
1

OPEN

DATA

A random forest model based on core genome allelic 
profiles of MRSA for penicillin plus potassium clavulanate 
susceptibility prediction

Hemu Zhuang, Feiteng Zhu, Peng Lan, Shujuan Ji, Lu Sun, Yiyi Chen, Zhengan Wang, Shengnan Jiang, Linyue Zhang, 

Yiwei Zhu, Yan Jiang, Yan Chen* and Yunsong Yu*

RESEARCH ARTICLE
Zhuang et al., Microbial Genomics 2021;7:000610

DOI 10.1099/mgen.0.000610

Received 23 November 2020; Accepted 15 May 2021; Published 23 September 2021
Author affiliations: 1Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial 
Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, 
Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China.
*Correspondence: Yan Chen, ​chenyan@​zju.​edu.​cn; Yunsong Yu, ​yvys119@​zju.​edu.​cn
Keywords: CC59; machine learning; methicillin-resistant Staphylococcus aureus; mecA; penicillin; random forest.
Abbreviations: AST, antibiotic susceptibility test; AUC, area under receiver operating curve; CC, cloning complex; cgMLST, core genome multilocus 
sequence typing; CLSI, Clinical and Laboratory Standards Institute; ENA, European Nucleotide Archive; ISA, Iso-Sensitest agar; MIC, minimum 
inhibitory concentrations; MRSA, methicillin-resistant Staphylococcus aureus; NAM-MRSA, MRSA isolates collected in the UK; NA-MRSA, MRSA 
isolates collected nationwide in China; NCBI, The National Center for Biotechnology Information; NGDC, The National Genomics Data Center; OD, 
optical density; PBP2a, penicillin-binding protein2a; PENC, penicillin plus potassium clavulanate combination; qPCR, real-time quantitative PCR 
detecting system; RNA, ribonucleic acid; ROC, receiver operating curve; SRRSH-MRSA, MRSA isolates collected in SIR RUN RUN SHAW Hospital; ST, 
sequence type.
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Four supplementary 
tables and three supplementary figures are available with the online version of this article.
000610 © 2021 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.

Abstract

Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice 
because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential 
for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibil-
ity prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA 
(n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping 
scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random 
forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identi-
fied S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher 
levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. 
Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a 
training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) 
validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the train-
ing set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning 
approach in predicting susceptibility from cgMLST results.

DATA SUMMARY
The sequence of SRRSH-MRSA had been deposited in National 
Center for Biotechnology Information (NCBI) (https://www.​
ncbi.​nlm.​nih.​gov/) under project number PRJNA733242. The 
sequence of NA-MRSA had been deposited in The National 
Genomics Data Center (NGDC) (https://​bigd.​big.​ac.​cn/) of 
China under project number PRJCA004763. The sequence of 
NAM-MRSA were downloaded from European Nucleotide 

Archive (ENA) (http://www.​ebi.​ac.​uk/​ena) by using the acces-
sion numbers provided in the Harrison et al. 2019 (1).

INTRODUCTION
Staphylococcus aureus is a common pathogen that causes a 
wide range of clinical infections, from superficial soft tissue 
infections to deep infective endocarditis, which seriously 
endanger public health [1]. The resistance of S. aureus to 
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most β-lactams is mediated by mecA-encoded PBP2a, which 
has a low binding affinity for β-lactam drugs. Compared 
to methicillin-susceptible S. aureus, methicillin-resistant S. 
aureus (MRSA) is associated with a more significant disease 
burden and higher mortality due to S. aureus bacteraemia [2]. 
Although the incidence of hospital-related MRSA infections 
has recently declined, community-related MRSA infections 
have become more prevalent [3].

Vancomycin, daptomycin, and linezolid are the most 
commonly prescribed drugs to treat MRSA infections [4]. 
However, vancomycin has poor tissue permeability and 
causes slow bacterial clearance, and has been associated with 
a high risk of failure in the treatment of MRSA infections. 
Previous studies also showed that daptomycin and linezolid 
have many limitations in treating MRSA infection, including 
the emergence of resistance and potential side effects [5]. 
Recently, different approaches to restoring the susceptibility 
to β-lactams have been investigated in MRSA, including 
combined administration of β-lactamase inhibitors such as 
clavulanic acid. Harrison et al. demonstrated that a consider-
able proportion of MRSA of different lineages were suscep-
tible to penicillin plus 15 mg l−1 potassium clavulanate (PENC) 
in vitro and in vivo, which was mediated by mutations in mecA 
genes and their promoters [6]. However, this study did not 
include the data of MRSA lineages from China.

In addition to identifying more effective treatment options, 
rapid drug susceptibility analysis of MRSA is also needed. 
Machine learning has shown great potential for diagnostics 
in clinical microbiology laboratories, such as in predicting 
the susceptibility of clinical bacterial isolates [7–11]. The 
random forest is a widely used method for ensemble learning. 
Several previous studies built machine learning models for 
predicting AMR phenotypes by using assembled genomes or 
pan genomes as training sets [8-10], indicating that a suscep-
tibility prediction model based on whole-genome sequencing 
data and machine learning has value as a diagnostic tool. As 
the mechanism promoting β-lactam susceptibility in MRSA 
remains unclear, the machine learning model may also be 
useful for discovering new resistance mechanisms [12].

In the present study, we investigated the susceptibility to 
PENC in different MRSA lineages from China. We also 
created a random forest model using the core genome allelic 
profiles of MRSA isolates to predict drug susceptibility and 
evaluated other key genetic determinants that may affect 
MRSA susceptibility to PENC.

METHODS
MRSA isolates and genome sequencing
We collected 292 MRSA (SRRSH MRSA) isolates at a teaching 
hospital in 2013–2015, and the clinical data and genome 
sequences of these isolates were obtained from a previous 
study [13]. Eight isolates were excluded because the complete 
mecA sequences were not captured by second-generation 
sequencing.

Antimicrobial susceptibility testing
The minimum inhibitory concentrations (MIC) of penicillin 
(0.03125–64 mg l−1) and amoxicillin (0.03125–64 mg l−1) were 
determined with reference to the Clinical and Laboratory 
Standards Institute guidelines [14] and Harrison et al. [6] 
using agar (ISO-sensitest agar) dilution for all MRSA in this 
study. The ECOFF of susceptibility to penicillin was 2 mg l−1 
[6], and the breakpoint of amoxicillin was 8 mg l−1 [15] in the 
presence of 15 mg l−1 potassium clavulanate.

Verifying the relationship between mecA genotype 
and PENC susceptibility of MRSA
Based on previous study, the genotype of mecA based on two 
mutation sites in the gene (E246G, M122I) and two in its 
promoter ([−33]:C-T, [−7]:G-T) was classified as resistant 
and susceptible. In addition to the six previously reported 
mecA genotypes (S1([–7]:G–T), S2([–7]:G–T∣E246G), 
S3([–33]:C–T[–7]:G∣E246G),S4([–7]:G∣M122I), R1([–7]:G), 
and R2([–7]:G∣E246G)) [6], we identified numerous new 
genotypes with different mutation profiles. The numbering 
of the genotypes in this study represents the order in which 
they were typed. The drug susceptibility distribution of PENC 
in different mecA genotypes of MRSA was investigated.

RNA isolation and reverse transcription-
polymerase chain reaction (RT-qPCR)
MRSA isolates were incubated in tryptone soya broth overnight, 
and then 50 µl of the cultures were incubated in 5 ml tryptone 
soya broth at 37 °C until the OD600 reached 0.3. The cultures were 
then incubated with 10 mg l−1 oxacillin for 1 h at 37 °C to induce 
mecA expression. Total RNA was extracted from 3 ml of treated 
MRSA cultures using the E.Z.N.A. Bacterial RNA Kit (Omega 
Bio-Tek, Norcross, GA, USA). cDNA was synthesised using an 
Evo M-MLVRT Premix for qPCR Kit (Accurate Biotechnology 
Co., Ltd., Hunan, China). RT-qPCR was conducted using 
Premix Pro TaqHS qPCR Kits (Accurate Biotechnology Co., 
Ltd.) using mecA primers (qmecA-F:​CTCAGGTACTGCTATC-
CACC; qmecA-R: GGAACTTGTTGAGCAGAGG) [6] and a 
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with potassium clavulanate and constructed a powerful 
drug susceptibility prediction model based on the core 
genome information of MRSA using the random forest 
algorithm. Our research showed the strong potential 
of genomics-based drug sensitivity prediction, which 
deserves the attention of more clinical microbiologists 
and computer scientists.



3

Zhuang et al., Microbial Genomics 2021;7:000610

LightCycler 480 II (Roche Holdings AG, Basel, Switzerland). The 
fold-changes in gene expression in the cultures were calculated 
relative to SA268 (an ST59 MRSA isolate with the mecA S2 geno-
type) using the 2–ΔΔCt method, with gyrB (qgyrB-F: ​ATAA​TTAT​
GGTG​CTGG​GCAAAT; qgyrB-R: AACCAGCTAATGCT 
CATCGATA)as the reference [6].

Core genome multilocus sequence typing (cgMLST) 
analysis
We loaded FASTA files of genome assemblies into the Ridom 
SeqSphere+ software (version 5.0) for cgMLST analysis [16]. 
The cgMLST analysis result was a cgMLST scheme containing 
the core genome allelic profile of all the input genomes. A 
cgMLST scheme was developed for S. aureus, in which 1861 
target genes were named with allelic nomenclature and with 
COL as the seed genome. The cgMLST scheme was used for 
further training and verification of the algorithm model.

Random forest algorithm trained for prediction
To ensure the random forest predictive model has a 
larger scope of application, it is better to use the training 
set that includes various MRSA isolates with different 
genetic backgrounds. The MRSA isolates collected during 
a 2.5 year national epidemic survey (NA-MRSA, n=471), 
(sheet Table S1) comprising 240 PENC-susceptible and 231 
PENC-resistant MRSA with ten different clonal complexes, 
served as a training set to establish a random forest predic-
tive model which named random forest model 1 in this 
article. The whole genomes of these MRSA samples have 
been sequenced, and their PENC susceptibility was tested 
in our previous study (unpublished data). FASTA files of the 
genome assemblies were loaded into the Ridom SeqSphere+ 
software (version 5.0) for cgMLST analysis [16]. The results 
of cgMLST and PENC AST results of NA-MRSA were used 
for further training of the algorithm. The random forest 
method proceeded using the R package randomForest (R 
version 4.0.2 for windows; http://www.​r-​project.​org/). The 
accuracy, 95 % confidence interval (CI), sensitivity, speci-
ficity, and receiver operating characteristics (ROC) curve of 
the random forest prediction model were exported. In addi-
tion, the top ten genes in the MRSA core genome that were 
most closely associated with the susceptibility of MRSA to 
PENC were determined (see Supplementary data for full 
details).

To make the random forest model 2, we downloaded the 
data of 298 MRSA isolates reported in the United Kingdom 
[6]. Among these 298 isolates, we eliminated 11 isolates 
whose cloning complex results did not match the results 
reported before [6]. From these 287 isolates (NAM-MRSA 
(sheet Table S2), we randomly selected up to five PENC-
resistant and five PENC-susceptible isolates in different 
clonal complexes using the Random extraction tool in 
excel. A total of 16 PENC-resistant MRSA isolates and 58 
PENC-susceptible MRSA isolates were selected and listed 
in (sheet Table S3), available in the online version of this 
article). Then we added them to the training set to retrain 

the model, which was assigned as random forest model 2 in 
this article. (see Supplementary data for full details).

The SRRSH-MRSA (sheet Tabale S4) and NAM-MRSA 
served as a validation set to verify the reliability of the 
random forest model. (see Supplementary data for full 
details).

Statistical methods
Continuous variables were compared using Student’s t-tests. 
Data were statistically analysed using R software (version: 
4.0.2; The R Project for Statistical Computing; www.​r-​
project.​org). Differences were considered as statistically 
significant when P<0 .05.

RESULTS
Susceptibility of SRRSH-MRSA isolates to PENC
To explore the feasibility of using PENC to treat MRSA, 
the PENC susceptibility of MRSA isolates from SRRSH 
hospital was investigated. In this study, we designated 
MRSA isolates with PENC MIC<=2 mg l−1 as PENC suscep-
tible isolates. In total, 106 of 284 (37 %) MRSA isolates were 
susceptible to PENC with MICs ranging from <0.03125 to 
32 mg l−1 (Fig. 1a, Table 1). Because amoxicillin/potassium 
clavulanate is frequently applied in the clinical setting, we 
also assessed amoxicillin susceptibility in the presence of 
15 mg l−1 potassium clavulanate. The amoxicillin MIC distri-
bution tended to be similar to that of penicillin (Fig. 1b, c). 
In the presence of 15 mg l−1 of potassium clavulanate, 114 of 
284 (40 %) MRSA isolates were inhibited when the concen-
tration of amoxicillin reached 8 mg l−1 (Fig. 1b, Table 1).

The present study included 284 isolates comprising 155 CC5, 
73 CC59, 16 CC239, ten CC8, eight CC88, and three CC1 
isolates as well as 19 other clone complexes. To determine 
the relationship between the antibacterial activity of peni-
cillin and MRSA genetic background, we analysed the MIC 
distribution of penicillin and amoxicillin among different 
lineages (Fig. 1a, b). We found that 85 % (62/73) of CC59 
isolates were susceptible to PENC, whereas the susceptible 
rate was only 5 % (7/155) in CC5 isolates. Compared with 
CC5 isolates (MIC50=32 mg l−1; MIC90=32 mg l−1), CC59 
isolates (MIC50=0.25 mg l−1; MIC90=4 mg l−1) were more 
susceptible to PENC. CC239 was one of the most important 
hospital-acquired MRSA (HA-MRSA) lineages in China. 
Here, all 16 CC239 isolates were PENC-resistant with an 
MIC50 and MIC90 of 32 mg l−1. Three CC1 isolates, ten CC8 
isolates, and all eight CC88 isolates were susceptible to 
PENC (Fig. 1a, Table 1). These results indicate a higher 
susceptibility to PENC in the community-associated 
MRSA (CA-MRSA) lineage. With respect to amoxicillin, 
69 of 73 (95 %) CC59 MRSA isolates (MIC50=1 mg l−1; 
MIC90=8 mg l−1) were inhibited by 8 mg l−1 amoxicillin in the 
presence of 15 mg l−1 potassium clavulanate, whereas only 7 
of 155 (5 %) CC5 isolates (MIC50=32 mg l−1; MIC90=64 mg l−1) 
were inhibited under these conditions (Fig. 1b, Table 1).

http://www.r-project.org/
www.r-project.org
www.r-project.org
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Fig. 1. Distribution of MIC (mg l−1) of SRRSH-MRSA isolates (a) MIC of Penicillin and penicillin plus 15 mg l−1 clavulanic acid in the main 
cloning complex. (b) MIC of Amoxicillin and amoxicillin plus 15 mg l−1 clavulanic acid in the main cloning complex. (c) MIC distribution of 
different MRSA mecA genotypes with 15 mg l−1 clavulanic acid.
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Relationship between mecA genotype and PENC 
susceptibility of MRSA
To investigate the relationship between the mecA genotype 
and PENC susceptibility, we analysed the second-generation 
sequencing data of SRRSH-MRSA based on the previously 
reported genotype scheme (Table  1). The results showed 
that mecA polymorphisms were detected in SRRSH-MRSA 

isolates, with 14 resistant and six susceptible types. The most 
prevalent genotypes among PENC-resistant MRSA was R3 
([-46]C-T [-25] G-A | E246G K281R), which was mainly 
distributed in the CC5 MRSA isolates. The most prevalent 
genotypes among PENC-susceptible MRSA was S2 ([-7]G-T 
| E246G), which was mainly distributed in the CC59 MRSA 
isolates. We did not detect the known S4 genotype ([-7]: G | 
M122I) among our isolates. As observed for the phenotype 
distribution, the mecA genotype is associated with the clonal 
complex of isolates. We found that 147 of 155 (95 %) CC5 
isolates had resistant genotypes and 71 of 73 (97 %) CC59 
had susceptible genotypes. Two of three CC1 and all (100 %) 
CC239 isolates had resistant genotypes. All ten CC8 and eight 
CC88 isolates had susceptible genotypes (Table 1).

We investigated the MIC distribution of penicillin and 
amoxicillin in relation to the mecA genotypes of SRRSH-
MRSA (Fig.  1c). The results were mostly consistent with 
those of previous reports. Genotyping of mecA predicted the 
phenotype of MRSA (sensitivity: 95.3 %; specificity: 93.3 %; 
accuracy [95 % CI]: 0.940 (0.904–0.963); Table 2). However, 
using the mecA genotype to predict drug sensitivity has some 
limitations. We found one MRSA isolate with the R4 genotype 
and four with the mecA R1 genotype that were susceptible 
to PENC. In contrast, 12 MRSA isolates with the mecA S2 
genotype were PENC-resistant (Fig.  1c, Table  1). Among 
these isolates whose phenotypes were incorrectly predicted 
by mecA genotyping, 11/17 isolates belonged to CC59, which 
was the most prevalent CA-MRSA lineage in China.

mecA expression in ST59 SRRSH-MRSA isolates
Of the 73 CC59 MRSA isolates with the mecA S2 genotype, 11 
had the PENC-resistant phenotype (Fig. 1c, Table 1). To deter-
mine the mechanism of PENC resistance in these isolates, we 
randomly selected five S2-R isolates among the ST59 MRSA 
lineage whose mecA genotype was S2 but phenotype was 
PENC-resistant. For comparison, five ST59 MRSA isolates 
with the mecA S2 genotypes had matching phenotypes and 
five ST5 MRSA isolates with the R3 genotypes were randomly 
selected as reference groups. Compared with the mecA S2 
genotype in ST59 MRSA isolates (median relative expression 
0.98), with matching phenotypes and genotypes, the levels 
of mecA expression were higher in the S2-R isolates (median 
relative expression: 2.61, P<0.05). mecA expression was similar 
between the S2-R and R3 isolates (median relative expression: 
2.19, P>0.05; Fig. 2). These results indicate the limitation of 
using a single factor to predict PENC susceptibility.

Phenotype predicted by random forest model
In order to establish an accurate and convenient model for 
predicting PENC susceptibility, we built random forest models 
with the core genome allelic profiles and the susceptibility of 
MRSA to PENC. First, we used NA-MRSA data to train a 
random forest model 1 (Fig. S1). In the NA-MRSA training 
set, 100 % of 240 and 229 (99 %) of 231 PENC-susceptible 
and PENC-resistant MRSA isolates, respectively, were 
correctly predicted (Fig. S2a). The accuracy in the training 
set reached 0.996 with a sensitivity of 100 % and specificity of 

Table 2. Performance of mecA genotyping and random forest model to 
predict susceptibility of MRSA to PENC

Method Sensitivity, % Specificity, % Accuracy (95 % CI)

mecA 95.3 93.3 0.940 (0.904–0.963)

Random forest 
model 1*

In training set 100 99.1 0.996 (0.985–1.00)

In validating set 
(SRRSH-MRSA)

88.9 93.8 0.919 (0.881–0.948)

In validating set 
(NAM-MRSA)

70.2 2.4 0.509 (0.449–0.568)

Random 
forest model 2 
(retrained)*

In training set 100 99.1 0.996 (0.987–1.00)

In validating set 
(SRRSH-MRSA)

95.4 93.8 0.944 (0.910–0.968)

In validating set 
(NAM-MRSA)

94.6 90.2 0.934 (0.899–0.960)

*Random forest model 1: the model trained by using na-MRSA; Random forest 
model 2 (retrained): the model trained by using na-MRSA and selected UK-
sourced MRSA.

Fig. 2. Relative mecA expression measured by RT-qPCR after oxacillin 
induction, relative to that of mecA of SA268. R3, R3 mecA genotype 
of ST5 isolates; S2, S2 mecA genotype of ST59 MRSA isolates with 
matching phenotype and genotype; S2-R, S2 mecA genotype of ST59 
MRSA isolates with mismatched phenotype and genotype. *P<0.05 
(two-tailed unpaired t-tests).
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99.1 % (Table 2). In the validation set of 284 SRRSH-MRSA 
isolates, 96 of 108 (88.9 %) and 165 of 176 (94 %) were PENC-
susceptible and PENC-resistant, respectively, were correctly 
predicted (Fig. S2b). The accuracy in the SRRSH-MRSA 
validation set reached 0.919 with a sensitivity of 88.9 % 
and specificity of 93.8 % (Table 2). As for the validation set 
collected in the previous study from the UK, the prediction 
model trained with domestic isolates in China had relatively 
low ability predict foreign isolates. The value of the AUROC 
was 0.58 (Fig. S2c).

To make the random forest model reliable for predicting the 
UK-derived isolates, we added the UK-derived isolates in the 
training set and built random forest model 2. The results from 
the retrained model showed that all the (298/298) PENC-
susceptible and 99.2 %(245/247) of the PENC-resistant MRSA 
isolates were correctly predicted in the training set (Fig. 3a). 
The accuracy in the training set reached 0.996 with a sensitivity 
of 100 % and specificity of 99.1 % (Table 2). In the validation 
set comprising 284 SRRSH-MRSA isolates, 95.4 % (103/108) 
PENC-susceptible and 94 % (165/176) PENC-resistant MRSA 
isolates were correctly predicted (Fig. 3b). The accuracy in 
the validation set of 284 SRRSH-MRSA reached 0.944 with a 
sensitivity of 95.4 % and specificity of 93.8 % (Table 2). In the 
validation set of 287 NAM-MRSA isolates, 94.6 % (194/205) 
PENC-susceptible and 90.2 % (74/82) PENC-resistant MRSA 
isolates were correctly predicted (Fig. 3c). The accuracy in 
the validation set of 287 NAM-MRSA reached 0.934 with a 
sensitivity of 94.6 % and specificity of 90.2 % (Table 2).The 
predictive ability of the model was verified using the values of 
the AUROC. The AUROC of the training set, SRRSH-MRSA 
validation set, and NAM-MRSA validation set were 1.00, 
0.96, and 0.97, respectively, in the random forest model 2. 
The results showed that the predictive power of this model 
was excellent (Fig. 3).

The top ten genes in the MRSA core genome with the 
most important roles in PENC susceptibility prediction for 
MRSA were exported (Fig. S3). Among them, SACOL2352, 

SACOL0764, SACOL1122 and SACOL1522 had top ten values 
in both the mean decrease accuracy and mean decrease Gini 
(Fig. S3). SACOL2352 encodes tcaA protein. SACOL0764 
encodes glycosyl transferase. SACOL1122 encodes cell cycle 
protein FtsW. SACOL1522 encodes elastin binding protein.

DISCUSSION
Bacterial drug resistance has become a growing concern. 
MRSA, a common pathogen, has imposed tremendous 
medical and economic burdens [17]. A severe CA-MRSA 
infection can kill a young, properly treated patient within 
days [18]. Therefore, safe, effective, economical, and 
convenient treatments for MRSA infections, and rapid anal-
yses of MRSA susceptibility to drugs are needed. Penicillin 
is an established beta-lactam antibiotic that is widely used 
to treat infections in humans because of its wide spectrum 
of activity, oral availability, excellent pharmacokinetics, lack 
of toxicity, and bactericidal action [19]. The most prevalent 
CA-MRSA in the USA (USA300) was found to be suscep-
tible to PENC [6]. Similar to USA300, CC59 is the most 
prevalent CA-MRSA in China and is gradually penetrating 
hospitals. With the ongoing development of sequencing and 
computer technology, rapid MRSA susceptibility analyses 
will soon be available. The present study investigated 
whether PENC could be used to treat MRSA, particularly 
CA-MRSA, infection in China. We created a random forest 
model for predicting MRSA susceptibility to PENC using 
the core genome allelic profiles of MRSA.

Our data showed that PENC susceptibility varied in 
different MRSA lineages. The overall proportion of PENC-
susceptible MRSA was not high, but a high proportion of 
PENC susceptible in CC59 MRSA was observed, according 
to the breakpoint of 8 mg l−1 for amoxicillin/clavulanate 
from a previous study [20]. To maintain the blood concen-
tration of clavulanic acid above 15 mg l−1 for 8 h, the dosage 
of potassium clavulanate in the amoxicillin-potassium 

Fig. 3. Receiver operating characteristics curves of random forest prediction model 2. ROC of (a) training (b) SRRSH-MRSA validation 
sets (c) NAM-MRSA validation sets. AST, tests of susceptibility to penicillin with potassium clavulanate; R, resistant; S, susceptible; ROC, 
receiver operating characteristics curves; AUC, Area Under Curve.
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clavulanate compound must be increased. This result 
indicates the potential of using PENC to treat CA-MRSA 
infection in China.

The development of rapid drug susceptibility analyses will 
render PENC treatment feasible. To predict MRSA suscep-
tibility to PENC more accurately than that using five geno-
types in the previous study [6], more details on the mecA 
sequence in MRSA isolates collected at our hospital were 
analysed, and the penicillin MICs of different mecA geno-
types were determined. However, no mutations other than 
the known mecA E246G, [-7]G-T, and [-33]C-T mutations 
that could help predict the susceptibility of MRSA to PENC 
were found. One of the foundations of mecA genotyping for 
predicting drug susceptibility is a mutation in its promoter 
that affects the level of PBP2a expression. However, our 
findings for S2-R expression in isolates indicated that 
factors other than mecA can also affect PBP2a expression 
levels. Previous study showed PrsA and HtrA1 can affect the 
function of PBP2a [21] and high-level β-lactam resistance 
in Staphylococcus aureus is associated with RNA Polymerase 
alterations and fine tuning of gene expression [22]. These 
issues decreased the accuracy of prediction based on one 
gene. Then, we constructed a model for predicting MRSA 
susceptibility to PENC using the core genome of our MRSA 
isolates. For SRRSH-MRSA, the predicted power of the 
random forest model 2 was equivalent to that of single mecA 
gene prediction (0.944 VS 0.940). However, adding the 
UK-sourced MRSA data into the training set, we found that 
the AUROC of the NAM-MRSA validating set increased 
from 0.58 to 0.97. This showed the strong ‘learning’ ability 
of the random forest algorithm model. As more MRSA data 
are added to the training set, PENC susceptibility predic-
tions will become more reliable. On the other hand, our 
results indicate the source of the training set data does affect 
the scope of application of the prediction model. In this 
case, including more MRSA isolates from different lineages 
significantly increase the AST prediction power of random 
forest model.

The random forest model can also identify key genes 
associated with the predicted phenotype [12]. Here, we 
detected genes that may be most closely associated with 
MRSA susceptibility to PENC. They may contribute to the 
regulation of mecA expression, facilitate PBP2a protein 
transportation and localisation on the cell membrane, or/
and correct PBP2a folding. Further studies are needed to 
confirm the roles of these genes in recovering the suscepti-
bility to β-lactams in MRSA.

Though the random forest model showed a high prediction 
power for MRSA susceptibility to PENC in our isolates, there 
are limitations to our work. First, although the machine 
learning algorithm showed learning ability, a weakness of 
most machine learning methods is that they cannot predict 
what they have not learnt. We noticed the importance of 
including more isolates from different regions to build a 
reliable prediction model using genomic data. Second, the 
whole genome may theoretically predict a series of drugs 

in the future. In this study, only one drug, which was not 
routinely tested for susceptibility, was analysed and studied. 
The application of our prediction model to other drugs or 
other AST results such as MIC values should be studied 
further. Despite these limitations, our data illustrate the 
potential of using machine learning for drug susceptibility 
prediction with cgMLST results obtained from commercial 
software.

In conclusion, our data showed that machine learning can 
be applied to the prediction of antimicrobial susceptibility 
from cgMLST results. Although the source of the training 
set data affects the scope of application of the prediction 
model, we propose that the machine learning approach 
used in combination with microbiological genomic data 
can play an important role in the ongoing effort to reduce 
the burden of antimicrobial resistance worldwide.

Supplementary data
Supplementary materials included the cgMLST results of 
MRSA isolates (Tables S1) in this study are available at 
Microbial Genomics online. Consisting of data provided 
by the authors to benefit the reader, the posted materials 
are not copyedited and are the sole responsibility of the 
authors, so questions or comments should be addressed to 
the corresponding author.
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