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Abstract

The relationship between the structural connectivity (SC) and functional connectivity (FC)

of neural systems is of central importance in brain network science. It is an open question,

however, how the SC-FC relationship depends on specific topological features of brain net-

works or the models used for describing neural dynamics. Using a basic but general model

of discrete excitable units that follow a susceptible—excited—refractory activity cycle (SER

model), we here analyze how the network activity patterns underlying functional connectivity

are shaped by the characteristic topological features of the network. We develop an analyti-

cal framework for describing the contribution of essential topological elements, such as

common inputs and pacemakers, to the coactivation of nodes, and demonstrate the validity

of the approach by comparison of the analytical predictions with numerical simulations of

various exemplar networks. The present analytic framework may serve as an initial step

for the mechanistic understanding of the contributions of brain network topology to brain

dynamics.

Author summary

Functional connectivity, as reflected in the statistical dependencies of distributed activity,

is widely used to probe the organization of complex systems such as the brain. While this

measure has been helpful for characterizing brain states and highlighting alterations of

brain dynamics in various diseases, the mechanisms underlying the generation of FC pat-

terns remain poorly understood. One prominent factor shaping FC is the underlying neu-

ral network structure. Using a minimalist model of excitation, we investigate how the

topology of excitable neural networks contributes to FC. Specifically, we show that FC can

be analytically predicted from the way in which the nodes are embedded in the network

and how they are related to basic self-organizing units of excitable dynamics, particularly,

short pacemaker cycles. These insights are a step towards a mechanistic understanding of

the activation patterns of complex neural networks.
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Introduction

The network perspective has become a powerful and central approach for representing and

analyzing complex biological systems, spanning from the study of interacting genes to neuro-

nal assemblies [1]. Particularly for brain networks, a fundamental challenge is to understand

the relationship between the network organization (or topology) of the structural connectivity

and network activity or dynamics, as reflected by the network’s functional connectivity [2].

For more than a decade, increasingly sophisticated computational neuroscience approaches

have been used to model the activity patterns of brain networks based on their characteristic

network connectivity [3–7]. These approaches have used a variety of highly diverse node mod-

els, ranging from detailed biophysical models, eg, [8], neural mass models summarizing the

properties of neuronal populations [9], to more abstract and phenomenological models, such

as the Kuramoto model [10, 11], as well as stylized simple discrete models of neural excitation

[12]. Intriguingly, the choice of the specific computational model does not seem to crucially

affect the resulting global patterns of functional connectivity, as highly diverse models applied

on the same network may result in very similar fits of the empirical FC [13, 14]. This finding

suggests that the crucial aspect in producing functional connectivity may not be the specific

local models, but the characteristic topology of the underlying SC. Ubiquitous topological fea-

tures of brain networks are, for instance, modules (formed by nodes that are more frequently

connected among each other than to the rest of the network) and hubs (central nodes that

have more connections than average network nodes) [15, 16].

Our present goal is to systematically explore key topological contributions to SC-FC rela-

tionships, and develop a mechanistic understanding of the involved elementary processes:

How do excitable dynamics translate specific topological patterns into systematic coactivations

of nodes or functional connectivity? While previous studies have demonstrated that network

topology matters in determining the network activity patterns, they have not yet provided a

universal framework of the SC-FC relationship. Several studies have used sets of intuitive topo-

logical rules, including the topological overlap, paths distribution, as well as branching and

convergence of projections, for predicting FC [17–19]. While these predictions were compara-

ble to more sophisticated computational models in successfully predicting the empirical FC,

the predictions were still far from perfect, leaving room for further improvements as well as an

analytic understanding of the SC-FC relationship.

As we strive for a mechanistic understanding and an analytical description of how SC-FC

relationships change with network architecture, we study this question in a minimal, deter-

ministic model of excitable dynamics. Subsequent investigations will then analyze the rele-

vance of our findings for more general dynamical regimes. Here, we used the stylized

dynamics of the discrete excitable SER model [20]. The letters S-E-R denote the basic node

behavior of susceptible (S) nodes becoming excited (E) by excited neighbors, then refractory

(R), before turning once again susceptible, in discrete time steps. What the SER model offers is

a detailed mechanistic understanding of how topology regulates particular contributions to the

coactivation matrix and in this way determines FC. This minimal model of an excitable system

has a rich history in many disciplines, ranging from the propagation of forest-fires [21, 22], the

spread of epidemics [23, 24], to neuronal dynamics [25, 26]. Using a similar model setup we

have shown that the distribution pattern of excitations is regulated by the connectivity as well

as by the rate of spontaneous excitations [27]. An increase in each of these two quantities leads

to a sudden increase in the excitation density accompanied by a drastic change in the distribu-

tion pattern from a collective, synchronous firing of a large number of nodes in the graph

to more local, long-lasting and propagating excitation patterns. More recently, and focusing

particularly on the topology of excitable networks, we have shown that SC-FC relationships

Coactivation patterns in excitable neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006084 April 9, 2018 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006084


strongly and non-trivially depend on neural network topology [28–30]. Qualitatively speaking,

modularity is associated with high positive correlations between SC and FC, while a broad

degree distribution, or low network density, may lead to negative SC-FC correlations. The

mechanism behind this finding is as follows. High connectivity is associated with an elevated

excitation density. Locally high connectivity (that is, within a module) results in a statistically

higher number of excitations among nodes within the same module and, as a consequence,

systematically higher coactivations of nodes in the same module. This positive contribution to

the correlation between SC and FC tends to ‘overwrite’ the typically negative correlations aris-

ing from suppressed coactivations of linked nodes due to sequential excitation [28]. Moreover,

in [31] a first evidence for a dependence of dynamical features on the initial conditions and the

potential relevance of triangles was provided. The discrete SER model, thus, provides us with

clear hypotheses of how SC is translated into FC.

In the present work, we present a computational framework for analytically predicting pat-

terns of functional connectivity from excitable dynamics running on an arbitrary network

architecture. Our theoretical framework should be capable of addressing two main questions:

(1) Why do different network topologies show systematically different levels of SC-FC rela-

tionships? (2) How do specific subsets of initial conditions suppress or enhance different

topological features and hence lead to systematically altered coactivation matrices and, as a

consequence, alterations in SC-FC relationships? After illustrating the operation of the SER

model with some introductory examples, we present potential analytical predictions with

increasing realism. Subsequently, we explore to which extent these predictions can reproduce

simulated patterns of FC across different topological network configurations.

Results

The topological structure of a network is represented by the adjacency matrix A, where Aij = 1,

if nodes i and j are connected, 0 otherwise. Here we consider only undirected networks. In a

simplifying approach, we consider functional connectivity to be the coactivation of nodes

derived from excitation patterns of the deterministic SER model on a given graph. In the fol-

lowing investigations, T denotes the probability of having a node in the T state in the initial

conditions (or put differently, the proportion of nodes in the T state, at first), T = Pr(node

state = T) with T 2 {S, E, R}. The predictive value of the different analytical proposals, includ-

ing SC itself, was investigated by computing the (Pearson) correlation as well as the mean

signed difference between the simulated and predicted FCs. For illustrative purposes, Fig 1

shows a set of functional connectivity patterns resulting from the SER dynamics starting at dif-

ferent initial conditions. Strikingly, FC is not only shaped by the network topology, but also

strongly by the initial conditions of the SER model. For example, negative SC-FC correlations

as observed in scale-free graphs can turn into positive correlations, depending on the initial

conditions (Fig 1). Throughout the manuscript, unless otherwise stated, we explore the effect

of initial conditions such that E is varied between 0 and 1, while R = S = (1 − E)/2. See Materials

and Methods section for further details.

Initial steps: A purely topological perspective

Let us consider a pair of nodes (i, j). The most elementary contribution to coactivation is that a

common neighbor jointly activates the two nodes i and j. This first simple consideration

already points to the fact that the number of common neighbors of two nodes could predict

functional connectivity. Thus, we obtain a first prediction for the coactivation of nodes i and j,
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denoted here TO:

TOij ¼ jN ijj ¼
X

k

AikAjk; ð1Þ

where N ij denotes the set of common neighbors of the pair (i, j). This quantity is better known

by its normalized version, the matching index or topological overlap [32]. However, this quan-

tity is not able to predict the potential effect of the initial conditions, as no dependence on the

probabilities of states is incorporated. In the following section we describe how the exact pat-

tern of triangles around a pair of nodes (i, j) can generate specific patterns of coactivations.

Furthermore, we show that a striking dependence of coactivations on the statistics of initial

conditions is instigated through the probability of initializing a triangle as a pacemaker.

Macroscopic prediction

Typically in the SER simulations, starting from random initial conditions, after a short tran-

sient all nodes settle into a period-3 oscillation (except for very sparse graphs). The dynamics,

thus, typically partition the nodes of a graph into three cohorts: those jointly active at time t, at

time t + 1 and at time t + 2, respectively. The contribution of a single run to the coactivation

matrix is, therefore, almost completely determined by the initial conditions, rather than by the

network architecture. When accumulating information over a large number of runs, the pat-

tern of coactivations becomes governed by topological features of the graph. In this determin-

istic setting of the SER model, the drivers of the dynamics are autonomously oscillating

triangles serving as pacemakers [28]. A pacemaker corresponds to an isolated triangle initial-

ized with any permutation of the three states S, E and R, displaying stable oscillations that can-

not be disrupted by noise or surrounding influences when embedded in larger networks. It is a

decisive advantage of this deterministic cellular automaton model that it allows for enumerat-

ing the full state space of such network motifs.

As an illustration of this general approach, we first consider a small toy network model

consisting of the pair of nodes under consideration, a number of common neighbors and

Fig 1. Examples of FC patterns in the deterministic SER model. (Left) State space of all possible initial conditions.

(Right) Exemplar structural connectivity (first column), and associated patterns of coactivation (next columns) for

different initial conditions as represented by colored disks. Each row represents a typical network topology,

specifically, random (first row), scale-free (middle row) and modular (last row).

https://doi.org/10.1371/journal.pcbi.1006084.g001

Coactivation patterns in excitable neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006084 April 9, 2018 4 / 19

https://doi.org/10.1371/journal.pcbi.1006084.g001
https://doi.org/10.1371/journal.pcbi.1006084


independent triangles around each of these common neighbors (Fig 2A). We assume that, after

a short transient, the system settles into a period-3 oscillation (which corresponds to assuming

that the graph has a large enough number of triangles and the initial conditions contain non-

zero numbers of nodes in the S, E and R states). For each initial condition, the pattern of coac-

tivations in the deterministic SER model is then essentially a consequence of the two different

possible triangle usages: active pacemakers (i.e., triangles initialized as some permutation of S,

E, R and, thus, producing cyclic activity) and passive elements driven by other pacemakers

(i.e., triangles initialized in any other way, which autonomously would settle into an all-suscep-

tible state, but are typically excited by excitations coming from other parts of the network).

Our hypothesis is that, in order to simultaneously activate two nodes i and j, they must (1) be

not part of an active pacemaker and (2) have at least one of their common neighbors part of an

active pacemaker.

The derivation of the predictions is inspired by mean-field approaches classically employed

in epidemic models [33]. The dynamics of the nodes is characterized at the population level

per state, which considerably reduces the dimensionality of the system. For example, the prob-

ability of finding a pair of nodes in the SR state in the initial conditions simply reduces to the

product of the marginal probabilities, that is, SR. In the following section we formulate a first

prediction for the case of non-overlapping triangles (among nodes i and j, as well as among

their common neighbors). The probability that the pair (i, j) and one of their common

Fig 2. Prediction of the FC patterns in the deterministic SER model for toy examples. (A) Toy structural

connectivity network with a pair of nodes in red and their common neighbors in green (top), and associated patterns

of coactivation as a function of the initial percentage of excited nodes (bottom). Colors code for the different

predictions (magenta, red and green for the prediction from SC, TO—Eq 1 and FC1—Eq 5, respectively, black codes

for the simulated FC). (B) Same as (A) with additional links (in blue) added randomly in the original graph.

https://doi.org/10.1371/journal.pcbi.1006084.g002
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neighbors form an active pacemaker is:

4ij ¼ 2Aij ½SRð1 � ð1 � EÞjN ijjÞ þ SEð1 � ð1 � RÞjN ijjÞ þ REð1 � ð1 � SÞjN ijjÞ�; ð2Þ

The set of common neighbors of nodes i and j is characterized by the number of triangles

around each of these neighbors (not including the one formed with nodes i and j). Let cijk be

the number of triangles around the kth common neighbor of the pair (i, j), this quantity corre-

sponds to the unnormalized clustering coefficient of k minus one, if (i, j) are connected

cijk ¼ Ckdkðdk � 1Þ=2 � Aij; ð3Þ

where Ck (resp. dk) is the clustering coefficient (resp. the degree) of node k. Then the probabil-

ity that this neighbor is not part of an active pacemaker is

=5ijk ¼ Sð1 � 2REÞcijk þ Eð1 � 2SRÞcijk þ Rð1 � 2SEÞcijk : ð4Þ

Taking together Eqs 2 and 4, we obtain a prediction for the coactivation of nodes i and j,
named FC1:

FC1ij ¼ ð1 � 4ijÞð1 �
Y

k2N ij

=5ijkÞ=3; ð5Þ

where the factor 1/3 is taking into account the maximum excitation frequency of nodes in the

SER dynamics.

The prediction of coactivation probability, Eq 5, does not require the two nodes to be in the

same state. When considered in isolation, the two nodes actually have the capacity to synchro-

nize their respective phases. Indicative of such a synchronization are consecutive time steps of

a node spent in the S state. In practice (i.e., when embedding such a substructure in a broader

network context), the capacity of a pair of nodes to synchronize in such a way is strongly

reduced due to other incoming excitations. A further difference between these toy model net-

works and more general topological situations is that a much wider range of triangle types

needs to be taken into account. When considering more realistic (complex) networks, the pre-

vious prediction fails to match simulations (Fig 2B). In fact, given the deterministic nature of

the model, any triangle used as a pacemaker in the neighborhood of a pair of nodes contributes

(non-trivially) to the coactivations. Therefore, we have to enumerate all possible triangle con-

figurations surrounding a pair of nodes.

Counting triangles

There exists a variety of triangle motifs potentially surrounding a pair of nodes (Fig 3). In the

following, we classify such triangles according to their distance to the nodes of interest. First, we

have triangles adjacent to the pair which can be characterized as follows, triangles adjacent to:

• i and j: t0, this quantity corresponds to TO 1 multiplied by the adjacency matrix;

• i or j and zero common neighbor: t00, where t00
Ij (t00

iJ ) represent the number of triangles adja-

cent to i (resp. j);

• i or j and one common neighbor: t01, where t01
Ijk (t01

iJk) represent the number of triangles adja-

cent to i (resp. j) and to the kth common neighbor;

• i or j and two common neighbors: t02, where t02
Ij ¼ t02

iJ represent the number of triangles

adjacent to i or j.

Coactivation patterns in excitable neural networks
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One step further, we have a set of triangles not directly adjacent to (i, j), but adjacent to

their common neighbors; as such we have the set of triangles adjacent to:

• one common neighbor: t11, where t11
ijk represent the number of triangles adjacent to the kth

common neighbor;

• two common neighbors: t12, where t12
ijl represent the number of triangles adjacent to the lth

pair of common neighbors;

• three common neighbors: t13.

Such an arrangement defines an hierarchy of triangles, where the levels are defined by the

distance from the pair of nodes. The first level corresponds to the set {t0k} where the average

distance is zero, {t1k} represents the second level with an average distance of 1. In this way, we

can iteratively define the successive levels of the hierarchy, for instance the third level (Fig 3).

However, from a dynamical perspective, higher level triangles have a negligible contribution to

FC. Moreover, taking into account such higher order triangles significantly complicates the

analytical prediction (see below).

Microscopic prediction using pacemakers

Once having enumerated all possible triangles surrounding a pair of nodes, we can now in a

systematic way enumerate all possible contributions (or non-contributions) of these triangles

to FC if used as pacemakers. We introduce here a new notation for easier reading. In

Fig 3. Potential triangle motifs surrounding a pair of nodes. The first row represents the first level of the hierarchy

of triangles, with triangles adjacent to at least one node of the pair, while the second row represents the second level

with triangles non-adjacent to the pair, but adjacent to at least one common neighbor. The third row represents the

third level, where triangles are non-adjacent to the pair and to the set of their common neighbors, but adjacent to at

least one neighbor of one node of the pair. Red nodes represent the pair considered, red (resp. blue) dashed edges

represent optional edges (resp. potential motifs not considered in the current formalism).

https://doi.org/10.1371/journal.pcbi.1006084.g003
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particular, a circled arrow around a topological quantity crossed indicates that it is cancelled,

meaning that no triangle is used as pacemaker. The orientation of the arrow represents the

direction of propagation of the excitation within the triangle (double arrows represent the pos-

sibility of excitation running in both ways). Moreover, capital letters are used for indices i and/

or j if a pacemaker is adjacent to them. For example, the above prediction reads as follows:

is the probability of having no triangle adjacent to both i and j (t0) used as pacemaker, and,

is the probability to have at least one triangle used as a pacemaker adjacent to a common

neighbor of the pair (i, j) and to i and j at one step distance. Then, when we merge all condi-

tional probabilities, the probability of coactivations, named FC2, reads:

ð6Þ

where greylevel codes for the levels (1st gray and 2nd black). See Materials and Methods sec-

tion for further details.

Relative predictive power

We investigated the relative predictive power of the different analytical formulae (including

SC, TO, FC1 and FC2) across three typical network topologies (see Materials and Methods sec-

tion). The formalism based on pacemakers (FC2—Eq 6) in general has the best predictive

power, both in terms of correlation and mean difference (Fig 4). FC1 (resp. SC and TO) gener-

ally over- (resp. under-) estimated the empirical FC. The predictions appear robust across

Coactivation patterns in excitable neural networks
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network realizations as well as across different level of network’s density (S1 Fig). Additionally,

we also verified and validated our formalism with generic graphs with a given triangle motifs

distribution (S2 Fig).

Next, we fully explore the space of possible initial conditions. We observed that the correla-

tion between SC and FC is highly specific for the topological properties of the underlying

structural network. As previously reported, random networks display no or slightly negative

SC-FC correlations (depending on their density), scale-free graphs have moderate negative

correlations between SC and FC, and modular networks show strong positive correlations

(Fig 5). Additionally, the analytical framework based on pacemakers is able to predict the sim-

ulated FC for a relatively wide range and, thus, across almost the full space of possible initial

conditions.

Discussion

In the present study, we developed an analytical framework for predicting the patterns of

functional connectivity (that is, the coactivations of nodes) in excitable dynamics on neural

networks. As an initial step, we considered a minimal model of neural excitation, the deter-

ministic SER model. The predictions were based on key dynamical ingredients in the deter-

ministic regime of the model, that is, period-3 oscillations and the presence of triangles serving

Fig 4. Illustration of the predictive power of the analytical predictions of FC in the deterministic SER model.

Example of coactivation (FC) for a randomly selected pair of nodes (first column), correlation (second column) and

mean (signed) difference (third column) between simulated and predicted FCs. The plots are a function of the number of

nodes initially in the E state and the analytical predictions (magenta, red, green and blue for the prediction from SC, TO

—Eq 1, FC1—Eq 5 and FC2—Eq 6, respectively, black codes for the simulated FC). The last column represents the scatter

plot of the relation between FC2 (Eq 6) and simulated FC. Each row represents a typical network topology, that is,

random (first row), scale-free (middle row) and modular (last row).

https://doi.org/10.1371/journal.pcbi.1006084.g004
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as pacemakers The proposed analytical formula generally predicts the simulated FC across a

wide range of initial settings. The framework can be extended to achieve arbitrarily high preci-

sion, by including even higher order triangles motifs. However, there are diminishing returns

due to the very small contributions of the higher order motifs, which are obtained at a high

degree of computational complexity.

This study provides a fully analytic framework for predicting patterns of functional connec-

tivity from the structural topology of networks. Previous work has already demonstrated that

it is the network topology, rather than the specific computational model, that shapes FC [13,

14]. While some intuitive rules can be formulated regarding the features of the topology that

may be relevant [17], a substantiated mechanistic explanation of the contributions of different

network elements to non-stationary activity patterns and FC has so far been lacking. The pres-

ent framework achieves this goal for the deterministic SER model and allows to predict FC for

a wide range of initial conditions with high accuracy.

While the SER model at first glance may appear overly simplistic, it captures the essential

steps of the susceptibility, excitation and recovery of neural dynamics and, due to this general

nature, can be widely applied in neuroscience. Indeed, variants of this kind of discrete excitable

model have been broadly used to simulate neural network dynamics ranging from the interac-

tions of single cells [25, 26, 34] to multi-scale whole brain dynamics [35, 36]. When combined

with an appropriate forward model, the discrete excitable model can also be brought to pro-

duce realistic approximations of observable neural dynamics, such as in fMRI BOLD signals

[12, 30]. Thus, the present framework may also be used for the analytical prediction of empiri-

cal functional connectivity derived from large-scale neuroimaging.

Fig 5. Predictive power of the analytical predictions of FC over the full space of initial conditions in the

deterministic SER model. Columns code for the different potential predictors (SC, TO—Eq 1, FC1—Eq 5 and FC2—

Eq 6, from left to right) and rows represent typical network topology. For each panel, the upper (resp. lower) triangular

parts of the matrices represent the correlation (resp. mean difference) between the simulated FC and its predictor.

https://doi.org/10.1371/journal.pcbi.1006084.g005
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At the same time, the discrete excitable model has some methodological advantages over

more detailed and complex models of neural dynamics (such as biophysical and mass models).

Due to the limited number of its parameters, involving only the statistics of the three states, as

well as the absence of further free parameters, the model facilitates a systematic exploration of

the initial conditions of excitable networks. Indeed, for suitably small graphs, the model even

allows the exhaustive characterization of the complete operating range of a particular network

architecture. Empirically, the dependence of dynamical patterns on initial conditions is still

largely unexplored, due to the technical challenges of controling such factors. However,

there is some evidence showing that neuronal excitability may modulate brain functional con-

nectivity, for example in Alzheimer’s disease [37]. Moreover, the deterministic setting of the

model allows the systematic identification of the topological contributions to the coactivation

patterns of nodes. For instance, we observed that the predictions work generally fairly well for

modular graphs, as in [30]. This is an crucial observation, as virtually all networks in systems

biology are modular.

The insights gathered in the present study can be used as a basis for exploring more elabo-

rate models of neural dynamics. In particular, it needs to be explored how the topological pre-

dictors of activation patterns identified in the present study can be transposed into more

complicated scenarios, such as the stochastic version of the SER model [38] or alternative

dynamical models, such as the Fitzhugh-Nagumo model [30]. These next steps will further

deepen our mechanistic understanding of how the characteristic topological features of com-

plex brain networks contribute to their global activity patterns and function.

Materials and methods

Networks

To investigate the role of topology for the functional connectivity patterns of networks in the

SER model, we considered three different types of undirected benchmark graphs: random,

scale-free, and modular networks. The random graph was the classical Erdős-Rényi model

[39], the scale-free graph was the Barabási-Albert model [40], and the modular graph was a

composition of four small random graphs of identical size and with few links among them.

The artificial networks had 60 nodes and about 800 links, and were generated with the software

package NetworkX [41] as used in [28]. The layouts were generated using a force-directed

algorithm [42].

Additionally, we also explored the robustness of the predictions across various network

realizations and densities (from 0.1 to 0.6 by step of 0.1). For each density value, we generated

50 synthetic random graphs with 60 nodes, computed the simulated and predicted FCs, and

quantified the predictive power of the analytical proposals. Synthetic graphs were generated

using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/) [43].

Model

We used a simple three-state cellular automaton model of excitable dynamics, the SER model,

representing a stylized biological neuron or neural population [20]. The SER model operates

in discrete time and employs the following synchronous update rules, a node in the:

• S! E if at least one neighbor is excited;

• E! R;

• R! S.
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This deterministic version was investigated in detail in [28], where, for example, the role of

cycles in storing excitations and supporting self-sustained activity was elucidated. The only

remaining parameters are the underlying topology of the structural connectivity on which the

model runs, and the pattern of initial states.

Functional connectivity

After appropriate initialization of the deterministic model, the network activity settles into a

regular periodic behavior. Therefore, the nodes are divided into distinct groups; nodes are in

the same dynamic group when they are simultaneously active. To analyze the pattern of joint

excitations, we computed the number of simultaneous excitations for all pairs of nodes. The

outcome matrix is the so-called coactivation matrix, a representation of the functional connec-

tivity of the nodes:

Cij ¼
X

t

1Eðx
t
iÞ1Eðx

t
j Þ;

where xt
i 2 {S, E, R} being the state of node i at time t, and 1E the indicator function of state E

1Eðxt
iÞ ¼

(
1; if xt

i 2 E

0; otherwise

Numerical details

In the deterministic SER model, for each network and each initial condition setting, we simu-

lated 5 000 runs of 50 time steps. Unless otherwise stated, the initial conditions were randomly

generated, with a probability to set a node into the excited state E between 0 and 1; while the

remaining nodes were equipartitioned into susceptible S and refractory R states. FC was

summed over runs and normalized by dividing by the product of the number of runs and time

steps, scaling FC values between 0 and 1/3. This normalized coactivation matrix was used for

all subsequent analyses.

In order to probe the predictive power of the different analytical proposals, including SC

itself, we computed the Pearson correlation as well as the mean signed difference between the

simulated and predicted FCs. Diagonal elements of matrices were excluded to avoid spurious

variations of the prediction. Additionally, SC and TO (the purely topological predictors) were

normalized when computing their predictive values, to avoid spurious variations of mean dif-

ferences with simulated FCs. The normalization was done by dividing them by three times

their maximum, effectively scaling the values between 0 and 1/3, as for FC.

Analytical prediction of FC based on pacemakers

We here enumerate in a systematic way all possible (non-)contributions of the triangles motifs

to FC if used as pacemakers. Given the periodic behavior of pacemakers, in the following treat-

ment we only describe the cases where a pair of nodes (i, j) is in SS or SE states, all others con-

figurations can be deduced in a similar way.

We have to consider two main components. The first one is the set of pacemakers which

contribute (or not) systematically to FC, and the other one corresponds to the set of pacemak-

ers which may lead to a systematic contribution to FC providing that the pair (i, j) synchro-

nizes over time. The systematic (non-)contribution of each triangle motif is as follows:
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• t0 never contributes to FC if at least one triangle is used as a pacemaker which leads to the

following criteria:

• t00 can systematically contribute to FC if at least one adjacent triangle is used as a pacemaker

at each node, and that these pacemakers are synchronized (i.e. nodes i and j are in the same

initial state):

where

Additionally, if i and j are in different states (e.g. SE), then we must not have adjacent pace-

makers at each node:

• t01 can systematically contribute to FC if nodes i and j are in the same initial state. We have

to consider the direction of excitation propagation. If we have one pacemaker adjacent to i
or j and the excitation propagating from the common neighbor to the pair (i, j), then it will

systematically contribute to FC, otherwise we need a least one pacemaker adjacent at both

nodes:

where

If i and j are in different states (e.g. SE), then t01 will never contribute to FC in two cases. The

first case is when i (or j) is adjacent to a pacemaker and j (or i) is also adjacent to this pace-

maker, but at a distance of one (step). For example, if (i, j) 2 SE and i is adjacent to one

Coactivation patterns in excitable neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006084 April 9, 2018 13 / 19

https://doi.org/10.1371/journal.pcbi.1006084


pacemaker where the common neighbor is in R state, then j will be enslaved by the activity

of this pacemaker. The second case corresponds to having two independent pacemakers

adjacent to i and j. Additionally, the set (i, j, k) must not form a pacemaker if Aij = 1:

where

• t02 will always contribute to FC, if at least one of the triangles is used as a pacemaker and the

two nodes are in the same initial state

If i and j are in different states (e.g. SE), then we must not have pacemakers adjacent to both

nodes or independent pacemakers adjacent to each node:

where

• t11 and t12 can contribute to FC if we have at least one pacemaker adjacent to a common

neighbor and to i and j at one step:
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where

• t13 does not contribute directly to FC, if at least one triangle is used as a pacemaker then it

necessarily imply that a triangle within t01 or t02 is also used as a pacemaker.

Assuming synchronization of the pair (i, j), the contribution of the different triangles is as

follows:

• t01 can contribute to FC if at least one triangle is used as a pacemaker with excitation going

from the common neighbor k to the pair (i, j). Additionally, in order to obtain the synchro-

nization, (i, k, j) must not form a pacemaker of length 4 with another common neighbor.

This condition is also valid for t11, when one pacemaker is attached to one the nodes (i, j):

where (resp. ) represents the probability of not having the pair (i, j) form-

ing a pacemaker of length 4 when we have at least one pacemaker attached to i (resp. j)
within the motifs t01 and t11,

• if one t11 or t12 is used as a pacemaker and is not attached to i or j, then it can contribute to

FC if the pair (i, j) are in the same initial state and no pacemaker is used in t00 and t01
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where

If the nodes i and j are in different initial states, then t11 can contribute to FC if no pacemaker

is used in t00, t01, t02, and that the nodes i and j are not forming a pacemaker of length 4 with

the common neighbor involved in t11 and one additional common neighbor

where

As for t11, t12 can contribute to FC if the nodes i and j are in different initial states, except

that we can have pacemakers within t00, t01 or t02 motifs if i or j is already adjacent to the

pacemaker in t12

where

Validation of the analytical prediction based on pacemakers

In order to validate our approach, we used synthetic toy graphs with a desired triangle motifs

around a given pair of nodes. For each triangle motif, we then generated a random graph with

30 nodes. For triangle motifs involving common neighbors (ie, t01, t02, t11 and t12), we fixed the

number of common neighbors to 6. Everything else was set randomly.
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Supporting information

S1 Fig. Effect of network density on the analytical FC prediction for random graphs. Mean

and standard deviation across network realizations of the correlation (first row) and mean dif-

ference (second row) between simulated and predicted FCs as a function of the number of

nodes initially excited and the network density (shaded colored lines). Of note, the standard

deviation is almost indistinguishable as it is very close to zero.

(EPS)

S2 Fig. Validation of the analytical FC prediction with toy graphs. Set of toy networks (first

column) with specific distributions of triangle motifs (second column) around a pair of nodes

(in red, green nodes denotes their common neighbors), and the associated simulated and pre-

dicted FCs. The plots are function of the number of nodes initially excited and the analytical

prediction (magenta, red, green and blue for the prediction from SC, TO—Eq 1, FC1—Eq 5

and FC2—Eq 6, respectively, black codes for the simulated FC).

(EPS)

S1 File. Deterministic SER model (Matlab code).

(M)

S2 File. Analytical FC prediction in the deterministic SER model from FC1—Eq 5 and FC2

—Eq 6 (Matlab code).

(M)

S3 File. Triangle motifs detection routine (Matlab code).

(M)

S4 File. Number of triangles around common neighbors, Eq 3 (Matlab code).

(M)
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