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Abstract

Background

Mitochondrial dysfunction is involved in many complex diseases. Efficient and accurate

evaluation of mitochondrial functionality is crucial for understanding pathology as well as

facilitating novel therapeutic developments. As a popular platform, Seahorse extracellular

flux (XF) analyzer is widely used for measuring mitochondrial oxygen consumption rate

(OCR) in living cells. A hidden feature of Seahorse XF OCR data is that it has a complex

data structure, caused by nesting and crossing between measurement cycles, wells and

plates. Surprisingly, statistical analysis of Seahorse XF data has not received sufficient

attention, and current methods completely ignore the complex data structure, impairing the

robustness of statistical inference.

Results

To rigorously incorporate the complex structure into data analysis, here we developed a

Bayesian hierarchical modeling framework, OCRbayes, and demonstrated its applicability

based on analysis of published data sets.

Conclusions

We showed that OCRbayes can analyze Seahorse XF OCR experimental data derived from

either single or multiple plates. Moreover, OCRbayes has potential to be used for diagnos-

ing patients with mitochondrial diseases.

Introduction

Mitochondria are double-membrane organelles that are central hubs in regulating energy gen-

eration and partitioning. Patients with genetic defects in mitochondrial function are often

affected by severe and progressive disease in early life [1]. Furthermore, mitochondrial disor-

ders have also been found to be involved in cardiovascular diseases [2], type II diabetes [3],
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neurodegenerative disease [4] and cancer [5]. Thus, restoring mitochondrial function is

emerging to be a therapeutic target for both common diseases [6] as well as genetic mitochon-

drial diseases [7].

Mitochondria produce energy in oxidative phosphorylation (OXPHOS) primarily by trans-

ferring electrons along the electron transport chain (ETC) on the inner membrane. Along the

ETC, there are four complexes (complex I, II, III and IV), together building up a proton gradi-

ent that is ultimately used by ATP synthase to generate ATP. Since electrons are primarily

accepted by O2 to produce H2O, the OXPHOS activity can be assessed by measuring oxygen

consumption rate (OCR). As a reliable and efficient platform, Seahorse XF analyzer provides a

multiwell plate based respirometry assay that is widely used to quantify OCR in living cells [8].

Typically, the Seahorse XF analyzer measures the OCR of cells in a 96-well plate under differ-

ent ETC/OXPHOS perturbation scenarios, used for assessing mitochondrial functionality

such as maximal respiration, leak respiration and ATP-linked respiration [9].

A typical Seahorse assay includes three measurement cycles for each phase. Every measure-

ment cycle starts by lowering the cartridge and creating a temporary semi-closed ~2 μL cham-

ber [10]. During a measurement cycle, fluorescent oxygen sensors capture oxygen

concentration changes in the chamber and outputs OCR. The Seahorse XF analyzer measures

OCR in tens to hundreds of thousands of cells per well and typically requires 4–5 replicate

wells per experimental group, allowing the analysis of multiple experimental groups in one

plate [11]. Since measurement cycles are nested within phases, phases are crossed with wells,

and wells are nested in experimental groups, a very complex structure is inherently embedded

in the Seahorse XF OCR data. Surprisingly, current Seahorse XF data analyses most often

ignore this complex structure, and by default, data sets are often chopped into subgroups fol-

lowed by performing ANOVA-like statistical tests. Although there are advanced tools devel-

oped for Seahorse data analysis [12, 13], none of them comprehensively take the complexity of

the data structure into account. As a result, OCR variation between measurement cycles, repli-

cate wells and replicate plates is overlooked, impairing the robustness of the interpretation of

Seahorse XF OCR outcomes, and eventually the development of mitochondrial targeted thera-

pies as well as our understanding of mitochondrial biology.

A natural way to incorporate the complex structure into data analysis is to use hierarchical

modeling, which has been extensively developed for analyzing gene expression data [14, 15].

Here we developed a Bayesian hierarchical modeling framework, OCRbayes, for the Seahorse

XF OCR data analysis. Compared to the currently most advanced Seahorse data analysis tool,

OCR-stats which is a frequentist approach, OCRbayes is based on a fully Bayesian approach

due to its flexibility and convenience for constructing the hierarchical models. To demonstrate

the applicability of our approach as well as its potential implication for mitochondrial disease

diagnostics, we applied OCRbayes to a publicly available OCR data set [13], which contains

over 200 Seahorse experiments performed on human fibroblasts derived from patients with

mitochondrial diseases and controls.

Method

OCRbayes: A Bayesian hierarchical modeling framework for Seahorse OCR

data analysis

In order to incorporate the complex data structure into the analysis of Seahorse XF OCR mea-

surements, we developed a Bayesian hierarchical modeling framework, OCRbayes. In this

study, we focused on experimental data containing two groups, such as patient and control

group. From our perspective, the Seahorse OCR data include three levels, including 1) mea-

surement cycle, 2) well and 3) plate.
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During a measurement cycle, the Seahorse XF analyzer uses fluorescent oxygen sensors to

track OCR. For every interval, multiple measurement cycles are performed in order to accu-

rately measure the OCR. A typical Seahorse assay contains four intervals. The first interval

refers to initial phase, and the second, third, fourth interval refer to phase after injecting oligo-

mycin (blocking proton translocation through ATP synthase), FCCP (allowing protons to

move into the mitochondrial matrix independent of the ATP synthase) and antimycin/rote-

none (inhibiting complex I and III, shutting down mitochondrial respiration).

The variation between the OCR values within an interval is the between measurement cycle

variation. Since OCR values must be positive, we used a lognormal distribution with the true

OCR value at the log scale (logOCRtrue) and the between measurement cycle standard devia-

tion (also at the log scale, logOCRsd) to model each observed OCR value (OCRobs).

OCRobs½i� � LognormalðlogOCRtrue½P½i�;W½i�; I½i��; logOCRse½P½i�; I½i��Þ ð1Þ

OCRobs is a vector of length Nplate×Nwell×Ninterval×Nmeasurement, where Nplate, Nwell, Ninterval

and Nmeasurement are number of plates, wells, intervals and measurement cycles, respectively.

The logOCRtrue refers to Nplate layers of matrices. Each layer is a matrix with Nwell rows and

Ninterval columns. logOCRsd is a matrix of Nplate rows and Ninterval columns.

In a typical Seahorse XF assay, one cell line undergoing the same experimental treatment is

seeded in multiple wells. However, the OCRs in these replicate wells will not be the same, and

the difference is called between well variation. One obvious reason causing the between well

variation is that the number of cells in these replicate wells are not identical. To adjust for the

effect of cell number difference, we modeled the true OCR value as a function of the cell num-

ber, and from there estimated OCRper 1k cells, which represents OCR value per 1000 cells that

received the same treatment (or from the same group) and injection. In addition to cell num-

ber difference, technical, procedural or instrumental noise can also contribute to between well

variation. We captured this well-to-well variation after accounting for cell number difference

with the residual parameter σwell.

logOCRtrue½P½i�;W½i�; I½i��
� NormalðOCRper 1k cells½P½i�;G½i�; I½i�� �Ncells½W½i��; swell½P½i�;G½i�; I½i��Þ ð2Þ

OCRper 1k cells is a three-dimensional matrix with Nplate layers, and each layer has Ngroup

rows and NInterval columns. Ncells is a vector of length Nwell, and every entry represents the cell

number in that well.

Apart from the technical replicates in one plate, the biological insight for a (patient) cell line

or a specific condition is generally validated by repeating the Seahorse assay on different days.

As a result, OCR data are distributed on more than one plate. Due to batch effects such as plat-

ing, culturing or environmental differences between time and laboratories, OCR measure-

ments will differ between plates. To take into account the between plate variation, we used

another lognormal distribution with the logarithm transformed OCR value per 1000 cells,

(mOCRper 1k cells
) and the between plate standard deviation (σplate) to model the OCR value per

1000 cells OCRper 1k cells.

OCRper 1k cells½P½i�;G½i�; I½i�� � LognormalðlogðmOCRper 1k cells
½G½i�; I½i��Þ; splate½G½i�; I½i��Þ ð3Þ
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Bayesian inference

OCRbayes focuses on calculating posterior distributions for OCR per 1000 cells in various

experimental conditions (PðmOCRper 1k cells
jOCRobsÞ). The posterior distributions were combina-

tions of prior distributions (P(logOCRse), P(σwell), P(σplate) and PðmOCRper 1k cells
Þ), and the likeli-

hood function (PðOCRobsjNcell; mOCRper 1k cells
; logOCRsd; swell; splateÞ)

In this study, since our case studies focused on human fibroblast cells, we used informative

prior distributions for logOCRsd, σwell, σplate and mOCRper 1k cells
. Since values of all these parame-

ters must be positive, we used four lognormal distributions. We applied maximum likelihood

estimation to calculate the lognormal distribution parameters based on the Seahorse XF OCR

data in OCR-stats [13] by running the fitdistr function built in the MASS r package. In this

study, our prior distributions are

logOCRsd � Lognormalð� 3:23; 0:79Þ

swell � Lognormalð� 1:62; 0:53Þ

splate � Lognormalð� 1:18; 0:05Þ

mOCRper 1k cells
� Lognormalð0:3; 0:79Þ

The Bayesian multi-level model of OCRbayes was implemented in Stan (version 2.19.3)

[16]. We fitted the model by running Hamiltonian Markov Chain Monte Carlo. We ran four

Markov chains with 2000 iterations in each chain. The code can be found at https://github.

com/XiangZhangSC/seahorse. We also provided the R code of OCRbayes in the supplemen-

tary file.

Calculation of bioenergetic measures

Based on OCR (per 1000 cells), we calculated various bioenergetic measures, such as basal res-

piration, proton leak, ATP-linked respiration, spare respiratory capacity and maximal respira-

tion. These bioenergetic measures are defined as below.

Basal respiration ¼ OCRper 1k cells; initial � OCRper 1k cells; antimycin=rotenone ð4Þ

ATP� linked respiration ¼ OCRper 1k cells; initial � OCRper 1k cells; oligomycin ð5Þ

Proton leak ¼ OCRper 1k cells; oligomycin � OCRper 1k cells; antimycin=rotenone ð6Þ

Spare respiratory capacity ¼ OCRper 1k cells; FCCP � OCRper 1k cells; initial ð7Þ

Maximal respiration ¼ OCRper 1k cells; FCCP � OCRper 1k cells; antimycin=rotenone ð8Þ

Human fibroblast OCR data

To benchmark OCRbayes as well as illustrate how OCRbayes can be used for analyzing OCR

in patients with mitochondrial diseases, we used the OCR data set provided in Yepez et al.

[13]. This data set contains Seahorse OCR measurements from 203 human fibroblast cell lines

that have been assayed in 126 plates. Normal human dermal fibroblast (NHDF) reference cell

lines were used as controls in all plates. The other 202 cell lines were derived from patients sus-

pected to suffer from rare mitochondrial diseases. Among these 202 cell lines, 26 fibroblast cell

lines were measured in multiple plates. We used the 176 patient fibroblast cell lines that were
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assayed in a single plate as well as the control cell line in the same plates for estimating prior

distributions. The other 26 fibroblast cell lines were used for benchmarking OCRbayes.

Among the 202 cell lines that were analyzed, Yepez et al. [13] labeled 6 patient cell lines as posi-

tive controls that have shown statistically significant reduction in maximum respiration.

Meanwhile, Yepez et al. also labeled another two patient cell lines as negative controls, since

these cell lines did not show changes in OCR in earlier experiments [13].

We processed the original data by removing wells in which single or more OCR measure-

ments were missing. After filtering, we used 176 patient cell lines together with the NHDF con-

trol cell line on 78 plates for estimating the prior distributions for between measurement cycle

variation (logOCRsd) and between well variation (σwell). To estimate the prior distribution for

between plate variation (σplate) and mean OCR per 1000 cells (mOCRper 1k cells
), we used the OCR

values from the NHDF cell lines that were plated in all 78 plates.

Statistical analysis

For benchmarking OCRbayes, we compared the patient cell lines to the control cell line

(NHDF). Since the maximal respiration was reported as the primary mitochondrial dysfunc-

tion outcome in the Yepez et al. study [13], we reported here the mean log2 fold change of

maximal respiration together with the False Discovery Rate (FDR). FDR was calculated based

on the posterior error probability (1 � Pðlog
2

patient
control jOCRobs

� �
< 0Þ), where

Pðlog
2

patient
control jOCRobs

� �
represented the posterior distribution of fold change after fitting the

Bayesian model to the experimental OCR data. If the FDR was below 0.05, we considered that

the difference between patient and control cell line was statistically significant.

Results

OCRbayes: From OCR to respiration metric difference

To demonstrate the applicability, we applied OCRbayes to analyze OCR data derived from two

patient cell lines with known mutations in either BOLA3 or PET100 gene. These two genes

encode proteins that are essential for biogenesis or assembly of mitochondrial complexes [17–

19]. We compared the patient cell line to the control cell lines within their respective plates.

These two cell lines were both assayed on two plates on two different days. For both cell lines,

we observed a clear decrease in maximal respiration compared to the control cell lines in both

plates (Fig 1A and 1E). Meanwhile, we noticed that the range of OCR values in the two plates

used for profiling BOLA3 patient cell line differed considerably (Fig 1A). In particular, maxi-

mal OCR value in the first plate was around 200 pmol/min, whereas in the second plate the

maximal OCR value was around 100 pmol/min. In contrast, the range of OCR values in the

two plates used for profiling PET100 were similar to each other. In addition, it was obvious

that there was considerable variation between the replicate wells in both plates for both cell

lines.

By applying OCRbayes, we combined the two plates for each cell line, calculated the poste-

rior distributions for OCR per 1000 cells during the four intervals of a typical Seahorse assay,

including initial phase without injection (Int1), oligomycin phase (Int2), FCCP phase (Int3)

and antimycin/rotenone phase (Int4) (Fig 1B and 1F). Next, the calculated posterior OCR per

1000 cells for the four intervals were transformed into the various respiration metrics, includ-

ing ATP-linked respiration, basal respiration, maximal respiration, proton leak and spare

respiratory capacity (Fig 1C and 1G). In the last step, we compared the respiration metrics in

patient cell line to the control cell line, and calculated the posterior distribution for log2(fold

change) (Fig 1D and 1H). We observed that BOLA3 patient cell line showed reduction in basal
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respiration (posterior mean log2(fold change) -0.974, 95% credible interval [-1.93, -0.0970])

and maximal respiration (-1.06 [-1.87,-0.228]), compared to the control cell line (Fig 1D). On

the other hand, we observed no difference in ATP-linked respiration (-1.08 [-2.38, 0.117]),

proton leak (-0.630 [-3.87, 2.32]) and spare respiratory capacity (-1.26 [-4.41,1.62]) between

BOLA3 patient cell line and the control cell line (Fig 1D). Meanwhile we observed lower ATP-

basal respiration (-1.75 [-3.18, -0.546]), basal respiration (-1.58 [-2.52, -0.667]) and maximal

respiration (-1.28 [-2.10, -0.436]) in the PET100 patient cell line than the control cell line (Fig

1H). We observed no difference in proton leak (-0.906 [-4.14,2.54]) and spare respiratory

capacity (-0.826 [-3.29, 2.34]) in the PET100 patient cell line compared to the control cell line

(Fig 1H).

OCRbayes accounts for various technical variations during Seahorse XF

OCR data analysis

OCR measurements generated by the Seahorse XF analyzer were affected by various technical

variations, including between measurement cycle variation, between well variation and

Fig 1. (A) and (E) are OCR profiles for patient cell lines that have a genetic mutation in either BOLA3 (A) or PET100 (E), compared

to control cell lines in two plates. (B) and (F) are posterior distributions for OCR per 1000 cells in BOLA3 (B) and PET100 (F)

mutated patient cell lines during initial phase (Int1), oligomycin phase (Int2), FCCP phase (Int3) and antimycin/rotenone phase

(Int4). (C) and (G) are posterior distributions for respiration metrics in BOLA3 (C) and PET100 (G) mutated patient cell lines and

control cell lines. (D) and (H) are posterior distributions of log2 fold change in the respiration metrics between patient and control

cell line.

https://doi.org/10.1371/journal.pone.0253926.g001
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between plate variation. To visualize the technical variations, we used the cell line with a

genetic mutation in NSUN3 gene (patient cell line 76065). This cell line was measured on five

different plates, allowing us to visualize all three technical variations.

OCRbayes calculated the between measurement cycle variation for each plate during each

interval. For each cell line in each plate, OCRbayes calculated the between well variation dur-

ing each interval. Regarding the between plate variation, OCRbayes estimated it for each cell

line during each interval. All the variation values were on the log scale. We observed that for

both patient and control cell line in the initial phase (Int1) and FCCP phase (Int3), the between

plate variation was larger than the between well variation, which itself was larger than the

between measurement cycle variations (Fig 2). However, in the oligomycin phase (Int2) and

antimycin/rotenone phase (Int4), the between plate variation was not always larger than the

other two technical variations (Fig 2). In particular, we observed that the between well

Fig 2. Technical variations in Seahorse XF OCR data of experiments based on the patient cell line with mutation in NSUN3

gene and the control cell line. Int1, Int2, Int3 and Int4 represent initial, oligomycin, FCCP and antimycin/rotenone phase. All the

variations were on log scale. The dots are the posterior mean and the line segment represent the 95% credible interval.

https://doi.org/10.1371/journal.pone.0253926.g002
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variation was larger than the between measurement cycle and the between plate variation in

three plates during the antimycin/rotenone phase (Int4) in the patient cell line.

Benchmark OCRbayes

To demonstrate that OCRbayes works properly, we applied it to analyze the published Sea-

horse XF OCR data set containing 26 patient cell lines as well as a control cell line reported by

Yepez et al. [13]. This data set contains 6 cell lines that were labeled as positive controls and 2

cell lines that were labeled as negative controls (as explained in the material and methods

section).

Based on our analysis, we found 6 patient cell lines that had lower maximal respiration

compared to the control cell line with False Discovery Rate (FDR) below 0.05 (Fig 3A and 3B).

Among the 6 patient cell lines that showed statistically significant reduction in maximal respi-

ration compared to the control cell line, the patient cell line 73387 (mutation in PET100 gene)

showed the largest effect whereas the patient cell line 76065 (mutation in NUSN3 gene) showed

the smallest effect (Fig 3A). Five of these 6 patient cell lines were labeled as positive controls in

the original study [13]. Meanwhile, the two negative controls (patient cell lines 73901 and

91410) had FDR above 0.05 in our analysis.

Fig 3. Maximal respiration change patient vs. control on multiple plates. (A) average log2 fold change (y-axis) of maximal

respiration of all cell lines repeated across plates (x-axis) and their respective controls, sorted by the False Discovery Rate (FDR). Red

and blue dots represent positive and negative controls, respectively. (B) similar to (A), but depicting FDR. Red dashed line represents

FDR = 0.05.

https://doi.org/10.1371/journal.pone.0253926.g003
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Our analysis successfully recalled both negative controls and five out of six positive controls.

Interestingly, our analysis showed that there was no significant reduction of maximal respira-

tion in the cell line with a genetic mutation in SFXN4 gene (patient 61818) that was previously

labeled as positive control [13]. This patient cell line was measured on three independent plates

on three different days. The range of OCR values of these three plates differed, indicating con-

siderable between plate variation (Fig 4A). The OCR profiles of the patient and control cell

line were overlapping in the first plate (Fig 4A). In contrast, the OCR profiles derived from the

second and third plate showed OCR decreasing in the patient cell line compared to the control

cell line, especially during the FCCP phase (Fig 4A). Meanwhile, we observed considerable var-

iation between the replicate wells as well as measurement cycles in these Seahorse assays

(Fig 4A).

In addition, the between measurement cycle variation in the third plate seemed to be larger

than the other two plates (Fig 4A). We analyzed these three repeated experiments separately as

well as combined them together. Our separate analysis showed that none of the three experi-

ments showed significant reduction in maximal respiration in the SFXN4 patient cell line (Fig

4B). The posterior mean log2(fold change) and the corresponding 95% credible intervals

derived from the first, second and third Seahorse assay were 0.122 [-0.834, 1.04], -0.431 [-1.40,

0.499] and -0.0977 [-1.04, 0.827], respectively. When we used OCRbayes to analyze all the

three plates together, we found that the posterior mean log2(fold change) of maximal respira-

tion was -0.200 [-0.877, 0.500] compared to the control cell line (Fig 4C). However, this ten-

dency of reduction in maximal respiration in SFXN4 patient cell line was not statistically

significant.

OCRbayes can be used to evaluate the probability that a patient fibroblast

cell line has an abnormality in mitochondrial respiration

A feature that makes OCRbayes unique from other methods is that OCRbayes can evaluate

what is the probability that a patient has abnormality in his or her fibroblast mitochondrial res-

piration based on a single Seahorse assay or multiple Seahorse assays. To demonstrate this fea-

ture, we used two patient cell lines that showed significant reduction in maximal respiration in

our analysis. One patient cell line was the PET100 gene mutation fibroblast (patient cell line

Fig 4. (A) Raw OCR values for the cell line with genetic mutation in SFXN4 gene (patient cell line 61818) in three repeated plates.

(B) Posterior distributions of maximal respiration of the cell line with genetic mutation in SFXN4 gene (patient cell line 61818) and

the control cell line in the same plate. (C) Posterior distributions of maximal respiration of the cell line after combing all three

repeated experiments.

https://doi.org/10.1371/journal.pone.0253926.g004
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73387) and the other patient cell line was NSUN3 gene mutation fibroblast (patient cell line

76065). Among the 6 patient cell lines that showed statistically significant reduction in maxi-

mal respiration compared to the control cell line, the PET100 and NSUN3 cell line showed the

largest and smallest effect, respectively (Fig 3B).

The PET100 patient cell line was measured on two plates. Based on the first assay, our anal-

ysis showed that the posterior probability of this PET100 mutation carrier having lower maxi-

mal respiration than the control was 97.8%. By repeating the experiment once more, the

posterior probability increased to 99.8% (Fig 5A). In contrast, the cell line with mutation in

NSUN3 gene (patient cell line 76065) was measured on five different plates. Our analysis

showed that based on the first assay, the posterior probability of this NSUN3 mutation carrier

having lower maximal respiration than the control was 41.3%. Repeating the assay once

increased the posterior probability from 41.3% to 73.4%. When the assay was repeated for the

third, fourth and fifth time, the corresponding posterior probabilities increased to 78.7%,

87.7% and 90.0%, respectively (Fig 5B). In summary, we demonstrate that OCRbayes can be

used to evaluate the probability that a patient fibroblast cell line has an abnormality in mito-

chondrial respiration based on a single Seahorse assay or multiple Seahorse assays.

Discussion

Although Seahorse XF analyzer is widely used in bioenergetic profiling, its data analysis has

not received sufficient attention. A hidden feature of Seahorse XF OCR data is that it contains

a complex data structure. The complex data structure is due to the fact that measurement

cycles are nested within injections, injections are crossed with wells, and wells are nested in

plates. As far as we know, currently there is no data analysis protocol that takes into account

this complex data structure, impairing the robustness of Seahorse XF OCR data analysis out-

comes. This is because when one ignores the data structure, one also ignores the variations

between measurement cycles, between wells and between plates. In order to make the Seahorse

data analysis more robust, in this study we developed a Bayesian hierarchical modeling

Fig 5. (A) Posterior probability of decreasing maximal respiration in patient cell line with mutation in PET100 gene compared to

the control cell line in the scenario with 1 or 2 plates. (B) Posterior probability of decreasing maximal respiration in patient cell line

with mutation in NUSN3 gene compared to the control cell line in the scenario with 1, 2, 3, 4 or 5 plates.

https://doi.org/10.1371/journal.pone.0253926.g005
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approach, OCRbayes, which accounts for all these technical variations during the data

analysis.

Seahorse XF OCR measurements are noisy

An OCR value is determined not only by mitochondrial activity, but also by technical noise

including 1) between measurement cycle variation, 2) between well variation and 3) between

plate variation.

Every phase typically contains three measurement cycles, resulting in three OCR values.

Since every measurement cycle starts with a “mix and wait” step to ensure the same baseline of

cell values, cell physiology should not substantially change within a phase. Existing tools such

as OCR-stats [13] and SHORE [12] use different strategies to select a single data point to repre-

sent an injection phase. When different data points were chosen, one can get different out-

comes, making the current Seahorse XF data analysis less robust. To avoid this ambiguity, our

approach did not select any particular data point, instead modeled all three OCR data. By

doing so, we incorporated the uncertainty about “which data point should I choose?” into the

data analysis and focused on the average behavior.

The between well variation refers to a common observation that OCR values differ among

the replicate wells. One important factor leading to the variation between replicate wells is that

cell numbers are not identical in these wells. The wells with more cells would have higher OCR

than the wells containing fewer cells. Fortunately, cell number in each well can be quantified

experimentally and used for the data analysis [20, 21]. In addition to cell number difference,

initial conditions, treatment concentration, or fluorophore sleeve calibration can also contrib-

ute to variation between wells. OCRbayes also takes into account the between well variation

caused by these unobserved factors.

Between plate variation takes place when the same Seahorse experiment is repeated on dif-

ferent days and on more than one plate. Due to differences in temperature, seeding time,

growth time, growth medium, sensor cartridge as well as treatment efficiency, the OCR out-

comes will differ between plates [13, 22]. Often the between plate variation is assumed to be

the dominant technical variation involved in Seahorse OCR data. Based on our analysis, we

showed that this assumption may be appropriate for OCR measurements derived from the ini-

tial and FCCP phase, but may not work for the OCR values derived from oligomycin and anti-

mycin/rotenone phase. OCR values in the oligomycin and antimycin/rotenone phase were

very small and possibly close to the detection limit of the Seahorse XF in a well. Thus, it is

more challenging to accurately measure the OCR in these phases.

Comparison with other statistical tool for Seahorse XF OCR data analysis

In this work, we compared the maximal respiration in 26 patient cell lines to the control cell

line individually as what was done in OCR-stats [13]. Overall our analysis recalled successfully

all negative controls and five out of six positive controls. Patient cell line 61818 was labeled as a

positive control since this patient was found having a mutation in SFXN4 gene. A recent study

based on erythroleukemic cell line showed that SFXN4 knockout resulted in significant

decrease in all parameters of respiration, including baseline respiration, respiratory ATP syn-

thesis, maximal respiration, and spare respiratory capacity [23]. However, our analysis showed

that the maximal respiration of this patient was not significantly different from the control cell

line. Our further analysis showed that the patient cell line only showed a tendency of having

lower maximal respiration than control in one of the three repeated experiments.

We also noticed that other outcomes were also not identical as what was presented in the

OCR-Stats publication [13]. Strikingly, in our analysis PET100 mutation fibroblast (patient cell
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line 73387) showed a significant decrease in maximal respiration compared to the control cell

line. However, in the OCR-stats [13], the difference in maximal respiration was not statistically

significant in this patient. This patient was diagnosed carrying a homozygous loss of function

mutation in the PET100 gene, which encodes a mitochondrial complex IV biogenesis factor

[13, 17, 18]. A homozygous truncating variant (c.142C>T, p.(Gln48�)) in the PET100 gene

was found to lead to a complete loss of enzyme activity, and caused deficiency in complex IV

[24]. Therefore, our observation of significant reduction in maximal respiration in PET100
mutation fibroblast based on the OCRbayes is in line with the observed loss of enzymatic activ-

ity in patients carrying the genetic mutations in PET100. This difference in analysis outcome

highlighted the advantage of OCRbayes which used hierarchical models to incorporate the

complex data structure into Seahorse OCR data analysis, helping separate the technical varia-

tions from the OCR measurements and identify difference in the biological OCR.

OCRbayes is potentially used for screening patients with mitochondrial

diseases

Since an increase in proton leak or a decrease in basal or maximal respiration are indicators of

mitochondrial dysfunction [25], Seahorse XF is potentially to be used for screening mitochon-

drial disease patients. Besides providing solely statistical significance information as other

methods do, OCRbayes allows us to calculate posterior probability that the maximal respira-

tion (or any other respiration metrics) was abnormal in a patient even based on a single Sea-

horse assay. This feature is also helpful for deciding whether we need to run a single or

multiple Seahorse assays for a patient.

For example, the patient cell line with mutation in PET100 gene showed the largest decrease

in maximal respiration in our analysis. The posterior probability for this patient having abnor-

mal mitochondrial respiration after observing a single Seahorse assay was already about 98%.

It is reasonable to run just a single assay in this case. In contrast, the cell line with mutation in

NSUN3 gene had the smallest effect size among all the patient cell lines that showed significant

reduction in maximal respiration. The posterior probability of this patient having impaired

maximum respiration after running a single Seahorse assay was modest (about 40%). Repeat-

ing the experiment once more increased the posterior probability from 40% to 70%. Thus in

this case, it is beneficial to run multiple Seahorse assays. We think that the posterior probability

is a useful metric to help scientists to decide whether to perform extra Seahorse assays on the

patient cell lines. The ability of posterior probability calculation by OCRbayes not only allows

to make better conclusions about the significance of the effect of the experimental perturba-

tion, it can also prevent from repeating unnecessary, often expensive, experiments. Further-

more, when the availability of patient material or the number of target cells (specific isolated

immune cell subsets) is limited, OCRbayes is valuable to exploit the limited data and facilitate

proper validation the experiments.

Strengths and limitations

OCRbayes has several advantages. The first advantage of our approach is that it incorporates

various technical variations including between measurement cycle variation, between well var-

iation as well as between plate variation during the estimation of bioenergetic measures. All

current methods need to choose a single data point from the three measurement cycles to rep-

resent the OCR during a particular phase. This procedure ignores the uncertainty and makes

analysis less robust because different choice of data points may lead to different results. The

second advantage is that OCRbayes can calculate posterior probability for difference in various

bioenergetic measures based on Seahorse OCR data consisting of a single plate or multiple
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plates. This is a useful feature for screening samples derived from patients with mitochondrial

diseases. A third advantage of OCRbayes is that it can be used for guiding improvement of

experimental protocols for running Seahorse assays, because the hierarchical model can explic-

itly quantify the changes in technical variations resulted from different protocols.

One limitation of this study is that OCRbayes is extensively tested with experimental data

derived from human fibroblasts cell lines. This is because our model development was

restricted to the limited publicly available Seahorse OCR data sets. To generalize our statistical

method to other cell lines than human skin fibroblasts, the prior distributions of those cell

lines should be estimated from previously collected Seahorse OCR data. This is because each

cell line or cell system has its own growth conditions and metabolic characteristics, making the

prior distributions based on the human fibroblasts data not suitable for other cell lines. Fur-

thermore, the prior distributions for plate-to-plate or well-to-well variation are likely depen-

dent on factors such as laboratory and machine. Although many Seahorse studies have been

published, few of them provided the raw OCR measurements together with the cell number

quantification information. Generalization of our method would benefit from the open avail-

ability of raw Seahorse OCR data. This would also facilitate making OCRbayes applicable for

other cell lines than human skin fibroblasts.
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