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Abstract

Motivation

Convolutional neural networks have enabled unprecedented breakthroughs in a variety of

computer vision tasks. They have also drawn much attention from other domains, including

drug discovery and drug development. In this study, we develop a computational method

based on convolutional neural networks to tackle a fundamental question in drug discovery

and development, i.e. the prediction of compound-protein interactions based on compound

structure and protein sequence. We propose a hierarchical graph convolutional network

(HGCN) to encode small molecules. The HGCN aggregates a molecule embedding from

substructure embeddings, which are synthesized from atom embeddings. As small mole-

cules usually share substructures, computing a molecule embedding from those common

substructures allows us to learn better generic models. We then combined the HGCN with a

one-dimensional convolutional network to construct a complete model for predicting com-

pound-protein interactions. Furthermore we apply an explanation technique, Grad-CAM, to

visualize the contribution of each amino acid into the prediction.

Results

Experiments using different datasets show the improvement of our model compared to

other GCN-based methods and a sequence based method, DeepDTA, in predicting com-

pound-protein interactions. Each prediction made by the model is also explainable and can

be used to identify critical residues mediating the interaction.

Introduction

The identification of compound-protein interactions (CPI) plays an important role in drug

discovery and development. Typical applications include high-throughput screening of com-

pound libraries for given protein targets to identify desirable compound-protein interactions

or testing given compounds against possible off-target proteins to avoid undesired effects [1,

2]. Experimental identification of every possible compound and protein pair is unpractical, if

not impossible, due to the enormity of the chemical and proteomic space. Therefore,
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computational methods to predict compound-protein interactions have received increasing

attention. Especially the adaptation of deep learning models to structured data has opened a

new paradigm for pharmaceutical research.

Given a compound-protein pair, CPI prediction methods aim to predict a binary value

indicating whether the compound and the protein interact [3–6], a numeric value indicating

their binding affinity [1, 7–12], or identify binding sites for a specific compound within the

protein [13–16]. Existing CPI prediction methods are diverse in terms of feature engineering

and machine learning models. They can be categorized into different classes. The first class

consists of similarity-based models, which utilize drug-drug and target-target similarity matri-

ces to infer possible interactions. This approach commonly applies nearest-neighbor and ker-

nel-based classifiers as machine learning models. A non-exhaustive list of such methods

includes [17–20]. While similarity measures vary greatly among methods, drug-drug similarity

is generally based on chemical structure fingerprints, whereas target-target similarity typically

depends on a sequence alignment score [8]. In the second class, several studies [21, 22] have

analyzed binding affinity matrices for interaction prediction. Matrix factorization techniques

have been used in this case to reveal latent features for drugs and proteins. A study from 2017

[8] presented SimBoost, combining both similarity matrices and binding affinity matrices to

construct features for drugs, targets and drug-target pairs. These features were used as the

input of a Gradient Boosting Regression Tree, creating a model to predict binding affinity. The

third class consists of learning models that utilise pre-defined features and fingerprints to clas-

sify binders from non-binders. For example, Cheng et al. [23] trained support vector machine

(SVM) models, using Molecular ACCess System (MACCS) keys and 1400 PROFEAT protein

descriptors as input features. Likewise, Yu et al. [24] used PROFEAT protein descriptors in

combination with chemical compound descriptors to train Random Forest and SVM models.

Lastly, Wen et al [25] built a Restricted Boltzmann Machine with Extended Connectivity Fin-

gerprints (ECFP) and protein sequence composition.

As a result of important theoretical and practical developments in recent years, several deep

learning based methods have been devised to improve CPI identification. Deep learning mod-

els with their complex architecture are able to learn abstract features from raw data, which can

lead to improved performance. Convolutional neural networks (CNN) have shown impressive

performance in a variety of tasks, such as image recognition, text classification and audio pro-

cessing [26]. Building on this success, several studies have investigated the use of a 3D-CNN

model to predict CPI using 3D-structural data [27, 28]. Typically, the data is constructed by

discretizing the protein-compound molecular structure into a 3D grid centered around the

binding site. However, structural information regarding the molecular interaction between the

protein and compound is not always available, limiting the scope of these methods. Recently,

Zhao et al. [6] and Zong et al. [29] built association networks among drugs and targets, allow-

ing them to learn features for drugs, targets or drug-target pairs using graph embedding learn-

ing algorithms such as graph convolutional networks (GCN) [30] or node2vec [31]. The

drawback of these network-based methods is that they require retraining when new nodes are

inserted and cannot predict associations for any unseen nodes.

Some of the most readily available data representations in CPI datasets are Simplified

Molecular Input Line Entry System (SMILES) strings for compounds and amino acid

sequences for proteins. Each SMILES string corresponds to a unique molecular graph that

describes the structure of the compound. The nodes of these graphs represent atoms, while the

edges represent the covalent bonds between atoms. Given the availability of large CPI data sets,

several studies have investigated deep learning models that work directly with these data for-

mats. In general, these models consist of three key components, each built from a set of distinct

neural network layers. Two components are responsible for encoding compounds and proteins
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respectively, while the final component translates the output of the encoding layers into a CPI

prediction. The predicting component is usually a fully-connected network, computing

whether an interaction occurs or computing a binding affinity value. The protein is commonly

encoded through sequence-based models. DeepDTA [11], DeepConv-DTI [9], GraphDTA

[10], Tsubaki et al. [5], MT-DTI [12] and TransformerCPI [3] apply 1D-CNN layers to encode

protein sequences, while DeepAffinity [1] and DeepCDA [7] combine 1D-CNN layers with

recurrent neural network (RNN) or long short-term memory (LSTM) layers, respectively. The

compound is encoded with sequence-based or graph-based models, depending on the input

information. DeepDTA, DeepAffinity, DeepCDA, and MT-DTI developed sequence-based

models which utilise SMILES strings directly, considering compounds as sequences of finite

letters. In contrast, several studies have explored the molecular structure of compounds as

input features. DeepConv-DTI [9] uses ECFP fingerprints combined with a fully-connected

network while the studies [4, 5, 10] investigate in GCNs to learn structural features of com-

pounds. Different GCN models have been implemented, including Graph Laplacian based

GCN [32], Graph Attention Networks (GAT) [33] and Graph Isomorphism Networks (GIN)

[34]. In the TransformerCPI method, a GCN was combined with Transformer Decoder, a

sequence-based model, to generate an embedding for every atom of the compound. In 2019,

Karimi et al. [1] compared performance of the two approaches for compound representation.

They implemented a RNN working with SMILES string and the GCN proposed by the study

[4]. Their result showed that the GCN does not outperform the RNN. We obtained the same

result when we compared performance of a recent sequence-based model with some existing

GCNs on human, C. elegans [35] and bindingdb [4] data. However, graph structures are more

descriptive than SMILES strings, especially for model interpretation [1]. Therefore, developing

a better graph-based model to represent compounds are still an active problem.

The deep learning methods for CPI prediction have shown to outperform non-deep learn-

ing methods on benchmark datasets [3, 5, 11]. In this study, we explore a novel deep learning

approach to predict whether compounds and proteins interact, based on compound graphs

and amino acid sequences. We focus more on building an efficient GCN to represent com-

pound structure. Similar to existing deep learning methods, our model includes three compo-

nents: a GCN to encode compounds, a 1D-CNN based model to encode proteins, and a fully

connected network to predict CPI. We postulate that looking at the local parts of data objects

independently can improve the performance of trained models, especially for small molecules,

which usually share many substructures. From this rationale, we introduce a procedure to con-

struct the hierarchical representation for compounds in which compounds are considered as

graphs of substructures, while the substructures are considered as graphs of atoms. Based on

this approach, we propose a hierarchical GCN to model compounds. The hierarchical GCN

learns an embedding for atoms, substructures, and then entire graphs, respectively. For the

1D-CNN based model encoding proteins, we combine 1D-CNN layers with pooling layers as

well as fully-connected layers. Validation experiments on four different CPI datasets show that

the proposed method provides an improved performance compared to existing GCN-based

and string-based models. In addition, we applied Grad-CAM [36] on our model to evaluate

the contribution of specific regions within protein sequences to the prediction.

Our method

Data pre-processing

The input of our model consists of proteins, represented as amino acid sequences, and com-

pounds, represented as graphs. Amino acid sequences are projected into sequences of integers

in which each integer represents a unique amino acid. Compound graphs are generated from

PLOS ONE Predicting compound-protein interaction using hierarchical graph convolutional networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0258628 July 21, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0258628


SMILES strings using RDKit [37]. Compound graphs are then broken into subgraphs to

account for aromatic links and atomic bonds. Our compound breaking procedure can be sum-

marized as follows: First, the compound is split into two parts, one consisting of aromatic links

and the other of non-aromatic links. This separation creates new graphs that can have more

than one connected component in which each connected component corresponds to one spe-

cific substructure. Then, the connected component finding algorithm is used to detect the sub-

structures. Finally, virtual edges are added between the substructures with which they share at

least one atom in the original graph. This procedure generates a hierarchical representation of

compounds. Fig 1 is an example of constructing the hierarchical representation for the com-

pound with formula C25 H25 ClN6 O. The resulting representation is a reduced graph including

eight nodes and seven virtual edges: two nodes are Benzenes, one is Quinazoline and the other

nodes are non-aromatic substructures. These nodes are also graphs, of which the nodes are

atoms and the edges are connections between the atoms. For compounds consisting of only

aromatic or non-aromatic bonds, the hierarchical representation contains a single node corre-

sponding to the entire original graph.

Compound representation

In this section, we present in detail the hierarchical graph convolutional network (HGCN) to

encode compounds. In general, a graph convolutional network (GCN) is a neural network

architecture defined according to graph structure G ¼ ðV; EÞ. Nodes v 2 V take unique

values from 1; ; jVj and edges in E are pairs ðu; vÞ 2 V � V. Graphs may contain node labels

lv 2 f1; ;LVg for each node and edge labels lðu;vÞ 2 f1; ;LEg for each edge. Given initial node

features xv and edge features euv, the aim of the GCN is to learn a state embedding hv for every

node v in G. The node embedding can then be used to synthesize the graph embedding of G.

The forward propagation of GCNs includes two phases: message passing and readout [38].

The message passing phase computes node embedding through an iterative procedure which

is defined in terms of message functions Mt and node update functions Ut, as follows:

mt
v ¼ Aggr

u2NðvÞ
ðMtðh

t� 1

v ; ht� 1

u ; euvÞÞ ð1Þ

htv ¼ Utðht� 1
v ;mt

vÞ ð2Þ

h0
v ¼ xv ð3Þ

Fig 1. An example of constructing the hierarchical representation of C25 H25 ClN6 O based on aromatic bonds and connected components.

https://doi.org/10.1371/journal.pone.0258628.g001

PLOS ONE Predicting compound-protein interaction using hierarchical graph convolutional networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0258628 July 21, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0258628.g001
https://doi.org/10.1371/journal.pone.0258628


Here, Aggr denotes the aggregation function which can be a sum, mean or max function; N(v)

are the neighbors of node v in graph G. As the functions Mt and Ut are typically shared over all

locations in the graph, the neural network architecture is referred to as a convolutional neural

network. At the readout phase, a function R is applied to compute the state embedding for the

entire graph based on the node embedding at the last iteration T.

hG ¼ RðfhTv jv 2 GgÞ ð4Þ

Existing GCN models vary in how these Mt, Ut, and R functions are defined.

Within the proposed HGCN, we compute the graph-level embedding based on the sub-

graph-level embedding which in turn is aggregated from the node-level embedding. The mes-

sages are passed around atoms within the subgraph scope using message functions MðaÞ
t and

update functions UðaÞt . The communication among subgraphs is not considered in this step.

After T(a) iterations, the initial state embedding for every subgraph is assigned using a readout

function R(sg). Another message passing phase is running at the subgraph-level, in which mes-

sages are passed around through virtual edges with message functions MðsgÞ
t and update func-

tions UðsgÞt . Finally, a readout function RðGÞ is exerted to aggregate the state embedding for the

entire graph G. The node embedding is computed as follows:

mt
v ¼

X

u2NðvÞ

ht� 1

u ð5Þ

htv ¼ ReLUðWðaÞ
t ½ht� 1

v ;mt
v� þ bðaÞt Þ ð6Þ

h0
v ¼ xv ð7Þ

Here [a, b] denotes the concatenation of two vectors a and b in their last dimension; xv are

one-hot vectors corresponding to atom labels. The one-hot vectors can be replaced by pre-

defined features of atoms. The embedding of every node v is concatenated with the signals

from its neighbors and then the resultant vector is passed a fully-connected (FC) layer to

obtain the update embedding of v. We choose concatenating over adding directly the neigh-

bors’ signals to the embedding of v as they have different meanings and these meanings are

learnable through learning the weights of the FC layer. At subgraph-level, we use the same

message passing scheme at node-level but the initial state embedding for subgraphs ci are

aggregated from their atoms.

mt
ci
¼
X

cj2NðciÞ

ht� 1

cj ð8Þ

htci ¼ ReLUðWðsgÞ
t ½ht� 1

ci
;mt

ci
� þ bðsgÞt Þ ð9Þ

h0
ci
¼ max poolðfhTðaÞv jv 2 cigÞ ð10Þ

where N(ci) are the neighboring subgraphs of ci according to the virtual edges; WðaÞ
t , WðsgÞ

t , bðaÞt
and bðsgÞt are learned parameters. After Tsg time steps, we compute graph embedding of G
according to:

hG ¼ max poolðfhTðsgÞci
jci are subgraphs in GgÞ ð11Þ

Within this study, we run the message passing phase at atom level with T(a) = 2 time steps and

at subgraph level with T(sg) = 1 time steps. Each time step is associated with a neural network

layer. Batch normalization layers are used after each time step at the atom level. Fig 2 illustrates
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the forward propagation of a HGCN for a simple graph which consists of two aromatic com-

ponents, {A, B, C}, {D, E, F} and two non-aromatic components, {A, G}, {B, E}. k = 2 convolu-

tion layers at node-level continuously update embedding for every node based on the

embeddings of their neighbors within subgraphs using the Eqs 5 and 6. Note that node A in

the component {A, B, C} and node A in the component {A, G} are two different nodes that

have the same label. As a result, their embedding are also different after the message passing

phase, although they come from the same node in the original graph. When the k-th convolu-

tion layer completes, nodes are gathered to compute the embedding for subgraphs according

to Eq 10. For example, the embedding of the component {A, G} are computed from the embed-

dings of two nodes A and G. The convolution layer at subgraph-level takes into account the

interactions between these components to update their embedding and finally generates the

embedding for the entire graph.

Protein representation

Fig 3 demonstrates the model we built to encode protein sequences. We used a 1D-CNN based

model, including three 1D-CNN layers of which two are followed by max pooling layers, and

two fully-connected (FC) layers at the end. We fix the size of the kernels in the first 1D-CNN

layer and the last max pooling layer to 3 and 12 respectively. For the other 1D-CNN and max

pooling layers, this hyper-parameter can be customized by users. First, protein sequences are

transformed into sequences of numerical vectors by an embedding layer, where every vector

corresponds to an amino acid. These sequences then pass through the 1D-CNN and max pool-

ing layers, downsampling into shorter sequences. When the last max pooling layer is finished,

the resulting sequences are flattened into large vectors. The two FC layers at the end compress

these vectors into smaller vectors that are the final representation of the protein.

As protein sequences have varying length, we chose to fix the maximum length of input

sequences using the length of the longest protein in the training data. The sequences that are

Fig 2. An illustration of the forward propagation of a HGCN which consists of T(a) = k convolution layers at node-level and T(sg) = 1

at subgraph-layer.

https://doi.org/10.1371/journal.pone.0258628.g002
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longer than this maximum length are truncated, whereas shorter sequences are 0-padded.

Additionally, we added two more special symbols into the input sequences in order to mark

their begin and end position. As a result, the vocabulary for the embedding layer consists of 24

words in which 22 words correspond to amino acids and 2 words correspond to the begin/end

symbols. The 22 amino acids include the 20 of the standard genetic code and an additional 2

that can be incorporated by special translation mechanisms, Selenocysteine (U) and Pyrroly-

sine (O).

Fig 3. An overview of the 1D-CNN model that encodes protein sequences.

https://doi.org/10.1371/journal.pone.0258628.g003
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CPI prediction model

To predict a CPI, the compound embedding and the protein embedding is concatenated into a

single vector. These vectors represent compound-protein pairs and are used as input features

for a four layer fully-connected neural network (FCNN). The outcome of this network is a vec-

tor z 2 R2
. A softmax layer is applied on top of the output vectors z to generate the CPI proba-

bility according to:

Pðy ¼ kjxÞ ¼
expðzkÞP
iexpðziÞ

ð12Þ

Here, k 2 {0, 1} denotes class label, x is the set of compound-protein pair features and zk is the

value at the k-th dimension of vector z. P(y = k|x) is the probability for the k-th class (i.e. inter-

act or not) given a CPI x. The compound embedding and protein embedding are generated by

the HGCN and 1D-CNN based model described in previous sections. To reduce over-fitting,

we applied dropout p for the two last layers of the 1D-CNN model. Fig 4 presents an overview

of our CPI prediction model. In this study, all models are trained with learning rate

alpha = 0.0001, dropout p = 0.2 and Adam [39] is used as the optimization algorithm in the

training process. The dimensions of the initial embeddings and the final embeddings for both

compounds and proteins are 64 and 128, respectively. We implemented our model using the

Pytorch and Pytorch Geometric library.

Experiment and result

To evaluate our model and compare its performance to other deep learning based methods,

we use four independent datasets. The compared methods include GCN [5], GraphDTA [10],

TransformerCPI [3] and DeepDTA [11]. We also implemented another model which has the

same architecture as our model but it does not use the substructure splitting information. For

simplicity, we denote this method as HGCN-nosplit while the proposed method is denoted as

HGCN. Among these methods, DeepDTA directly uses the SMILES format string as input and

constructs a sequence-based model to encode compounds while the others employed different

GCNs. DeepDTA and GraphDTA by default predict the binding affinity value between

Fig 4. An overview of the CPI prediction model which encodes compounds using a HGCN and proteins using a

1D-CNN. FCNN denotes a fully-connected neural network, predicting the interaction based on a compound

embedding and a protein embedding, which are generated from previously described components. We use the initial

embedding layers with 64 dimensions and generate 128-dimension vectors for both compounds and proteins.

https://doi.org/10.1371/journal.pone.0258628.g004
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compounds and proteins. We modified their output layer from generating a float value into

generating a binary value which allows us to directly compare the performance of these mod-

els. All the models are trained using the early stopping based on validation data, with a delay of

n = 10 successive epochs.

The Datasets consist of human and C.elegans from [35], bindingdb created by [4] and

chembl27 downloaded from chEMBL database [40]. Except for the chembl27 dataset, all data-

sets have been used to benchmark CPI prediction methods in previous studies [3–5, 7]. For

the human and C.elegans datasets, Liu et al. [35] retrieved positive samples from two manually

curated databases DrugBank 4.1 [41] and Matador [42], while they obtained negative samples

using an in silico screening method. Gao et al. [4] created bindingdb dataset from BindingDB

[43], a database of measured binding affinities, focusing primarily on the interactions of small

molecules and proteins. The samples are labeled as positive if their IC50 is less than 100nM
and negative if their IC50 is larger than 10, 000nM. For the chembl27 dataset, we collected sam-

ples based on the binding activities of small molecules from the chEMBL database [44], only

retaining the entries with a standard measure IC50. The thresholds to assign samples as posi-

tives or negatives are� 100nM and� 1000nM respectively. Table 1 shows the number of com-

pounds, proteins, positive samples and negative samples for each dataset. With approximately

8000 samples the human and C.elegans datasets are substantially smaller than the other data-

sets, whereas they are more balanced in compound and protein quantity. Table 2 additionally

offers an overview of the training, testing and validation dataset sizes. We evaluate the models

on small datasets using k-fold cross validation, with k = 5. Meanwhile, the larger datasets are

split into training, validation and testing subsets. To check the similarity between the training

and testing data, we compute pairwise local alignment for proteins and Morgan fingerprint

based similarity with radius of 2. The average similarity between the training and testing data

that we obtained for the proteins and the compounds are less than 0.33 and 0.28, respectively.

Table 3 provides an insight to the testing data of all datasets and enumerates the number of

samples in each case study, including new compound—known protein, known compound—

new protein, new compound—new protein and known compound—known protein. A

“known” compound/protein means the element has been seen in training data while a “new”

compound/protein has the opposite meaning. Note that the known compound—known pro-

tein pair signifies an unseen pair built up from a compound and protein that are both in the

Table 1. Summary of the experimental datasets.

dataset #compounds #proteins #positive #negative

C.elegans 1,767 1,876 3,893 3,893

human 2,726 2,001 3,364 3,364

bindingdb 49,752 813 33,777 27,397

chembl27 346,142 2,849 213,125 269,061

https://doi.org/10.1371/journal.pone.0258628.t001

Table 2. Summary of the training and testing data. To small datasets, human and C.elegans, we evaluate the models’ performance using k-fold cross validation, with

k = 5. To the other datasets, we split them into three sets: training, validation and testing.

training validation testing

dataset #positive #negative #positive #negative #positive #negative

C.elegans - - - - - -

human - - - - - -

bindingdb 28,240 21,915 2,831 2776 2,802 2,706

chembl27 171,022 214,728 21,076 27,142 21,027 27,191

https://doi.org/10.1371/journal.pone.0258628.t002
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training data, but never paired there. The last two columns of the table present the percentage

of samples in the cases of new compound—new protein and of known compound—known

protein. The testing data of C.elegans and human have very high rate of known compound—

known protein samples, with 77.75% and 59.06%, respectively, while the rate of new com-

pound—new protein samples are merely 0.8% and 3.59%, respectively. bindingdb and

chembl27 testing data have much lower rate of known-known samples, with less than 30%.

They also contain a much higher rate of new samples, with 38.31% and 18.77%, respectively.

Comparison in performance

For simplicity, all the customizable layers in the protein encoder were assigned the same kernel

size. Validation data is used to tune the hyper-parameters, mainly for the kernel size in the cus-

tomizable layers. The tuning process showed that k = 6 is sufficient for most experimental

datasets. As a result, we choose k = 6 as the kernel size of our model in this experiment. We

also trained our model with the same learning rate and weight decay, 1e–4, for all datasets.

Table 4 shows MSE, F1 and AUC score of the prediction models on the experimental data. In

the case of C. elegans and human data, we computed K-fold cross validated paired t test to

compare our method with the others. We write a symbol ‘�’ next to the score in which the cor-

responding method is significantly different from our method with p-value < 0.05. The

improvement in the performance of HGCN over HGCN-nosplit shows the beneficit of split-

ting compounds into substructures to CPI prediction. Synthesizing the substructure embed-

dings independently before integrating them into the compound embedding gives a better

prediction model. The tables also show that the performance of all methods is high on both C.
elegans and human data, with F1 scores higher than 0.90 for both datasets. Meanwhile, perfor-

mance on bindingdb and chembl27 is much lower for all models. For example, the GCN

method achieves approximately 0.700 in terms of F1 score on these datasets. These results can

be explained by the degree of overlap in proteins and/or compounds between the training and

the testing data, shown in Table 3. Our method is only significantly better than the GCN

method on C.elegans data. However, it becomes significantly better than the GCN and Trans-

formerCPI on human data while its performance is not significantly different from the others

on this dataset. In the case of two large datasets, bindingdb and chembl27, our method outper-

forms the other methods in predicting CPIs.

To allow a more detailed evaluation, we applied the trained models on the testing data, spe-

cifically on four subsets corresponding to four different scenarios, as mentioned in Table 3.

Table 5 presents the AUC scores of the methods in each scenario for each dataset. In general,

DeepDTA outperforms the other methods in predicting CPIs with known compound and

known protein. In this scenario, our method outperforms the remaining ones, including

GCN, TransformerCPI, GraphDTA and HGCN-nosplit. For new compound—known protein

samples, our model achieves a performance similar to DeepDTA and GraphDTA but lower

than HGCN-nosplit. If we narrow down the comparison on the large datasets, our method

Table 3. A summary of CPIs in the testing data of two datasets bindingdb and chembl27 in four scenarios: (a) new compound-known protein, (b) known compound-

new protein, (c) new compound-new protein, and (d) known compound-known protein. The two last columns indicate percentage of (c) and (d) in testing data.

dataset (a) (b) (c) (d) %(c) %(d)

C.elegans 174.8 (16.95) 147.4 (8.65) 12 (4.12) 1168 (18.91) 0.80 77.75

human 308.2 (4.55) 155.8 (6.42) 44.6 (5.23) 733.8 (5.45) 3.59 59.06

bindingdb 1682 397 2110 1319 38.31 23.95

chembl27 18175 6,575 9051 14417 18.77 29.90

https://doi.org/10.1371/journal.pone.0258628.t003
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gives better prediction than HGCN-nosplit. Furthermore, it outperforms the others in terms

of average ranking in the other scenarios, known compound—new protein and new com-

pound—new protein.

Effect of the kernel size

As the k-mer is a common concept related to protein sequences, with biological meaning, we

have focused on the kernel size in 1D-CNN layers and max pooling layers and examine how it

affects to our model performance. We changed the kernel size in the customizable layers to 6,

8, 10, 12 and trained different versions of our model. Fig 5 shows AUC scores of these trained

predictors on testing data for two datasets: human and bindingdb. For the human dataset, the

AUC score slightly changes as a function of the kernel size, reaching the highest value at the

kernel size k = 10. The AUC value of the model trained with the kernel size k = 6 is also prom-

ising, which is lower than the highest value merely 0.1%. For the bindingdb dataset, the perfor-

mance generally decreases when the kernel size increases from k = 6 to k = 12, with an AUC

difference of 3%. This indicates that kernel size can have an effect on the performance of the

model. The kernel size defines the number of adjacent amino acids in proteins that would be

considered in one patch. As the ideal split can be different among proteins, the ideal kernel

size is also different among datasets. With the result we obtained from four experimental data-

sets, a kernel size of 6 is a good option to use.

To get an insight on how the kernel size impacts our model, we also examined the perfor-

mance of our model trained on different kernel size in the four different scenarios. Figs 6 and

7 show the result of the examination on human and bindingdb data, respectively. In the scenar-

ios of new compound—known protein and known compound—known protein, our results

indicate slight differences in AUC score of our model when it is trained with the kernel size of

6, 8, 10 and 12. In other words, changing the kernel size does not affect much on the prediction

Table 4. MSE, F1 and AUC scores of CPI prediction models on the experimental data.

MSE

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.209� 0.140� 0.169 0.093� 0.167 0.156

human 0.253� 0.197 0.281� 0.171 0.178 0.180

bindingdb 0.574 0.431 0.335 0.331 0.407 0.272

chembl27 0.525 0.518 0.446 0.470 0.460 0.415

average rank 5.75 4 4 2 3.25 2

F1

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.932� 0.957 0.946 0.973� 0.942 0.950

human 0.915� 0.934� 0.906� 0.944 0.941� 0.947

bindingdb 0.706 0.810 0.858 0.875 0.835 0.895

chembl27 0.679 0.690 0.772 0.751 0.762 0.797

average rank 5.75 4 3.75 2.25 3.75 1.5

AUC

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.976� 0.989� 0.986 0.994� 0.983 0.985

human 0.969� 0.978 0.960� 0.984 0.981 0.983

bindingdb 0.881 0.886 0.933 0.951 0.914 0.959

chembl27 0.814 0.820 0.883 0.865 0.871 0.896

average rank 5.5 3.75 3.25 3 3.5 2

https://doi.org/10.1371/journal.pone.0258628.t004
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Table 5. AUC score of the methods in four scenarios for each dataset.

new compound—known protein

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.907 0.972� 0.969 0.971� 0.963� 0.948

human 0.923 0.969 0.964 0.947� 0.966 0.962

bindingdb 0.971 0.960 0.957 0.982 0.976 0.981

chembl27 0.867 0.900 0.939 0.921 0.940 0.942

average rank 5.5 3 3.75 3 2.75 3

known compound—new protein

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.978 0.990 0.981� 0.997 0.990 0.993

human 0.975 0.961� 0.915� 0.996� 0.979� 0.987

bindingdb 0.758 0.585 0.778 0.831 0.769 0.850

chembl27 0.771 0.582 0.737 0.746 0.720 0.776

average rank 4.25 5.125 4.5 1.75 3.875 1.5

new compound—new protein

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.334� 0.851 0.700 0.929 0.642 0.772

human 0.635 0.776 0.699 0.783 0.719 0.756

bindingdb 0.840 0.792 0.897 0.895 0.782 0.915

chembl27 0.708 0.625 0.697 0.692 0.633 0.740

average rank 4.5 3.75 3.5 2.25 5 2

known compound—known protein

GCN GraphDTA TransformerCPI DeepDTA HGCN-nosplit HGCN

C.elegans 0.983� 0.992 0.988 0.997� 0.986� 0.990

human 0.985� 0.985� 0.969� 0.995� 0.989 0.992

bindingdb 0.974 0.955 0.944 0.993 0.977 0.986

chembl27 0.829 0.884 0.938 0.924 0.941 0.948

average rank 5.125 4.125 4.75 1.75 3.25 2

https://doi.org/10.1371/journal.pone.0258628.t005

Fig 5. Performance of our model on two datasets, human and bindingdb, when it is trained with different

1D-CNN kernel sizes.

https://doi.org/10.1371/journal.pone.0258628.g005
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of CPIs with known proteins although the proteins are paired with new compounds. This is

reasonable as the kernel size is merely related to the protein encoder. A large change in perfor-

mance when modifying the kernel size can be observed for the scenario of new compound—

new protein. The kernel size of 6 results in the highest AUC score, producing a model that is

able to recognize completely new CPIs better than models of the other kernel values.

Fig 6. AUC score of our method trained with different kernel size on human data in four scenarios: (a) new

compound-known protein, (b) known compound-new protein, (c) new compound-new protein, (d) known

compound-known protein.

https://doi.org/10.1371/journal.pone.0258628.g006

Fig 7. AUC score of our method trained with different kernel size on bindingdb data in four scenarios: (a) new

compound-known protein, (b) known compound-new protein, (c) new compound-new protein, (d) known

compound-known protein.

https://doi.org/10.1371/journal.pone.0258628.g007
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Explanation with Grad-CAM

Grad-CAM [36] can be used to produce a visual explanation of the decisions made by CNN-

based models, without modifying the base models or requiring re-training. Grad-CAM is

applicable to any CNN-based architecture, including those for image captioning and visual

question answering. Grad-CAM operates by flowing gradient information back to the last con-

volutional layer, where importance values are assigned to each neuron for a particular decision

of interest. These importance values are used to compute a class-discriminative localization

map. To obtain the full explanation, we can interpolate the map and project the result onto the

original input. For 2D-CNN-based models, the class-discriminative localization map Grad-

CAM LcGrad� CAM 2 R
u�v of width u and height v for any class c is computed as follows:

• Neuron importance weights ack are computed using the gradient of the score for class c, yc,
with respect to the feature map activations Ak in the last convolutional layer, i.e. @y

c

@Ak.

ack ¼
1

Z

X

i

X

j

zfflfflfflfflffl}|fflfflfflfflffl{
global average pooling

@yc

@Ak
ij

|{z}
gradient via backprop

ð13Þ

• The neural importance weight ack captures the “importance” of feature map k for the target

class c. These are then combined with forward activation maps, followed by a RELU function

to produce,

LcGrad� CAM ¼ ReLU
X

k

ackA
k

 !

ð14Þ

The ReLU is applied to the linear combination of maps in order to focus only on the features

that have a positive influence on the class of interest.

For the 1D-CNN-based model, the Eq 13 is replaced by:

ack ¼
1

L

X

i

@yc

@Ak
i

ð15Þ

where L, Ak denote the length and the whole dimension k-th of the feature map, respectively.

Fig 8 is an example of a class-discriminative localization map LcGrad� CAM that Grad-CAM

explains for a CPI prediction generated by our model. This example represents the interaction

between Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) and the small molecule

3Z1 (PDB ID 4X7J). PERK is one of three sensors of misfolded proteins that are known to

mediate the unfolded protein response (UPR) through complementary pathways [45]. The

two heat maps correspond to two different models trained with kernel size k = 6 and k = 12,

respectively. The heat maps reveal the residues predicted to play the most important role in the

interaction. With a smaller kernel size, each signal at the last 1D-CNN layer is associated with

a smaller region in the input. Therefore, we obtain a more detailed explanation with a smaller

kernel size, focusing on shorter regions, compared to larger kernel sizes. Fig 9 shows the 3D

visualization of the same CPI in which (A) is the structure obtained from PDB, while (B) and

(C) highlight the importance of the residues according to the prediction models trained with

kernel size k = 6 and k = 12, respectively. The prediction models have concentrated on several

binding site residues that are within 5Å from the ligand when making their decision. However,

other residues were also taken into account that are far from the ligand. When comparing the
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two prediction models, the model with kernel size k = 6 is focused more on the residues sur-

rounding the ligand in a radius of 5Å than the model with the kernel size k = 12.

Fig 10 is another example of using Grad-CAM to explain CPI prediction given by our

model. We trained this model with the kernel size of 6. The example illustrates the CPIs related

to the ligand 1S7 and two proteins, AmpC beta-lactamase in Escherichia coli K-12 (PDB ID

4KEN) and Penicillin-binding protein 4 (PDB ID 7KCX). Compared to the ligand interaction

retrieved from PDB database, our model has recruited a subset of the residues that are within

5Å from the ligand as the important features in its prediction. We also observe that other resi-

dues which are far from the ligand play important role in the prediction.

Conclusion

We proposed a new hierarchical graph convolutional network based technique which is able

to produce three levels of embedding: node, subgraph and entire graph. We used this GCN

model as a compound encoder, combining it with a 1D-CNN based model in order to build a

complete CPI prediction framework. To generate subgraphs in compounds, we developed a

simple procedure based on aromatic links and connected components. The experimental

Fig 9. 3D visualization of CPI between PERK and the ligand 3Z1 (PDB ID 4X7J): (A) structure retrieved from PDB; (B) explanation from the model

with kernel size k = 6; and (C) explanation from the model with kernel size k = 12. The central structure in pink color is the ligand 3Z1. The green part

in (A) denote the residues located within 5Å of the ligand, whereas the green regions in (B) and (C) correspond to the residues that contribute most

(� 0.2) to the CPI prediction. The contribution values are taken from the corresponding heat maps in Fig 8 with cut off value 0.2.

https://doi.org/10.1371/journal.pone.0258628.g009

Fig 8. An example of a visual explanation generated by Grad-CAM for a CPI prediction made by our model. The

CPI occurs between the protein PERK and the ligand 3Z1 (PDB ID 4X7J). The left plot corresponds to the model

trained with kernel size k = 6 and the right plot to a model with kernel size k = 12. The darker the residues are, the

more importance these amino acids contribute to the prediction.

https://doi.org/10.1371/journal.pone.0258628.g008
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Fig 10. Examples of using Grad-CAM to explain the CPI prediction given by our model. The examples include the CPIs

between the ligand 1S7 and two different proteins, AmpC beta-lactamase in Escherichia coli K-12 (PDB ID 4KEN) and

Penicillin-binding protein 4 (PDB ID 7KCX): (A) structure retrieved from PDB; (B) Grad-CAM explanation in heat map; and

(C) Grad-CAM explanation in 3D view.

https://doi.org/10.1371/journal.pone.0258628.g010
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results demonstrate that our framework outperforms existing GCN based models on different

CPI datasets. Compared to DeepDTA, a highly performing sequence-based CPI prediction

method, our model is competitive, showing improved performance when large training data is

available. In addition, the visual explanation provided by Grad-CAM shows the relevance of

the involved residues for the proposed model. This offers a promising extension towards the

prediction of binding sites between compounds and proteins.

We employed different types of neural network layers to build the CPI prediction model,

recruiting basic information from compounds and proteins as input. The embedding of com-

pounds and proteins are learnt merely from CPI data during the training process. However,

there is a large number of small molecules and protein sequences available in public databases

that can be exploited to learn compound and protein embeddings through unsupervised

approaches. Pre-trained embedding has the potential to make learning significantly easier and

cheaper. In addition, attention mechanisms have proven their efficiency in several deep learn-

ing models. Integrating a relevant attention mechanism into our CPI prediction framework

may further improve its performance. We leave this as an open avenue for exploration in

future work. The visual explanation we provide on the protein sequences suggests possible

binding sites which offers opportunities to generate new biological insights in protein

function and opens applications in the context of drug discovery and re-purposing. As the

incorporation of compound substructure information yields good CPI prediction perfor-

mances, we argue that substructure analysis can be a valuable step in computational drug

design.

Supporting information

S1 Appendix. Additional experiment and result. The change in performance of the predic-

tion models when we omit either the compound or protein branch.
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13. Jiménez J, Doerr S, Martı́nez-Rosell G, Rose AS, De Fabritiis G. DeepSite: protein-binding site predic-

tor using 3D-convolutional neural networks. Bioinformatics. 2017; 33(19):3036–3042. https://doi.org/10.

1093/bioinformatics/btx350 PMID: 28575181

14. Xie ZR, Hwang MJ. Methods for predicting protein–ligand binding sites. In: Molecular modeling of pro-

teins. Springer; 2015. p. 383–398.

15. Yang J, Roy A, Zhang Y. Protein–ligand binding site recognition using complementary binding-specific

substructure comparison and sequence profile alignment. Bioinformatics. 2013; 29(20):2588–2595.

https://doi.org/10.1093/bioinformatics/btt447 PMID: 23975762

16. Zhao J, Cao Y, Zhang L. Exploring the computational methods for protein-ligand binding site prediction.

Computational and structural biotechnology journal. 2020; 18:417–426. https://doi.org/10.1016/j.csbj.

2020.02.008 PMID: 32140203

17. Bleakley K, Yamanishi Y. Supervised prediction of drug–target interactions using bipartite local models.

Bioinformatics. 2009; 25(18):2397–2403. https://doi.org/10.1093/bioinformatics/btp433 PMID:

19605421
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