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The term “inflammaging” describes the chronic, low-grade systemic inflammation that occurs during
physiological aging in the absence of an overt infection [1,2]. Inflammaging is a hallmark of all age-related
diseases, including cardiovascular diseases (CVDs) and associated risk factors (e.g., diabetes), that affects
morbidity and mortality in the elderly [1,2]. Along with specialized immune cells, senescent cells are
recognized as the largest contributors to inflammaging thanks to the acquisition of a senescence-associated
secretory phenotype (SASP) that enable them to secrete a variety of soluble molecules including
proinflammatory cytokines and chemokines, growth factors and matrix degrading proteins [2,3].
Furthermore, senescence may promote cell trans-differentiation toward a pathological phenotype [4].
Vascular calcification (VC) is an age-related complication of atherosclerosis, type 2 diabetes mellitus (T2DM)
and chronic kidney disease characterized by the transition of vascular smooth muscle cells (VSMCs) to an
osteo-chondrogenic phenotype with consequent hydroxyapatite crystals deposition and mineralization
of the arterial wall [5,6]. Senescent VSMCs have greater propensity to experience the osteoblastic switch
since express bone-related genes, such as Runt-related transcription factor 2 (Runx2), alkaline phosphatase
and osteocalcin and secrete pro-calcification SASP factors, like interleukin 6 (IL-6), bone morphogenetic
protein 2 and osteoprotegerin responsible for the spreading of senescence and mineralization of neighboring
VSMCs [7,8].

MicroRNA-34a (miRNA-34a) is a senescent-associated miRNA whose expression has been shown
to increase in different tissues and organs with age [9,10]. miR-34a is a promoter of senescence-induced
VC. Mir34a deletion in mice reduces the expression of the VC markers such as SRY (sex-determining
region Y)-box 9 (Sox9) and Runx2 and senescence proteins p16 and p21 and, consequently soft tissue
and aorta medial calcification [4]. In vitro, replicative senescent human aortic smooth muscle cells
(HASMCs) show higher levels of miR-34a and its ectopic overexpression in proliferative cells induces
growth arrest and senescence through direct downregulation of AXL receptor tyrosine kinase (Axl)
and sirtuin 1 favoring HASMCs mineralization in hyperphosphatemia conditions [4,9].

Our recent work, published in the Special Issue “Mechanisms of Inflammation in Degenerative
Cardiovascular Conditions 2.0” of this journal, demonstrates that miR-34a enhances the secretion
of several SASP factors in HASMCs, such as pro-inflammatory molecules (IL6, IL12, IL13 and
Growth-Regulated Oncogene-alfa (GRO-α)), the metalloprotease inhibitor TIMP2 and the Insulin-like
Growth Factor Binding Protein 3 (IGFBP3) [11]. Preconditioning with miR-34a-induced “secretome”
enhances HASMCs senescence and mineralization indicating that this miRNA is able to endorse the
activation of the VSMCs SASP to fuel the inflammatory conditions responsible for the spreading of
vascular cells senescence and calcification [11]. Accordingly, Mir34a genetic ablation prevents the
induction of IL6 expression occurring during aortas medial calcification onset. Importantly, we also
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found a positive correlation between circulating miR-34a and IL6 in a population of healthy subjects
spanning from 20–90 years [11]. Altogether, our findings pinpoint miR-34a as a driver of vascular and
systemic low-grade inflammaging and, hence, a causal promoter of age-associated diseases.

T2DM shares a number of important features with aging, including inflammaging and VC [12,13].
Indeed, high glucose triggers numerous inflammation and endoplasmic reticulum (ER) pathways that
contribute to VSMCs senescence and calcification [13,14]. To date, there is strong evidence that diabetic milieu
may epigenetically skew CD34+ stem cell differentiation, a cell population endowed of both regenerative
and hematopoietic properties, towards more inflammatory cell populations [15]. To this regard, clinical
and preclinical studies described abnormal elevation of monocyte subsets with higher inflammatory
phenotype, alteration in macrophage polarization, as well as in the levels of circulating cytokines [16–18].
Interestingly, a very recent study demonstrated that non-classical monocytes exhibit the hallmarks of
senescence, suggesting that their pro-inflammatory nature could be the manifestation of SASP [19]. In the
Special Issue “Bone Marrow and Stem Cell Alterations in Diabetes: Causes, Consequences and Therapeutics”
of this journal we recently reviewed the pathological contribution of bone marrow (BM) stem cells to diabetic
cardiovascular complications [20]. In particular, we described the ability of diabetic milieu to redirect stem
cell differentiation into cell populations with calcifying phenotype (osteoprogenitor cells) [21]. These cells,
hypothetical “side products” of differentiation drift, witness the ability of diabetes to promote the generation
of cells with pro-calcifying properties among others [20], with clear implications in diabetic micro- and
macro-angiopathies development. Up to now, few preclinical studies reported that miR-34a up-regulation
in the diabetic context impairs vascular function [22]; however, there are no data regarding the involvement
of this miRNA in the processes of VC and inflammation associated with T2DM.

Since miRNAs are emerging as promising druggable targets, extending the knowledge of the
mechanisms by which miR-34a regulates cell senescence, trans-differentiation and SASP acquisition
in different pathological contexts, will help to develop new pharmacological therapies to counteract
inflammaging and, eventually, age-related diseases onset.
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