon-
strated to have beneficial effects when combined with NBO. 
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reperfusion induced injury, thereby producing improved 
outcomes when combination therapy is used. 
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