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Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume
measurement, treatment, and biopsy planning. This study evaluated a previously
developed automatic WPG segmentation, deep attentive neural network (DANN), on a
large, continuous patient cohort to test its feasibility in a clinical setting. With IRB approval
and HIPAA compliance, the study cohort included 3,698 3T MRI scans acquired between
2016 and 2020. In total, 335 MRI scans were used to train the model, and 3,210 and 100
were used to conduct the qualitative and quantitative evaluation of the model. In addition,
the DANN-enabled prostate volume estimation was evaluated by using 50 MRI scans in
comparison with manual prostate volume estimation. For qualitative evaluation, visual
grading was used to evaluate the performance of WPG segmentation by two abdominal
radiologists, and DANN demonstrated either acceptable or excellent performance in over
96% of the testing cohort on the WPG or each prostate sub-portion (apex, midgland, or
base). Two radiologists reached a substantial agreement on WPG and midgland
segmentation (k = 0.75 and 0.63) and moderate agreement on apex and base
segmentation (k = 0.56 and 0.60). For quantitative evaluation, DANN demonstrated a
dice similarity coefficient of 0.93 ± 0.02, significantly higher than other baseline methods,
such as DeepLab v3+ and UNet (both p values < 0.05). For the volume measurement,
96% of the evaluation cohort achieved differences between the DANN-enabled and
manual volume measurement within 95% limits of agreement. In conclusion, the study
showed that the DANN achieved sufficient and consistent WPG segmentation on a large,
continuous study cohort, demonstrating its great potential to serve as a tool to measure
prostate volume.

Keywords: prostate segmentation, deep attentive neural network, large cohort evaluation, qualitative evaluation,
quantitative evaluation, volume measurement
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INTRODUCTION

Whole-prostate gland (WPG) segmentation plays an important
role in prostate volume measurement, biopsy, and surgical
planning (1). Magnetic resonance imaging (MRI)-targeted
transrectal ultrasound fusion (MRI-fusion) biopsy has shown
increased detection of clinically significant PCa and reduced
identification of clinically insignificant PCa (2), where the WPG
segmentation is critical to enabling the MRI-fusion biopsy (3).
Also, prostate volume measurement via WPG segmentation can
be used to quantify the progression of benign prostatic
hyperplasia (1) and to assist surgical planning (4).

Manual segmentation of WPG is time-consuming and
laborious and commonly suffers from inter-rater variability (5),
making it inadequate for large-scale applications (6). Deep
learning (DL) (7–10) has increasingly been utilized for the
automatic segmentation of WPG. Zhu et al. (11) proposed a
deeply supervised convolutional neural network (CNN) using
convolutional information to segment the prostate from MR
images. Cheng et al. (8) developed a DL model with holistically
nested networks for prostate segmentation on MRI. Jia et al. (12)
proposed an atlas registration and ensemble deep CNN-based
prostate segmentation. In addition, attentive DL (13) models
were introduced to enhance DL by paying attention to the
particular regions of interest in an adaptive way and thus have
achieved better segmentation performance than other DL-based
models. However, to the best of our knowledge, the evaluation of
these methods was currently limited by a relatively small sample
size, ranging from tens to hundreds of MRI scans. It is relatively
expensive to create large, continuous samples with manual
segmentation of WPG, which limits the ability to test the DL
models in a clinical setting.

In this paper, we evaluated a previously developed DL-based
automatic segmentation model, deep attentive neural network
(DANN) (13), using a large, continuous cohort of prostate 3T
MRI scans acquired between 2016 and 2020. The WPG
segmentation by DANN was evaluated both quantitatively and
qualitatively. The quantitative evaluation was performed by
using an independent testing set with manual segmentation as
a ground truth on a small dataset (n = 100). The dice similarity
coefficient (DSC) (14) was used to measure the segmentation
performance, compared with other baseline DL methods. For
qualitative evaluation, the segmentation performance was
evaluated by two abdominal radiologists independently via
Frontiers in Oncology | www.frontiersin.org 2
visual grading since the ground-truth manual segmentation
was not available for the large cohort (n = 3,210). Inter-rater
agreement between the two radiologists was evaluated to check
the consistency of the visual grading. We further investigated the
segmentation on different anatomical locations (i.e., apex,
midgland, and base) as a secondary analysis. Finally, we
conducted the volume measurement using DANN-based
segmentation on a small cohort (n = 50) (DANN-enabled
volume measurement) and compared it with the manual
volume measurement.
MATERIALS AND METHODS

MRI Datasets
With approval from the institutional review board (IRB), this
retrospective study was carried out in compliance with the
United States Health Insurance Portability and Accountability
Act (HIPAA) of 1996. After excluding MRI scans with severe
artifacts and patients with prior surgery history and Foley
catheter, a total of 3,695 MRI scans, acquired on 3 T scanners
(Skyra, Prisma, and Vida, Siemens Healthineers, Erlangen,
Germany), from January of 2016 to August of 2020, were
included in the study. Axial and coronal T2-weighted (T2W)
Turbo spin-echo (TSE) images were used. Table 1 shows the
characteristics of the T2W MRI scan in the study.

Out of 3,695 3T MRI scans, 335 MRI scans (9%) were used as
a training set, and the remaining 3,360 (91%) MRI scans were
used as a testing set. Training and testing datasets were randomly
chosen from the whole dataset. The testing set included a
qualitative evaluation set (n = 3,210), a quantitative evaluation
set (n = 100), and a volume measurement evaluation set (n = 50).
Table 2 shows the data characteristics for each dataset. Training,
quantitative, and volume measurement evaluation sets required
manual prostate contours as the segmentation reference
standard. The manual annotation was prepared by an
abdominal radiologist (MQ) with more than 5 years of
experience in the interpretation of prostate MRI. In the
training set, prostate contours were drawn on all axial T2W
images from all MRI scans and on four mid-coronal T2W images
(8th to 11th out of twenty slices) from a subset of 100 MRI scans.
In the quantitative and volume measurement evaluation sets,
prostate contours were drawn on all axial T2W images.
TABLE 1 | T2-weighted TSE MRI sequence parameters in the study.

View Axial Coronal

Matrix size 320 × 320 320 × 320
Flip angle 160° 147°
Resolution 0.625 × 0.625 × 3.6 0.625 × 0.625 × 3.6
Field of view (mm2) 200 × 200 200 ×200
Repetition time (ms) 3,000–7,480 2,880–7,200
Echo time (ms) 97–112 97–109
Number of slices 20 20
Scan time (s) 200 200
December 2021 | Volume
ms, millisecond; s, second; mm, millimeter.
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DL-Based Whole Prostate Gland
Segmentation Model
Figure 1 shows the overall workflow of the automatic WPG
segmentation with DANN (13). We added the segmentation on
the coronal plane to assist the selection of axial slices, reducing
the inference time of segmentation on the axial plane. During the
testing, the workflow went through the following steps. First,
DANNcor, responsible for segmenting coronal slices, was
adopted to segment the prostate on the two-middle coronal
images (9th and 10th slices out of twenty slices) for each MRI
scan in the entire testing set. The segmented coronal images were
used to automatically select the axial T2W images that contained
the prostate gland. This would provide proper through-plane
coverage of the prostate in the axial slices. Next, DANNax was
used to perform the WPG segmentation on the selected axial
T2W images for each MRI scan in all the testing sets.

Both DANNax and DANNcor were trained independently
using the training set (n = 335). First, a subset of the training
data (n = 100) was used for training of DANNcor, and four-
middle coronal slices (8th to 11th slices out of twenty slices) were
used to make use of as many samples as possible. Once the initial
training of DANNcor was finished, two middle coronal slices
were used as input to DANNcor for the rest of the training data.
The segmented coronal slices by DANNcor were used to select
certain axial slices, and DANNax was trained using all the
selected axial slices in the entire training set. Training and
Frontiers in Oncology | www.frontiersin.org 3
inferencing were conducted on a desktop computer with a 64-
Linux system with 4 Titan Xp GPU of 32 GB GDDR5 RAM. All
the networks were trained with stochastic gradient descent as the
optimizer, with binary cross-entropy as the loss function.
PyTorch was used to implement all the DL networks. The
models were initially trained using 80% of the training dataset,
and the rest of the training dataset was used as the validation
dataset. After the optimal hypermeters were found, we retrained
the models using the whole training dataset. The learning rate
was initially set to 2.5e-3. All the networks were trained for 100
epochs with batch size 12.

Evaluation of Segmentation Performance
Qualitative Evaluation of Segmentation Performance
We adopted the visual grading, similar to (15), to qualitatively
evaluate the WPG segmentation. Two abdominal radiologists
(MQ and CS; each has over five years of experience in prostate
MRI interpretation) assigned a visual grade, ranging from 1 to 3,
to evaluate the segmentation performance, focusing on the whole
prostate and sub-portions of the prostate (e.g., apex, midgland,
and base). 1, 2, and 3 indicate unacceptable, acceptable, and
excellent segmentation performance, respectively. Table 3 shows
the details when assigning the visual grade. Typical examples
associated with each visual grade are shown in Figure 2. The
readers independently ranked the segmentation quality. In
addition, inter-rater reliability was assessed. To further
FIGURE 1 | The overall workflow of the automatic WPG segmentation with DANN. Both axial and coronal T2W images were used as input, where the coronal images
were used to assist the selection of certain axial images containing the prostate gland. DANNcor was firstly performed on the two middle coronal images, indicated by
images with the red border. Next, green lines selected by the prostate segmentation on the coronal images were used to determine the selection of axial slices (images
with green borders). Once the axial images were selected, DANNax was performed on the axial MRI slices for the segmentation of WPG.
TABLE 2 | Data characteristics in the training, qualitative, and quantitative evaluation.

Training dataset Qualitative evaluation dataset Quantitative evaluation dataset Volume evaluation dataset

Number of MRI scans 335 3,210 100 50
Number of patients with endorectal coil 3 84 0 0
MRI scans with different vendors Skyra 295 2,806 93 45

Prisma 10 145 4 3
Vida 30 259 3 2
December 2021
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investigate the segmentation at sub-portions of the prostate, we
performed the sub-analysis for MRI scans without excellent
segmentation performance agreed by both radiologists. Also,
the segmentation performance for MRI scans with and without
endorectal coil (ERC) was compared.
Frontiers in Oncology | www.frontiersin.org 4
Quantitative Evaluation of Segmentation
Performance
3D DSC (16) was used to quantitatively evaluate and compare the
segmentation performance in the quantitative evaluation set (n =
100). The manual segmentations (M) were prepared by the
A

B

C

FIGURE 2 | Typical examples for each visual grade. Rows (A–C) represent two segmentation examples with visual grades 3 (excellent), 2 (acceptable), and 1
(unacceptable), respectively. Slices 1–20 represent MRI slices from superior to inferior. Regions encircled by organ boundary are the prostate whole gland.
TABLE 3 | Description of each visual grade for qualitative segmentation evaluation.

Score Visual scoring description

3 The segmentation is excellent. The vast majority (>90%) of the prostate region has been correctly segmented, and the percentage of prostate slices with
the failure segmentation is less than 10%.

2 The segmentation is acceptable. Most of the region (>70%) is correctly segmented, and the percentage of prostate slices that the method fails to
segment is less than 30%.

1 The segmentation is unacceptable. More than 30% of the prostate region has been not correctly segmented or wrongly segmented, or the percentage of
prostate slices that the method fails to segment is larger than 30%.
December 2021 | Volume 11 | Article 801876
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radiologist on all axial slices as ground truths. DSC measures the
overlapping between M and method-based (N) segmentation of the
WPG volume and can be formulated as:

DSC =
2 M ∩ Mj j
Mj j ∪ Nj j , (1)

where ∩ and ∪ indicate the intersection and union, respectively.
Evaluation of Volume Measurement
We further evaluated the performance of DANN-enabled
volume measurements. After the radiologist manually drew the
WPG contour on all axial slices, Pyradiomics (17) was used to
calculate the prostate volume in the volume measurement
evaluation set (n = 50). The prostate volume from the DANN-
based segmentation was compared with the manual volume
measurement. The Bland–Altman plot (18) was used to
analyze the agreement between manual and DANN-enabled
WPG volume measurements.
Statistical Analysis
Meanandstandarddeviationwereused todescribe thedistributionof
DSC.Thequantitative segmentationperformancedifferencebetween
the DANN and the baselines was compared using a paired sample t-
test (19). p values < 0.05 were considered statistically significant.
Inter-rater reliability between two radiologistswasmeasuredbyusing
the k statistic (20). The relationship between the value of k and inter-
rater reliability is listed as below, k < 0: pool agreement; 0 < k < 0.2:
slight agreement; 0.21 < k < 0.4: fair agreement; 0.41 < k < 0.6:
moderate agreement; 0.61 <k<0.8: substantial agreement; 0.81 <k<
1.0: almost perfect agreement.
Frontiers in Oncology | www.frontiersin.org 5
RESULTS

Qualitative Evaluation of WPG
Segmentation
Figure 3 shows the proportion of acceptable or excellent
segmentation quality in all MRI scans on the qualitative
evaluation set at the whole prostate, or each sub-portion
(apex, midgland, or base) of the prostate. The DANN
method exhibited an acceptable or excellent segmentation
performance in more than 96% of the MRI scans on the
whole prostate or each sub-portion of the prostate. The
segmentation at the midgland portion had achieved the best
segmentation performance, while it performed the worst at the
base portion.
Qualitative Evaluation and Inter-Rater Variability for
WPG Segmentation
ForWPG segmentation, 97.9% (n = 3,141) and 93.2% (n = 2,992)
of the MRI scans were graded as having acceptable or excellent
segmentation performance. Table 4 includes the confusion
matrix to show the inter-rater variability of the visual grading.
Overall, two readers reached a substantial consensus on the
visual grading in 95.8% of the patients (k = 0.74). When
readers differed on the grading, the discrepancy in grading was
less than one. A percentage of 94.6% of segmentation results
were unanimously considered as acceptable or excellent.
Moreover, 91.5% of the MRI scans (n = 2,861) were graded as
having excellent segmentation performance according to the two
radiologists. Unacceptable segmentation performance occurred
only in 1.2% of the MRI scans (n = 39), agreed by the
two radiologists.
FIGURE 3 | The proportion of segmentation with acceptable or excellent performance evaluated by radiologists 1 and 2 among all MRI scans (n = 3210). Kappa
statistics between the two readers were also provided in the figure.
December 2021 | Volume 11 | Article 801876
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Sub-Analysis of MRI Scans Without Excellent
WPG Segmentation
We conducted the sub-analysis related to each sub-portion of the
prostate (apex,midgland, or base) when theWPG segmentationwas
not excellent. The MRI scans with excellent segmentation agreed by
two readers were excluded (n = 2,929), and the rest of theMRI scans
were used for the analysis (n = 281). Figure 4 shows the confusion
matrices of each sub-portion of the prostate on the rest of the MRI
scans. A percentage of 46.3% of the MRI scans achieved the
acceptable (or better) segmentation quality at the base slices, while
94.3%and83.3%of theMRI scans achieved the acceptable (or better)
segmentation quality at the midgland and apex slices.
Frontiers in Oncology | www.frontiersin.org 6
Comparison Between MRI Scans With
and Without ERC
We compared the WPG segmentation quality for the MRI scans
with and without ERC (21). Figure 5 shows the confusion
matrices of the visual grades of segmentation on MRI scans
with and without ERC. There were substantial agreements (k =
0.64 and 0.85) between the two radiologists on WPG
segmentation of MRI scans with and without ERC. When
considering the inter-rater agreement of WPG segmentation,
DANN demonstrated acceptable WPG performance in more
than 95.5% of MRI scans with ERC compared to 84.3% of those
without ERC. MRI scans with ERC had a larger proportion of
FIGURE 4 | Confusion matrices of the prostate base, midgland, and apex for the cases without excellent segmentation (n = 281).
FIGURE 5 | Confusion matrices of the visual grades of segmentation on MRI scans with and without endorectal coils. Kappa coefficient (k) is used to measure the
inter-rater variability between the two readers.
TABLE 4 | Confusion matrices between the visual grades assigned by two readers.

All Reader 2 Kappa (k)

Reader 1 Visual grade 1 2 3 Substantial agreement
(k =0.75)1 47 (1.5) 1 (0.0) 0 (0.0)

2 22 (0.7) 99 (3.1) 49 (1.5)
3 0 (0.0) 63 (2.0) 2,929 (91.3)
December 2021 | Volum
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unacceptable WPG segmentation compared to those without
ERC (12.1% vs. 2.2%).

Quantitative Evaluation of WPG
Segmentation
The quantitative performance of the DANNwas compared to the
other two baseline methods, including DeepLab v3+ (22) and
UNet (23). Table 5 shows the comparisons of DSCs between
DANN and the baseline methods. The DANN achieved a DSC of
0.93, which was higher than those of DeepLab v3+ and UNet
with significant differences (both p values < 0.05).

Evaluation of Volume Measurement
Figure 6 shows the agreement between manual and DANN-
enabled volume measurements in the Bland–Altman plot. The
mean difference between the two-volume measurements was
calculated as an estimated bias. Standard deviation (SD) of the
differences, and 95% limits of agreement (average difference ±
1.96 SD) were calculated to assess the random fluctuations
around this mean. A total of 48 out of 50 cases (96%) had the
volume measurement differences within 95% limits of
agreement, indicating that the manual and DANN-enabled
volume measurements can be potentially used interchangeably.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

A deep attentive neural network (13), DANN, for the automatic
WPG segmentation was evaluated on a large, continuous patient
cohort. In the qualitative evaluation, DANN demonstrated that the
segmentation quality is either acceptable or excellent in most cases.
Two radiologists exhibited a substantial agreement for the
qualitative evaluation. In the quantitative evaluation, DANN
exhibited a significantly higher DSC than the baseline methods,
such as UNet and DeepLab v3+. Also, 96% of the testing cohort had
volume measurement differences within 95% limits of agreement.

We found that DANN demonstrated worse segmentation
performance at the prostate base than at the apex and midgland
slices. This may be due to the fact that the anatomical structure of
the prostate base is relatively more complex than other prostate
portions. The prostate base is in continuity with the bladder and
seminal vesicles, and thus the boundary may contain partial
volume effects and mild movement artifacts.

We observed that the segmentation performance was somewhat
limited when MRI scans were acquired with an ERC. We believe
that this may be because there were only three MRI scans with ERC
in the training dataset. A large training data with ERCmay allow the
model to learn representative features related to the prostate MRI
with ERC. In addition, images often exhibit large intensity variation
compared to the MRI scans without ERC as ERC is close to the
prostate. This may require including an even larger training dataset
to account for these intensity variations than those without ERC.

We refined DANN by adding the coronal segmentation to assist
the selection of axial slices for WPG segmentation. With assistance
from the coronal segmentation, the axial model conducted the
segmentation only on the selected axial slices instead of applying it
to all axial slices, which reduces the inference time. Table 6 contains
the inference time between the segmentation with and without
coronal segmentation. The total inference time in a combination of
TABLE 5 | Quantitative DSC comparisons with baseline methods.

Methods DSC

Proposed method 0.93 ± 0.02
DeepLab v3+ 0.92 ± 0.02

p < 0.05
UNet 0.91 ± 0.03

p < 0.05
FIGURE 6 | Bland–Altman plot to show the agreement between manual and DANN-enabled WPG volume measurements.
December 2021 | Volume 11 | Article 801876
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coronal and axial slices was 25% less than the inference time without
assisting the selection of axial slices (12.6 vs. 16.4 min). In addition,
we observed that DSC was not different when adding the coronal
segmentation in the quantitative evaluation.

Compared with quantitative evaluation, qualitative evaluation
includes unique characteristics and benefits. The DSC-based
evaluation often overlooks the segmentation performance on
small regions when they were combined with larger regions.
Prostate at apex or base slices is relatively smaller than the one in
the middle, and therefore, the quantitative evaluation may not be
sensitive enough to illustrate limitations at these locations when 3D
DSC is used for the evaluation. Also, the DSC-based evaluation is
not directly associated with clinical implications, while qualitative
evaluation categorized the segmentation results based on the quality
to which segmentation can be acceptable clinically.

Our study still has a few limitations: 1) the MRI scans in this
study were acquired from three 3TMRI scanners at a single medical
center. Prostate MRI sequence parameters are generally well-
standardized by the Prostate Imaging–Reporting and Data System
(PI-RADS) guidelines (24), but future studies would include testing
DANN at multiple institutions. 2) The inter-rater variability was
tested between two radiologists. We will include more radiologists
to evaluate comprehensive inter-rater variability. 3) Large GPU
memory was required during the training and testing since DANN
included the spatial attention mechanism that caused considerable
computational complexity. In the future, we will explore the criss-
cross attention module (25) that uses the contextual information of
all the pixels on the criss-cross path for each pixel, which has shown
the potential to reduce the GPU memory.
CONCLUSION

Our study showed that the proposed deep learning-based
prostate segmentation (DANN) could generate segmentation of
the prostate with sufficient quality in a consistent manner when a
large, continuous cohort of prostate MRI scans was used for
evaluation. The qualitative evaluation conducted by two
abdominal radiologists showed that 95% of the segmentation
results were either acceptable or excellent with a great inter-rater
agreement. In the quantitative evaluation, DANN was superior
to the state-of-art deep learning methods, and the difference
between manual and DANN-enabled volume measurements was
subtle in most cases. The method has a great potential to serve as
Frontiers in Oncology | www.frontiersin.org 8
a tool to assist prostate volume measurements, and biopsy and
surgical planning in a clinically relevant setting.
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