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Abstract 

The exposome concept aims to account for the comprehensive and cumulative effects of physical, chemical, biological, and psycho-
social influences on biological systems. To date, limited exposome research has explicitly included climate change-related expo-
sures. We define these exposures as those that will intensify with climate change, including direct effects like extreme heat, tropical 
cyclones, wildfires, downstream effects like air pollution, power outages, and limited or contaminated food and water supplies. 
These climate change-related exposures can occur individually or simultaneously. Here, we discuss the concept of a climate mixture, 
defined as three or more simultaneous climate change-related exposures, in the context of the exposome. In a motivating climate 
mixture example, we consider the impact of a co-occurring tropical cyclone, power outage, and flooding on respiratory hospitaliza-
tions. We identify current gaps and future directions for assessing the effect of climate mixtures on health. Mixtures methods allow 
us to incorporate climate mixtures into exposomics.
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Background
The exposome concept integrates a large number of external 

exposures across various contexts (eg, ecosystems, lifestyle, so-

cial, physical-chemical) to investigate their cumulative impact 

on internal biological processes that potentially manifest as ad-

verse health outcomes.1 This framework can readily incorporate 

various environmental exposures (eg, air pollution, water con-

tamination). Climate change-related exposures and their subse-

quent hazards are also a pressing environmental concern. 

Broadly, we define these exposures to be direct environmental 

exposures which will intensify with climate change. Climate 

change-related exposures include direct impacts on weather 

such as extreme heat, tropical cyclones, and wildfires, among 

others. Climate change also encompasses exposures such as as 

air pollution, power outages,2 and contaminated or limited food3

and water4,5 supplies. Climate change can have additional down-

stream consequences that can largely impact health largely 

through changes in social factors and infrastructure. In theory, 

the exposome also includes climate change-related events; how-

ever, there has been limited exposome research that incorporates 

these exposures, despite their demonstrated impacts on health.6

Individually, climate change-related events (eg, heat waves) can 

directly threaten an individual’s health by taxing psychosocial, 
cardiovascular, respiratory, and other biological processes,7,8 or 
by coalescing with other dimensions of the exposome. For exam-
ple, a heat wave can interact with low household income or poor 
quality housing to worsen health.6,9

Climate change endangers population health by increasing 
the frequency, geographic range, and intensity of natural hazard 
such as tropical cyclones,10 wildfires,11 extreme heat,12 floods,13

and drought,14 among others, that precipitate downstream 
events such as power outages15 or displacement.16 Instead of be-
ing isolated events,6 climate-related exposures may occur simul-
taneously. Climate change will further increase the likelihood of 
co-occurring events.17,18 Extreme heat, drought, and wildfire, for 
example, may occur at the same time and location. These expo-
sures can also be causally inter-related and be part of feedback 
loops. For instance, extreme heat and drought can facilitate dry 
environments that increase risk of wildfires. These interdepen-
dencies complicate investigating the role of multiple climate 
change-related exposures on biological responses. However, 
complex relationships commonly occur among all environmen-
tal exposures; this issue, therefore, is not limited to the role of cli-
mate change-related exposures in the exposome. The exposome 
concept can aid researchers in understanding the health effects 
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of simultaneous climate-related exposures. It provides a frame-
work to better summarize all exposures affecting health, which 
we extend to include climate-related exposures. Here, we discuss 
considerations, methods, and gaps and future directions for ap-
plying the exposome framework to characterize a mixture of cli-
mate change-related exposures in health analyses. Our 
discussion may align more with environmental epidemiology’s 
focus on hypothesis-driven research than with exposome 
research’s emphasis on discovery, both approaches are needed 
to understand the impacts of climate mixtures on adverse health 
outcomes and biological processes.

Recently, the field of analyzing mixtures exposures has ad-
vanced rapidly, and numerous methods have been adapted from 
other fields or developed to evaluate multiple exposures in health 
studies. Techniques include least absolute shrinkage and selection 
operator (LASSO) and Bayesian kernel machine (BKMR) regres-
sions.19-21 Extending the field to include climate change-related 
exposures, however, requires additional considerations, due to the 
unique characteristics of mixtures of climate change-related expo-
sures. Each mixtures method has been designed to address a spe-
cific research question(s) such as characterizing exposure 
patterns, identifying the most toxic mixture components, and esti-
mating the overall effect of exposure to the entire mixture.19,22,23

Environmental health studies have traditionally leveraged these 
techniques to better understand the health impacts of complex 
mixtures in the context of various chemical and non-chemical 
stressors including phthalates,24,25 pesticides,26 air pollution,21

and sociodemographic factors.27,28 Before using mixtures methods 
to consider exposure patterns, independent effects, and cumula-
tive impacts, one must first consider the ways in which climate 
change-related disasters differ from more traditional exposures. 
The concept of a climate mixture is still in its nascent stages, but 
for our purposes, we define a climate mixture as at least three co- 
occurring climate change-related exposures.

Climate change-related exposures versus 
previously studied exposures in 
mixtures analyses
One important consideration is that not all climate change- 
related exposures occur in the same place or time. Traditionally, 
environmental epidemiology conceptualizes mixtures to involve 
exposures that individuals or communities continuously experi-
ence. For example, although the composition of an air pollution 
mixture varies seasonally and regionally, individuals are always 
exposed to a collection of pollutants simultaneously. On the 

other hand, individual climate change-related exposures may oc-
cur transiently and lack distinctive spatial and temporal patterns 
(Figure 1). Though climate change is facilitating unexpected ex-
treme weather events such as a hurricane near California,29 the 
tropical cyclone season in the United States spans June through 
November and mostly affects the coastal eastern United States.30

Wildfires in the western United States, a growing problem as cli-
mate change drives drier, warmer environmental conditions,31,32

predominantly take place from July through October. Electrical 
power outages in the United States occur throughout the year 
but vary by time of day, season, and region.33 Certain climate 
mixture combinations such as wildfire disasters co-occurring 
with snowstorms would be unlikely to exist owing to the current 
spatial and temporal patterns of individual climate change- 
related exposures. Therefore, researchers interested in questions 
about climate mixtures should keep in mind positivity viola-
tions34 where certain exposures have a zero probability of occur-
ring or co-occurring in specific locations. For studies that require 
a comparison group, researchers should also carefully consider 
which populations would be appropriate as control groups.

Because exposomics strives to capture the comprehensive and 
cumulative effects of physical, chemical, biological, and psycho-
social influences on biological systems across the human life-
span, identifying the long-term effects of climate mixtures on 
health is key.35,36 For questions examining long-term health 
impacts, researchers should recognize that climate change- 
related exposures and chemicals exhibit different distribution 
patterns across time. Research on climate change-related expo-
sures has predominantly focused on acute outcomes (eg, within 
days, weeks, or months of exposure), as defining long-term expo-
sure to climate mixtures poses challenges. Longer contexts with 
long-term exposures and their respective chronic effects on pop-
ulation health involve additional complexity, including the defi-
nition of long-term exposures and selection of appropriate health 
outcomes.19 Characterizing long-term exposures to chemical 
mixtures has typically been done by averaging concentrations 
over an extended period, such as annual averages over several 
years or maximal values across months. However, doing so for 
climate change-related exposures is not always appropriate. 
Some climate change-related exposures, such as tropical cyclo-
nes and wildfires, have distinct temporal patterns, and research-
ers must define long-term exposures for events with a sharp, 
irregular, and discontinuous pattern across time. For example, a 
prior study conceptualized wildfire fine particle (PM2.5) exposure 
across 15 years using 5 definitions considering varying temporal 
units (weeks Versus continuous days Versus year), wildfire PM2.5 

Figure 1. Example of how climate change-related exposures can be spatially and temporally misaligned. The colors—green, yellow, blue, and purple— 
represent the potential presence of a climate change-related exposure in a particular state-month, while grey represents the potential absence. As this 
is intended to be an illustrative example of climate change-related exposures, we determined the state-month presence of each climate change-related 
exposure based on likely geographic and seasonal trends.
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thresholds (>5 μg/m3 versus >0 μg/m3), and aggregation methods 
(cumulative weeks Versus averages across years).37 Given the 
varying ways to define long-term wildfire PM2.5, researchers 
must think through which exposure definition is more biologi-
cally plausible and relevant for which health outcomes. The lack 
of standardized approaches for measuring long-term exposure to 
wildfire PM2.5 applies to other climate-related exposures as well. 
When investigating the long-term health impacts of climate- 
related mixtures, researchers must grapple with defining expo-
sure for those with irregular temporal patterns and decide on the 
most relevant health outcome(s).

Methods and examples for addressing 
research questions about multiple 
climate-exposures
Estimating the health impacts of climate mixtures is crucial for 
incorporating climate change-related exposures to exposome re-
search. We briefly present research questions about multiple co- 
occurring climate change-related exposures, discussing the im-
portance and relevance of these questions, established methods 
that can be used to answer them, and potential methodological 
limitations. This discussion will focus on hypothesis-driven tech-
niques to methodologically address climate mixtures, an impor-
tant step towards expanding the implementation of exposome 
research to include climate change-related exposures. 
Throughout the paper, we will use the following example: the cli-
mate mixture comprises a tropical cyclone event, power outages, 
and flooding, and the health outcome is respiratory hospitaliza-
tions. Respiratory hospitalizations are extracted from adminis-
trative health data that are often used in health studies and can 
cover large geographic regions (eg, states, entire US), ensuring ad-
equate variability in macro-level climate change-related expo-
sures. Studies have found that tropical cyclones are associated 
with respiratory hospitalizations.38 One potential pathway, for 
example, is that tropical cyclones result in power outages, and 
the loss of electricity may prompt individuals who are reliant on 
electricity-dependent medical equipment to seek healthcare 
services.38-40 Flooding can expose individuals to contaminated 
water and microbes (eg, bacteria, mold), which can increase risk 
for acute respiratory infections.41 Our examples center on short- 
term exposure and acute respiratory hospitalizations. Certain 
methods cannot be used for all study designs (eg, BKMR is not ap-
propriate for case-control studies or time-series with aggregated 
outcome data), but as our goal centers on climate mixtures and 
mixture methods, we will focus on illustrating the ways in which 
mixtures methods can be applied to such exposures.

We use this example to illustrate specific concepts and con-
siderations for analyses of climate mixtures. We note that the 
methods we present below are not an exhaustive list of methods 
to analyze climate mixtures exposure in health models; rather, 
we present some examples of existing and widely used methods 
in environmental epidemiology that can be used to answer spe-
cific research questions about exposure to climate mixtures 
(Figure 2). In addition, many of the methods we present could be 
used to answer different research questions about climate mix-
tures. However, to discuss multiple methods, we only include 
each method in one research question category. Our climate mix-
ture example is not fully generalizable to other climate combina-
tions, but our discussion of concepts and considerations can be 
applied to future research.

The methods we described above are commonly used in envi-
ronmental epidemiology applications. Nonetheless, we recognize 

that other methods may exist, such as sequence and life course 
analyses, or need to be developed to address some of the afore-
mentioned limitations. Using these methods to incorporate cli-
mate change-related exposures in exposome research should be 
considered in future research, both in simulations and real-life 
data studies.

What are the independent effects of exposures to 
individual threats in a climate mixture?
Disentangling independent effects and quantifying the relative 
health impacts of each climate change-related exposure in a cli-
mate mixture can inform policies and interventions to prepare 
for specific climate threats. To this end, researchers may be in-
terested in identifying which exposure(s) is the most “important” 
in associations with respiratory hospitalizations. Penalized meth-
ods determine which exposures in a mixture are most predictive 
of an outcome, and techniques such as the LASSO19,23,42 can be 
used to determine which of the climate change-related exposures 
(tropical cyclones, flooding, or power outages) are most impor-
tant by retaining variables with the greatest predictive impor-
tance based on an estimated penalty. This approach is useful for 
identifying the most important climate change-related exposure 
(s) in a climate mixture.

Non-penalized techniques that are not formulaically con-
strained (eg, minimizing the sum of absolute coefficient values in 
the case of LASSO) to identify the most harmful exposures in a 
climate mixture include Bayesian kernel machine regression 
(BKMR). Previous exposome studies have leveraged BKMR,43-45

but to our knowledge none has applied the method in a climate 
context. BKMR uses a kernel function to estimate the indepen-
dent exposure-response relationships between individual mix-
ture components and a continuous or binary outcome but only 
allows for continuous exposures.46,47 Because several climate 
change-related exposures are often conceptualized as binary in 
line with disaster classification and planning (eg, exposed Versus 
not exposed to a tropical cyclone) or categorical (no, minor, mod-
erate, or severe flooding), the current BKMR formulation may re-
quire modification for estimating associations with climate 
change-related exposures in a larger mixture for these types of 
variables. As the field of analytic mixtures methods frequently 
changes, our examples are non-exhaustive. Recent techniques 
such as the Bayesian multiple index model (BMIM),48 which can 
evaluate complex relationships while offering interpretability, 
can also be applied to climate mixture questions.

What are the cumulative effects of exposure to a 
mixture of multiple climate change-related  
exposures?
Given that the goal of exposomics is to estimate the health 
effects of all environmental exposures, therefore including cli-
mate change-related exposures, estimating joint effects for an 
entire climate mixture is particularly important. This informa-
tion can guide emergency response and preparedness strategies 
to minimize health-related consequences by allocating resources 
and support for groups most likely to experience the worst out-
comes. Using our example, researchers may want to know the 
combined effects of a tropical cyclone, flooding, and power out-
age on respiratory hospitalizations instead of identifying the 
most concerning exposure. However, the cumulative effect of 
this climate mixture may not be the sum of each exposure’s inde-
pendent effects. Power outages and flooding can be mediators be-
tween tropical cyclones and respiratory hospitalizations, so 
tropical cyclones may have direct and indirect effects on the 

Exposome, 2024, Vol. 4, No. 1 | 3  



outcome. Estimating the cumulative effects of the mixture thus 
needs to account for such relationships. Structural equation 
modelling (SEM) as a framework can estimate overall effects of 
such complex mixtures.23,49 Starting off with a user-specified 
model driven by theory, the SEM approach estimates the rela-
tionships and effects of latent (ie, unobserved) variables (in this 
case the effect of the “climate mixture” of interest). The esti-
mated overall effect includes both the direct and indirect effects 
of tropical cyclones. Because SEM allows for complex relation-
ships among climate change-related exposures, researchers can 
incorporate the potential mediators, power outages and flooding, 
in the estimation of the association between the tropical cyclone 
exposure and health outcomes, in our example respiratory hospi-
talizations. The total effect, then, would include the indirect 
effects of the tropical cyclones through flooding and power out-
ages. The SEM framework can incorporate both continuous and 
categorical variables, so it allows for a more diverse array of cli-
mate change-related exposure conceptualizations compared to 
other approaches that are built for continuous exposures.

Which areas/communities are at higher risk of 
experiencing climate mixtures?
Pattern recognition techniques can be adapted and used to deter-
mine groups that are more exposed to climate mixtures or expe-
rience worse health effects. Such information is crucial for 
targeted emergency preparedness and mitigation strategies to 
protect human health. Tropical cyclones, flooding, and power 
outages affect many communities, and researchers may want to 
characterize the profiles of communities either likely to be ex-
posed to this specific climate mixture or to identify the commu-
nities experiencing worse health outcomes after exposure. 
Generally, clustering approaches are techniques that identify dis-
tinct groups, maximizing homogeneity within groups and hetero-
geneity between groups.50 In our example, groups could refer to 
counties experiencing different combinations or levels of tropical 

cyclones, flooding, and power outages. K-means clustering51 is 
one method that could iteratively group counties into partitions 
with distinct patterns to tropical cyclones, flooding, and power 
outages; based off the groupings, researchers could identify the 
distinct climate mixture characteristics of county group mem-
bers. Counties clustered together with high exposure to this cli-
mate mixture could for example share geographic similarities 
such as closer proximity to a coastline.52 If the study aim is to 
evaluate which of these counties with high exposure face worse 
health outcomes, researchers could use the identified clusters 
and estimate cluster-specific effects for respiratory hospitaliza-
tions in our example. Clustering methods like k-means require 
the researcher to decide the number of groupings, so input from 
experts can inform the appropriate number and interpretation 
of groupings.

Methodological research considerations and 
gaps in assessing climate mixtures
Studies can apply mixtures methods to examine multiple co- 
occurring climate change-related exposures, but a few methodo-
logical gaps remain that limit the types of research questions 
and objectives we can investigate. As previously discussed, cer-
tain climate mixture combinations violate the positivity assump-
tion across time and/or space, as not all climate change-related 
exposures can occur at the same time or place. Thus, creating a 
standardized exposure index across larger geographic regions 
(eg, the United States) to understand cumulative exposure is 
challenging. For instance, tropical cyclones in the United States 
almost always occur in geographically distinct areas, while ex-
treme heat and snowstorms happen in separate seasons. 
Researchers have challenges when comparing cumulative expo-
sure to a global set of climate mixture combinations across time 
and/or space. Instead, they should consider localizing their ques-
tions and analyses. For example, researchers may want to focus 

Figure 2. Visualization of the climate mixture with various research questions that can incorporate mixture techniques. Techniques presented here 
are common in environmental epidemiology. These are non-exhaustive examples of analytic approaches for research involving mixtures or how to 
incorporate climate change-related exposures in the field of exposomics analyses.
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on creating an exposure index for areas in the Southeast with 
exposures in our previous examples (hurricanes, floods, and 
power outages) or for locations across Southern California with 
wildfire disaster, drought, and power outages.

Positivity violations limit the types of research questions that 
can be asked, while current practices to define and measure 
long-term health effects of multiple simultaneous exposures 
pose challenges. Given that climate change has and will exacer-
bate related exposures, it is essential to consider long-term 
health studies. Methodologically, there are not yet standard or 
widely used metrics to assess long-term climate change-related 
exposures. Such metrics could capture different exposure 
domains such as duration, intensity, and frequency,27 so 
researchers should consider which metric is most appropriate for 
their research question and health outcome of interest. Earlier, 
we provided an example of how long-term wildfire smoke meas-
ures can drastically vary across years depending on how the met-
ric is originally operationalized, but these quandaries and 
decisions also apply to other climate change-related exposures. 
Long-term exposures to the events in our previous example (trop-
ical cyclones, flooding, power outages) can vary (Table 1). The 
ways in which we define long-term exposures to climate events 
and mixtures may capture different pathways, resulting in differ-
ent estimated health effects. For example, specific parameteriza-
tions might be more appropriate for one exposure than another. 
Peak wildfire PM2.5 in a year could be most strongly related to 
asthma exacerbation while the number of total weeks exposed to 
any wildfire PM2.5 might be most predictive of asthma onset.

Another challenge to assessing long-term climate change- 
related exposures is the dearth of historic and present-day data. 
Some climate change-related exposures, such as those related to 
temperature (eg, heat waves, extreme cold), have measures as 
early as 189553 and today, there are robust measures with high 
spatiotemporal resolution, such as the hourly measures at a 
1 km2 resolution level.54 For power outages, the Department of 
Energy records power outage events that affected more than 
50,000 customers or resulted in a 300-megawatt loss,55 but there 
is a lack of available data on smaller scale outages, hindering 
investigations of power outage-related health impacts. There 
have been growing efforts to assess small-scale outages,33,56 and 
data on all types of power outages will be useful for future health 
research. Recent studies have leveraged data from 2001 at a spa-
tial unit containing �11,000 electrical customers updated every 
30min, but such studies have so far been conducted using data 

from New York State.39 Spatial or temporal misalignment among 
individual climate change-related exposures in a climate mixture 
due to data limitations may make it impossible to chronicle 
trends for long-term climate exposure mixtures and characterize 
their chronic health impacts.

An additional consideration is that individuals and communi-
ties can adapt to certain climate change-related exposures over 
time. Adaptation can act as an effect modifier between climate 
mixtures and health outcomes and be in the form of changes in 
individual behaviors, residential mobility, infrastructure 
changes, or other avenues. Individuals could purchase indoor air 
filters or use facemasks to protect against wildfire smoke.57

Cities have implemented programs to provide residents access to 
public temperature-controlled areas during extreme heat.58 As 
climate change poses threats to public health, individuals and 
communities will respond to reduce adverse outcomes to climate 
change-related exposures, but adaptation efforts may vary. 
However, incorporating such adaptations poses challenges as 
data related to adaptation are limited. Simulations and predic-
tion models have been used to integrate adaptation in under-
standing its role in climate mixture exposures,59,60 but the dearth 
of available data limits our ability to analyze the possible effects 
of adaptation on the relationship between climate mixtures and 
adverse health.

Future directions
As climate change exacerbates weather events and downstream 
exposures, the exposome framework can be used as a guide to in-
tegrate exposure mixtures to accurately capture their health 
impacts. Using an example climate mixture, we presented sev-
eral possible research questions of interest as well as examples 
of the appropriate methodologies to evaluate mixtures. Methods 
exist to analyze simultaneous exposures, but studying climate 
mixtures necessitates additional considerations such as viola-
tions of the positivity assumption, the complexity of defining 
long-term exposure, and limited data. Future research directions 
should aim to address these gaps and account for the nuances of 
climate mixtures and more generally of climate change- 
related exposures.

One limitation when integrating climate change-related expo-
sure data with other cohort data—ideally those with -omics data 
available—for exposome research and analyses is that if cohort 
participants live close to each other, there will not be enough var-
iability in the climate exposures to allow for enough statistical 
power to discover relationships. To effectively incorporate cli-
mate change-related exposures in exposome research, therefore, 
a wide geographical distribution of study participants may be 
key. The UK Biobank,61 for example, has -omics data from indi-
viduals across the United Kingdom, and given the country’s wide 
geographic range, there is likely high variability in exposure to 
climate change-related exposures within the cohort (eg, temper-
atures, storms, snow, flooding). Researchers could then identify 
representative subgroups and analyze whether exposure to cli-
mate change-related events is linked to molecular or other 
-omics outcomes of interest. Variability in climate change- 
related exposures is key to connecting these external macro-level 
exposures to internal omics-level outcomes.

One future direction is to use new ways to gather data on cli-
mate change-related exposures to supplement limited data in 
some domains like flooding. Researchers should consider 
leveraging novel sources of data such as social media, news out-
lets, images (eg, from satellites), or videos. In the case of climate 

Table 1. Examples of long-term conceptualizations of several 
climate change-related exposures

Exposure Long-term conceptualization

Tropical cyclones - Count of tropical cyclone events (frequency) 
- Tropical cyclone days over a specific time 

period (duration) 
Flooding - Average yearly flood events (frequency) 

- Cumulative daily square feet flooded (dura-
tion, intensity) 

Power outages - Average annual power outage 
events (frequency) 

- Total yearly customers without power 
within specific geographies (dura-
tion, intensity) 

Examples are non-exhaustive. There is currently no standard definition for 
long-term exposure to climate change-relevant events, which could include 
several months to several years. Researchers should select the duration of a 
long-term climate change-relevant exposure appropriate to their research 
question and outcome of interest.
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change-related exposures such as flooding, these data sources 

can provide information about the event’s spatial and temporal 

extent, allowing researchers to validate, update, or improve their 

exposure measures.
Relevant to studies linking climate mixtures and health, data 

should be collected to account for climate adaptation and differ-

ences in the ability to adapt. Societies and individuals will likely 

adapt to climate change, building new infrastructure or modify-

ing behaviors. As the threat of physically destructive disasters is 

growing, governments may invest in fortifying electrical infra-

structure to prevent or minimize subsequent power outages. In 

the face of rising temperatures and increasing likelihood of ex-

treme heat events, individuals may rely more on air conditioners, 

installing them if they did not have one previously. However, the 

ability to adapt differs by subpopulation, and will have limits. For 

example, low-income individuals may not be able to afford air 

conditioners, while those facing energy insecurity may limit air 

conditioning use to minimize electricity bills, resulting in cooling 

hardship.62,63 Another adaptation technique is relocating from 

high- to lower-risk climate change-related disaster areas, which 

includes evacuations in response to immediate wildfire disaster 

or tropical cyclones and pre-emptive moves from flood-prone 

neighborhoods. However, health status (eg, reliance on 

electricity-dependent medical equipment) or socioeconomic sta-

tus may limit mobility. Obtaining data about adaptation across 

subpopulations and then accounting for them is necessary to ac-

curately estimate the relationship between climate change- 

related exposures and adverse health outcomes.
As the exposome framework emphasizes cumulative environ-

mental exposures, future exposome research can examine the 

possible joint impact of climate and non-climate environmental 

exposures on health. Climate mixtures and related exposures are 

external, and studies examining the associated health impacts 

have predominantly relied on administrative data (eg, hospital-

izations). On the other hand, exposomic studies, such as metabo-

lomics, center on internal biological processes using 

biospecimens for analysis64,65 and have been predominantly 

used cohort or panel data. Although there are challenges in syn-

thesizing these different exposome aspects,66 it is a necessary 

step to accurately estimate cumulative environmental exposure. 

Additionally, exposome research in the context of climate change 

may uncover unexpected combinations of factors, both related 

and not related to climate change, that are particularly detri-

mental to population health.
Climate change-related exposures will continue to pose risks 

to population health, which will likely increase over time. 

Understanding the current tools and gaps in evaluating the com-

prehensive impact of these exposures on health can explicate 

their role as part of the exposome. By more explicitly considering 

climate change-related exposures in the field of exposomics, 

exposome research can move towards the direction of discover-

ing unexpected pathways linking climate change and health.
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