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Inspired by the catalytic mechanism and active site structure of lactate racemase,

three scorpion-like SCS nickel pincer complexes were proposed as potential catalysts

for transfer hydrogenation of ketones and imines with ammonia-borane (AB) as the

hydrogen source. Density functional theory calculations reveal a stepwise hydride

and proton transfer mechanism for the dehydrocoupling of AB and hydrogenation

of N-methylacetonimine, and a concerted proton-coupled hydride transfer process

for hydrogenation of acetone, acetophenone, and 3-methyl-2-butanone. Among all

proposed Ni complexes, the one with symmetric NH2 group on both arms of

the SCS pincer ligand has the lowest free energy barrier of 15.0 kcal/mol for

dehydrogenation of AB, as well as total free energy barriers of 17.8, 18.2, 18.0, and

18.6 kcal/mol for hydrogenation of acetone, N-methylacetonimine, acetophenone, and

3-methyl-2-butanone, respectively.

Keywords: lactate racemase, SCS nickel pincer, ammonia-borane, density functional theory, transfer

hydrogenation, ketones, amines

INTRODUCTION

Compared with direct hydrogenation, transfer hydrogenation (TH) avoids the use of hazardous
molecular hydrogen and high pressure equipment by adopting low-cost and safe hydrogen provider
compounds (Gladiali and Alberico, 2006; Ikariya and Blacker, 2007). Transition-metal-catalyzed
TH has attracted increasing attentions in pharmaceutical, agrochemical, fragrance and other fine
chemical industries as a powerful and practical way for the production of valuable chiral alcohols
and amines (Blaser et al., 2003, 2007; Klingler, 2007; Saudan, 2007; Hansen et al., 2009).

The first TH reaction is Meerwein-Pondorf-Verley (MPV) reduction of ketone
reported in mid-1920s (Meerwein and Schmidt, 1925; Verley, 1925; Ponndorf, 1926).
In MPV reduction, direct TH happens through a cyclic six-membered transition
state with alcohol and the carbonyl coordinated to the aluminum center. However,
the low enantio-selectivity and undesired side reactions are well-known drawbacks
in MPV reduction. In early 1980s, Matteoli et al. (1981) reported the first catalytic
asymmetric transfer hydrogenation (ATH) reaction, in which a ruthenium complex
H4Ru4(CO)8[(–)-DIOP]2 was used as the catalyst with secondary alcohols or indoline as the
hydrogen source, for hydrogenation of prochiral ketones. To date, although significant progress
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has been made in transition metal-catalyzed TH and ATH
reactions (Gopalaiah, 2013; Zuo et al., 2013, 2016; Pellissier
and Clavier, 2014; Li et al., 2015; Morris, 2015; Wang and
Astruc, 2015; Zuo and Morris, 2015), most reported catalysts
are based on expensive and toxic noble metals, such as Rh, Ir,
Ru, etc. (Gopalaiah, 2013; Pellissier and Clavier, 2014; Li et al.,
2015; Morris, 2015; Wang and Astruc, 2015). The replacement
of high-cost and toxic precious metals with abundant and
environmentally benign base metals in catalysts for efficient TH
and ATH reactions has attracted increasing attention in recent
years, and several iron catalysts have been reported (Zhou et al.,

FIGURE 1 | Scorpion-like (SCS)Ni pincer complexes proposed by Qiu and Yang (2017).

SCHEME 1 | Proposed mechanism for the dehydrocoupling of AB and TH of acetone catalyzed by 1A.

2011; Gopalaiah, 2013; Zuo et al., 2013, 2016; Pellissier and
Clavier, 2014; Li et al., 2015; Lu et al., 2015; Morris, 2015; Zuo
and Morris, 2015; Smith et al., 2017). For example, Gao (Li
et al., 2015) and Morris (Zuo et al., 2013; Morris, 2015; Zuo and
Morris, 2015) groups reported tetradentate PNNP iron catalysts
for ATH of acetophenone with high enantioselectivities. Morris
and co-workers (Smith et al., 2017) reported unsymmetrical
iron P-NH-P’ complexes for asymmetric hydrogenation of aryl
ketones with ee values >90%. Morris (Zuo et al., 2013; Morris,
2015) and Beller (Zhou et al., 2011; Lu et al., 2015) groups
developed iron catalyzed asymmetric hydrogenation of imines
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and found high enantioselectivities for the reductions of N-
phosphinyl ketimines.

In contrast to the encouraging progress archived in iron
catalysts, ATH of ketones catalyzed by cobalt complexes have
rather low enantioselectivities (Morris, 2015). Only a few Ni
catalysts have been reported so far (Hamada et al., 2008; Hibino
et al., 2009; Dong et al., 2012; Yang et al., 2014; Xu et al.,

2015). In 2008, Hamada and co-workers (Hamada et al., 2008)
applied nickel-bisphosphine complexes to catalyze asymmetric
hydrogenation of α-amino-β-keto ester hydrochlorides and
achieved high diastereo- and enantioselectivities (88–93% ee)
for the production of anti-β-hydroxy-α-amino esters. They
also used the same catalyst for asymmetric hydrogenation
of substituted aromatic α-aminoketone hydrochlorides to

FIGURE 2 | Free energy profile for the dehydrocoupling of AB and TH of acetone catalyzed by 1A.

FIGURE 3 | Optimized structures of 6A1, TS2,3−A (495i cm−1 ), TS3,4−A (388i cm−1), and TS6,7−A1 (510i cm−1). Bond lengths are in angstrom.
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produce β-aminoalcohols and found excellent diastereo- and
enantioselectivities (Hibino et al., 2009). In 2012, Dong et al.
(2012) reported Ni(II) complexes chelated by PNO ligands

for catalytic ATH of aromatic ketones with 2-propanol as the
hydrogen source and obtained optical alcohols up to 84% ee
under mild conditions. In 2014, Yang et al. (2014) reported a

SCHEME 2 | 1A catalyzed TH of N-methylisopropylamine with stepwise proton and hydride transfers.

FIGURE 4 | Free energy profile for the TH of N-methylacetonimine catalyzed by 1A.
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highly active Ni(OAc)2/Binapine catalyst for the synthesis of α-
and β-amino acid trough ATH of olefins with formic acid. Later
on, they reported a highly active NiCl2(dme)/Binapine catalysts
for ATH of hydrazones and other ketimines (Xu et al., 2015).

In a typical TH process, low-cost compounds such as 2-
propanol (Haack et al., 1997) and formic acid (Fujii et al.,
1996), are used as hydrogen donors. However, reversibility is
a major drawback while 2-propanol is used as the hydrogen
source. Excessive 2-propanol are usually required for the
formation of alcohol. Formic acid releases stable CO2 after
its dehydrogenation and does not suffer from equilibrium
problems but can only be used for a limited range of stable
complexes. Compared to alcohols, amine-boranes are easy
to handle, irreversible, and potentially recyclable hydrogen
donors (Nixon et al., 2011). Therefore, amine-boranes, especially
ammonia-borane (AB), are promising to serve as solid hydrogen
surrogates in TH reactions (Nixon et al., 2011). In recent years,
Pagano et al. (2015) reported cobalt catalyzed dehydrocoupling
of AB and TH of alkenes and alkynes. Fu et al. (2016), Shao
et al. (2016), and Ai et al. (2019) reported the first cobalt-
catalyzed selective TH of alkynes, and the only example of
cobalt-catalyzed TH of nitriles with dehydrocoupling of AB
under mild conditions. Yang et al. (2010, 2011a,b) recently
reported direct TH of polarized C=N, C=C, and C=O bonds
in imines, olefins, ketones, and aldehydes from AB. Li et al.
(2016, 2017), Meng et al. (2018) reported frustrated Lewis pair
catalyzed ATH of imines with AB and ATH of 2,3-disubstituted
quinoxalines with AB. Ding et al. (2017) reported TH of N-
heterocycles from AB prompted by B(C6F5)3. Korytiakova et al.
(2017) reported Cu(I) catalyzed transfer semihydrogenation
of alkyne and conjugate transfer hydrogenation of enoates
with the dehydrocoupling of AB. Barrios-Francisco and García
(2010) reported semihydrogenation of alkynes fromAB catalyzed
by Ni(0) complexes. Chong et al. (2014) reported 1,3,2-
diazaphospholenes-catalyzed metal-free TH of N=N double
bond using AB. Although some iron and nickel catalysts for
acceptorless dehydrogenation of AB have also been developed
(Keaton et al., 2007; Yang and Hall, 2008; Zimmerman et al.,
2009a,b; Vogt et al., 2011; Bhunya et al., 2016; Lunsford et al.,

2016; Rossin and Peruzzini, 2016; Chakraborty et al., 2017; Coles
et al., 2017), effective base metal catalyst for TH of ketones using
AB under mild conditions was rarely reported.

Inspired by the catalytic mechanism and the active site
structure of lactate racemase (Desguin et al., 2015), as well as
previously reported SCS nickel pincer complexes (Meguro et al.,
2008; Xu et al., 2017), we recently proposed and computationally
predicted several promising scorpion-like SCS nickel pincer
complexes for catalytic lactate racemization and ATH of 1-
acetonaphthone based on density functional theory (DFT)
calculations (Qiu and Yang, 2017; Qiu et al., 2019). In this
paper, we further examined three SCS nickel pincer complexes
as potential catalysts for fast dehydrocoupling of AB and TH of
ketones and imines.

RESULTS AND DISCUSSION

Figure 1 shows our previously proposed scorpion-like SCS nickel
pincer complexes 1A, 1B, and 1C with imidazole tails. 1A and 1B
have symmetric arms but different sizes of amino groups in the
SCS ligand, which are similar to the Ni complexes with pincer
SCS ligands synthesized by Hu and co-workers (Xu et al., 2017).
1C is a mimic of the active site of lactate racemase with a carbonyl
arm in the SCS pincer ligand.

Scheme 1 is the proposed reaction cycle for the
dehydrocoupling of AB and hydrogenation of acetone to 2-
propanol catalyzed by 1A. Figure 2 reports the corresponding
free energy profile. The optimized structures of key intermediates

TABLE 1 | Free energy barriers of the TH of acetone and N-methylacetonimine

with AB catalyzed by 1A, 1B, and 1C.

Catalysts 1Gacetone (kcal/mol)

(6X1 → TS6,7-X1, X=A,B,C)

1GN-methylacetonimine

(kcal/mol)

(7X2 → TS7,8-X2, X=A,B,C)

1A 17.8 18.2

1B 19.3 16.4

1C 20.0 19.2

FIGURE 5 | Optimized structures of 7A2 and TS7,8−A2 (700i cm−1). Bond lengths are in angstrom.
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and transition states in the reaction are displayed in Figure 3.
The reaction cycle, free energy profile, and key structures of
the TH of N-methylacetonimine catalyzed by 1Aare shown in
Scheme 2, Figures 4, 5, respectively.

The transfer hydrogenation reaction starts with
dehydrocoupling of AB. When an AB molecule approaches
1A, a hydride on borane could be transferred to the sp2 carbon
coordinated to nickel through transition state TS2,3−A (1G =

15.0 kcal/mol) and forms an unstable intermediate 3A. An
ammonia proton then transfers to the imidazole nitrogen

through transition state TS3,4−A (1G = 13.9 kcal/mol). The
exchange of acetone and H2NBH2 in 4A forms a 7.2 kcal/mol
stable intermediate 6A1. Then the proton and hydride obtained
from AB transfer from the pincer ligand in 6A1 to acetone in
one-step through TS6,7−A1 (Figure 3) with a free energy barrier
of 17.8 kcal/mol for the formation of 2-propanol.

Different from the hydrogenation of acetone, the proton
and hydride are transferred from the pincer ligand in 6A2 to
N-methylacetonimine in a stepwise way with two transition
states, TS6,7−A2 and TS7,8−A2. The total free energy barrier

FIGURE 6 | Free energy profile for the TH of acetophenone catalyzed by 1A.

FIGURE 7 | Free energy profile for the TH of 3-methyl-2-butanone catalyzed by 1A.
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FIGURE 8 | Optimized structures of 6A3, 7A3, TS6,7−A3 (485i cm−1 ), and TS6,7−A4 (663i cm−1). Bond lengths are in angstrom.

TABLE 2 | Free energy barriers of the TH of acetophenone and

3-methyl-2-butanone with AB catalyzed by 1A, 1B, and 1C.

Catalysts 1Gacetophenone

(kcal/mol)

1G3-methyl-2-butanone

(kcal/mol)

(5X → TS6,7-X4, X=A,B,C)

1A 18.0 (7A3 → TS2,3−A ) 18.6

1B 19.2 (7B3 → TS2,3−B) 19.5

1C 19.7 (6C3 → TS6,7−C3) 20.8

of the hydrogenation of N-methylacetonimine is 18.2 kcal/mol
(7A2 → TS7,8−A2).

Table 1 lists calculated free energy barriers of the
hydrogenations of acetone and N-methylacetonimine (1Gacetone

and 1GN−methylacetonimine) catalyzed by 1A, 1B, and 1C. The
difference of those relative free energies are less than 4 kcal/mol,
which indicates a rather weak steric effect with different
functional groups in the pincer ligand.

Figures 6, 7 report free energy profiles for 1A catalyzed
TH of acetophenone to 1-phenyl-ethanol and TH of 3-methyl-
2-butanone to 3-methyl-2-butanol, respectively. Some key
structures in those catalytic reactions are displayed in Figure 8.

The AB dehydrocoupling process has the same free energy
barrier of 15.0 kcal/mol in Figures 6, 7. The hydrogenation of
acetophenone goes through a concerted one-step proton and
hydride transfer transition state TS6,7−A3 (Figure 8). Although
TS6,7−A3 is 17.7 kcal/mol higher than 7A3,the total free energy
barrier of this catalytic TH reaction is 18.0 kcal/mol (7A3 →

TS2,3−A) after considering the barrier of AB dehydrogenation.
The THs of acetophenone and 3-methyl-2-butanone catalyzed

by 1A, 1B, and 1C have similar mechanisms but slightly different

energy barriers, which are listed in Table 2. We can see the free
energy barriers of 1B and 1C are higher because of the stronger
steric effects of dimethyl groups in them.

It is worth to note that the role of the imidazole groups
in those scorpion-like SCS nickel pincer complexes are proton
reservoirs facilitating proton transfer in the dehydrocoupling of
AB and hydrogenation of C=O and C=N bonds. The ethylene
group connecting the pyridinium ring and the imidazole group
ensures the adjustability of the imidazole group’s position for the
hydrogenation of different ketones and imines. The substituents
on the arms of the SCS ligand can slightly influence the reaction
barriers through their steric effects. We believe the stepwise
hydride and proton transfers in hydrogenation of 3-methyl-2-
butanone are caused by the weak polarity of the C=N bond
in it.

CONCLUSIONS

In summary, we computationally examined three scorpion-like
SCS nickel pincer complexes, 1A, 1B, and 1C, with different
steric effects as potential catalysts for catalytic TH of ketones
and imines. Our calculations reveal stepwise hydride and
proton transfer processes for the dehydrocoupling of AB and
hydrogenation of imine, and a proton coupled hydride transfer
process for hydrogenation of ketones. Among three examined
Ni complexes, 1A with symmetric NH2 groups in the pincer
ligand has the lowest free energy barriers of 17.8, 18.2, 18.0,
and 18.6 kcal/mol for transfer hydrogenations of acetone, N-
methylacetonimine, acetophenone, and 3-methyl-2-butanone,
respectively. 1B and 1C have slightly higher barriers for the same
reactions because of their stronger steric effects. Such low barriers
and exothermicities shown in calculated free energy profiles
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indicate that those (SCS)Ni pincer complexes are promising
catalyst candidates for efficient TH of ketones and amines under
mild conditions. The steric effects of the substituents on the
arms of the pincer ligand have very weak influence on the
energy barriers of the catalytic reactions. Our computational
predictions not only provide prototypical base metal catalysts for
dehydrocoupling of AB and transfer hydrogenation of ketones
and imines, but also shed a light for further development of
cost-effective catalysts for the hydrogenation of polarized double
bonds. Further design of base metal complexes with SCS pincer
ligands for more hydrogenation and dehydrogenation reactions
is underway.

COMPUTATIONAL DETAILS

The Gaussian 09 suite of ab initio programs (Frisch et al., 2010)
was employed to perform all DFT calculations at the ultrafine
(99,590) numerical integration level for the ωB97X-D (Chai
and Head-Gordon, 2008) functional with Stuttgart relativistic
effective core potential (ECP10MDF) basis set (Martin and
Sundermann, 2001) and all-electron 6-31+G(d,p) basis set
(Hehre et al., 1972; Hariharan and Pople, 1973; Francl et al., 1982)
for Ni and all other atoms, respectively. Without other specific
instruction, all structures in this paper were fully optimized
in THF by using the integral equation formalism polarizable
continuum model (IEFPCM) (Tomasi et al., 2005) with SMD
(Marenich et al., 2009) atomic radii solvent corrections. The
ground states of all structures were confirmed as singlet
through comparison with optimized high-spin analogs. Thermal
corrections were considered under 298.15K and 1 atm pressure
through frequency calculations using the same method on
optimized structures. The optimized structures were confirmed
to have no imaginary vibrational mode for intermediates and
only one imaginary vibrational mode for each transition state,

which was further confirmed by intrinsic reaction coordinate
(IRC) calculations to ensure proper stationary points were
connected. The 3D molecular structures displayed in the text
were drawn by using the JIMP2 program (Manson et al., 2006).
We also evaluated the performance of various density
functionals and the influence of solvent effect corrections
for this Ni catalytic system. The calculation results and
discussions are provided in the Supplementary Materials
(Tables S1 and S2).
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