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Abstract

To identify pathways between stress indicators and adverse pregnancy outcomes, we

applied a nonparametric graph-learning algorithm, PC-KCI, to data from an observational

prospective cohort study. The Measurement of Maternal Stress study (MOMS) followed 744

women with a singleton intrauterine pregnancy recruited between June 2013 and May 2015.

Infant adverse pregnancy outcomes were prematurity (<37 weeks’ gestation), infant days

spent in hospital after birth, and being small for gestational age (percentile gestational

weight at birth). Maternal adverse pregnancy outcomes were pre-eclampsia, gestational

diabetes, and gestational hypertension. PC-KCI replicated well-established pathways, such

as the relationship between gestational weeks and preterm premature rupture of mem-

branes. PC-KCI also identified previously unobserved pathways to adverse pregnancy out-

comes, including 1) a link between hair cortisol levels (at 12–21 weeks of pregnancy) and

pre-eclampsia; 2) two pathways to preterm birth depending on race, with one linking His-

panic race, pre-gestational diabetes and gestational weeks, and a second pathway linking

black race, hair cortisol, preeclampsia, and gestational weeks; and 3) a relationship

between maternal childhood trauma, perceived social stress in adulthood, and low weight

for gestational age. Our approach confirmed previous findings and identified previously

unobserved pathways to adverse pregnancy outcomes. It presents a method for a global

assessment of a clinical problem for further study of possible causal pathways.

Introduction

The biological and psychosocial pathways leading to adverse pregnancy outcomes, such as pre-

term birth, are complex and only partially understood. In this work, we show how to use a

graph learning algorithm, creating a diagram of variables connected by statistical associations,

to model those pathways simultaneously, providing an interpretable high-level view of poten-

tial causal mechanisms. The approach can be applied to many medical domains to help the
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design of future clinical studies, by determining promising variables for intervention, variables

that should be measured to avoid confounding, and variables that are not predictive when

other more causally proximal variables are measured.

Adverse pregnancy outcomes are a well-studied topic, where researchers have examined a

range of potential causes, from psychosocial factors such as stress, childhood neglect, and

depression, to biological indicators such as inflammation, hypertension, and diabetes. A sub-

stantial body of work has focused on the relationship between stress and adverse pregnancy

outcomes [1–5], although the evidence from observational studies on the relationship is

mixed. For example, a 2003 study found that anxiety, negative life events, and perceived racial

discrimination were all associated with increased risk of preterm birth [6]. Likewise, two stud-

ies from 1996 and 2018 found that stress was associated with both preterm birth and low birth

weight [7–8]. However, another found that only anxiety, out of many stressors and psychologi-

cal distress measures, was associated with preterm birth [9]. Similarly, a 2017 study found no

association between depression and preterm birth [10], and a 2008 study was not able to pre-

dict preterm birth from anxiety and perceived stress measured at 18–20 and 30–32 weeks of

gestation [11].

Although adverse pregnancy outcomes likely result from many factors that work in concert,

research typically focuses on single pathways or a few factors. While incremental knowledge is

critical for building a foundational body of literature, such an approach risks missing complex

interrelationships between many variables, and may fail to control for relevant confounders as

research evolves. For example, most studies use variants of the generalized linear model to esti-

mate the relationship between risk factors and a single adverse pregnancy outcome, but this

approach cannot capture pathways that depend on a cascade of risk factors resulting in a clini-

cal event. To allow a more comprehensive view to emerge, we apply a nonparametric graph-
learning algorithm, which we call PC-KCI (after the PC [12] and Kernel Conditional Indepen-

dence [13] algorithms), to “learn” or estimate a probabilistic graphical model based on data

from the Measures of Maternal Stress (MOMS) study, an observational prospective cohort

study. The MOMS data consist of multiple adverse pregnancy outcomes—both maternal (e.g.,

preeclampsia) and infant (e.g., less than 37 weeks of gestation)—and cover a variety of stress

risk factors, ranging from pregnancy-related anxiety to stress biomarkers. The resultant graph

represents all pairwise associations not mediated through other variables in the dataset, allow-

ing researchers to examine 1) potential pathways from indicators to adverse pregnancy out-

comes that may be useful for prediction or intervention, and 2) those variables that play an

indirect role (or no role) in clinical pathways. We illustrate how the approach provides a

model for a global assessment of a clinical problem in a simple visual representation of variable

relationships for further study of possible causal pathways.

Materials and methods

Data

In the MOMS Study, 744 women were recruited between June 2013 and May 2015 from four

sites, Northwestern University, University of Texas Health Science Center at San Antonio,

University of Pittsburgh, and Schuylkill County, Pennsylvania, a rural site led by Children’s

Hospital of Philadelphia. All women were at least 18 years of age with a singleton intrauterine

pregnancy, less than 21 weeks pregnant at enrollment, English-speaking, and with no known

fetal congenital anomalies. Enrolled women were examined twice, once between 12 and 21

weeks of gestation (visit A), and again between 32 and 36 weeks of gestation (visit B). Due to a

higher proportion of missing data, including some key outcomes, we did not use variables col-

lected at visit B. In all, there were 744 women at visit A and 639 at visit B; ultimately, 686 post-
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delivery medical records, such as pregnancy outcomes, were available. Additional details about

the original data collection can be found in prior publications [14]. Ethics approval for the

original data collection was provided by the Institutional Review Board of Northwestern Uni-

versity in Evanston IL, project number STU00039484. Participants gave informed consent

before taking part. The current study is a secondary analysis of deidentified data.

With the help of stress and pregnancy experts, we removed variables that were redundant

(e.g., a linear transformation of two biomarkers) or known to be irrelevant (e.g., participant

study ID) from the analysis, leaving the following variables: stress biomarkers (2 variables), psy-
chosocial factors (8 variables), maternal medical history (8 variables), demographics (8 vari-

ables), inflammatory biomarkers (7 variables), abuse and disadvantage (3 variables), and

adverse outcomes (8 variables). The adverse outcomes of interest included infant outcomes

(i.e., number of days in the NICU, gestational weeks, percentile weight for gestational age) and

maternal outcomes (i.e., gestational diabetes, gestational hypertension, preeclampsia, and C-

section). Descriptions of each included variable are in Table 1 and patient characteristics are

summarized in Table 2.

Patient involvement

This was a secondary analysis and no patients were directly involved in the research presented

here. In the original data collection, patients were not directly involved in the process of study

design, recruitment, or conduct. Results were shared in presentations at the participating insti-

tutions, and all findings and data were made public due to their federal funding status. All

results presented are aggregated across patients and patients are not individually-identified.

PC-KCI algorithm

PC-KCI is based on a graph-learning algorithm, called the PC algorithm [12], which performs

a systematic series of conditional independence tests to construct a graph that represents the

statistical dependence relationships (relationships that cannot be explained by other measured

variables) between variables in a dataset. We use a novel implementation of kernel conditional
independence (KCI) [13] testing with the PC algorithm, which we call PC-KCI, to establish con-

nections (called an edge in the graphical models literature) in the graph [12]. KCI enables the

detection of any statistical dependency, including nonlinear relationships, between variables in

the MOMS dataset.

KCI uses a mathematical framework developed in functional analysis called the reproduc-

ing kernel Hilbert space (RKHS). Loosely, RKHS can analyze correlations of random variables

under smooth transformations, allowing for the detection of non-linear statistical dependence.

KCI’s test statistic uses a metric defined on the RKHS that is zero if and only if all transforma-

tions of the random variables are uncorrelated and corresponds to independence with a suffi-

ciently rich set of transformations. Zhang et al. [13] showed how to estimate this metric from

data and that the test statistic under the null hypothesis (conditional independence) can be

approximated using the gamma distribution. As part of this work, we translated this theory

into code in the R programming language (an R package will be published in 2019). To verify

that our KCI code performed properly, we executed it on 500 simulated datasets of each size

and dimension indicated in Fig 1. To test for type I error (Fig 1A), we generated conditionally

independent data and plotted the proportion of times the test was (incorrectly) significant at

the indicated significance level. To test type II error (Fig 1B), we generated non-linear depen-

dent data and plotted the error rate of the test again. In general, this number should be small,

but there are no predefined significance value as with type I error. The plot shows strong per-

formance on both metrics.
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Table 1. Variables from the Measures of Maternal Stress (MOMS) study included in the graphical model.

Variable Name Variable Description Mean (SD) or %

Age Age (calculated from birthday and enrollment form date) 29.2 (5.7) years

Black Black maternal race 17.2%

BMI Body Mass Index: Weight�4.88/(Height^2) 27 (7.4)

C-section Cesarean section 13.2%

Childhood abuse Total score on the Questions about Your Childhood measure (Wadhwa, Buss, Entringer) 13.2 (2.8)

Childhood Disadvantage Maternal Childhood Disadvantage variable, including whether the family owned a home, obtained medical

treatment when necessary, received public assistance, purchased new clothes on special occasions, and owned a

car, television, and washer and dryer (mean of 8 items)

1.0 (1.3)

Childhood Trauma Total summed score for Emotional Abuse subscale, Emotional Neglect subscale, Physical Abuse subscale,

Physical Neglect subscale, and Sexual Abuse subscale from the Childhood Trauma Questionnaire (Bernstein

1994)

Emotional abuse 8.24

(4.4)

Emotional neglect 8.5

(4.1)

Physical abuse

7.0 (3.6)

Physical neglect

6.3 (2.5)

Sexual abuse

7.0 (4.7)

CRH Average Corticotropin Releasing Hormone (pg/mL) 23.1 (22.7)

C-Reactive Protein C-reactive protein (mg/L) 8.0 (7.7)

Days NICU Number of days in neonatal ICU 2.0 (8.7)

Depression Anxiety Rx

Meds

Depression or anxiety medication taken during the 3 months prior to pregnancy 5.7%

Depression Total score on the Center for Epidemiological Studies–Depression Scale (Radloff, 1977) 13.7 (10.6)

Discrimination Total score on the Williams discrimination scale (Williams, 1997) 13.3 (5.7)

Domestic Abuse Total score on the Abuse Assessment Screen (McFarlane, 1992) 13.2 (2.8)

EBV IgG Epstein-Barr virus antibody 299.5 (235.5)

Education Maternal self-reported education level High school only

26.7%

Some college 34.2%

Bachelor’s and more

39%

Gestational Hypertension Gestational hypertension 11.2%

Gestational weeks Gestational age at delivery (in weeks)

Note: <37 weeks’ gestation is used as a cut-off for prematurity

38.9 (2.1)

Gestational Diabetes Gestational diabetes 8.2%

Hair cortisol Hair Cortisol measure (pg/ml) 37.0 (234.4)

Hispanic and other Hispanic or other maternal race 24.9%

IFN gamma Interferon Gamma (pg/mL) 6.2 (38.2)

IL6 Interleukin 6 (pg/mL) 0.7 (1.6)

IL8 Interleukin 8 (pg/mL) 4.2 (58.6)

IL10 Interleukin 10 (pg/mL) 0.44 (1.2)

IL13 Interleukin 13 (pg/mL) 3.9 (3.9)

Income Total income categorized into 4 groups $0 - $15,000 108

16.2%

$15,000-$50,000

33.1%

$50,000 - $100,000

28.9%

$100,000+ 146 21.9%

(Continued)

Using graph learning to understand adverse pregnancy outcomes and stress pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0223319 September 30, 2019 4 / 13

https://doi.org/10.1371/journal.pone.0223319


Using the KCI test, the algorithm begins by connecting all variables (represented as nodes

or vertices in the graph), then removes edges between variables if they are marginally indepen-
dent—i.e., not associated according to a test of statistical independence. In the next step, the

algorithm sequentially controls for other sets of variables that could explain the dependence

between the two variables. If two variables that were initially connected after the first step (test-

ing for marginal independence) become conditionally independent after the second step (con-

trolling for one or more other variables), the edge between the first pair of variables is

removed. This can occur if a causal pathway is mediated through the conditioning variables,

or if the conditioning variables influence the original two variables but the original two vari-

ables do not influence each other (they share a common cause). After iterating through all

pairs of variables with reasonable combinations of control variables, any edges that remain

between two variables indicate statistical dependence not explained by other variables, and can

be visualized in graphical form, where an edge between two variables in the dataset (called

Table 1. (Continued)

Variable Name Variable Description Mean (SD) or %

Insurance type Maternal self-reported health insurance or healthcare coverage in past 12 months Private

58.9%

Other

41.1%

Married Maternal self-reported marital status 81.1%

Maternal Weight Gain Weight gain during pregnancy divided by gestational age (in weeks) at delivery. 0.95 (0.52)

Number of Previous Births How many times the patient has given live birth 0.97 (1.2)

Number of Pregnancies Including current pregnancy, how many times the patient has been pregnant, including miscarriage, stillbirth,

etc.

2.5 (1.2)

Perceived Social Stress Total score on the Cohen Perceived Social Stress Questionnaire (Cohen 1983) 15.7 (7.0)

Percentile Gestational

Birthweight

Percentile rank pertaining to the infant’s weight at birth, specific to that infant’s gestational age at birth, mother’s

parity, and infant’s sex

Note: birthweights below the 10th percentile are used as the cutoff for Small for gestational age

0.50 (0.28)

PPROM Premature rupture of membranes 20 (2.9)

Preeclampsia Preeclampsia / eclampsia 5.2%

Pregestational diabetes Pre-gestational diabetes taken from delivery records 56 (8.2)

Prenatal Distress Total score on the Prenatal Distress questionnaire (Yani & Lobel, 1999) 13.5 (7.7)

Pre-pregnancy Rx meds Non-depression or anxiety prescription medications taken in the 3 months prior to pregnancy, including

medication for Sleep, Indigestion/ Heartburn, Asthma, Severe Headaches/ Migraines, Blood Sugar, Blood

Pressure, Fertility (clomid, letrasol), or Antibiotics

42%

Prior Birth Preterm Prior preterm birth Never given birth

43.6%

Only full-term

deliveries

49.5%

At least one preterm

delivery

6.9%

Self Esteem Total score on the Self-Esteem, Mastery, and Optimism subscales (Rosenberg, 1965) 74.3 (9.6)

Sleep quality Total score on the Sleep Quality Index (Buysse, 1989) 5.3 (2.6)

Smoke Pre-pregnancy maternal smoking status 10.2%

Social Problems Total score on the Social Problems Questionnaire (Corney, 1985) 12.5 (7.0)

Social Support Total score on the Social support questionnaire (Sherbourne and Stewart, 1991) at visit A 76.9 (12.9)

TNF alpha Tumor necrosis factor alpha (pg/mL) 1.1 (1.8)

White White maternal race 58.0%

https://doi.org/10.1371/journal.pone.0223319.t001
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neighbors) typically indicates either a direct causal relationship or a statistical association

induced by an unmeasured variable (confounding). This undirected graph-building process

creates the skeleton graph that underlies most causal discovery algorithms, e.g. PC and FCI

[12]. These algorithms all assume faithfulness when constructing the undirected graph, which

means that any causal relationships imply marginal statistical dependence. A violation of faith-

fulness would be if two causes of a third variable exactly cancel each other out (statistically).

Going from an undirected (association) to direct (causal) graph requires an additional battery

of logical tests to orient the edges (indicating the direction of causality). We choose to present

the graph without directed edges because of potential confounding variables not measured in

the MOMS dataset, making errors in the direction of causality likely. The undirected graph

still contains potentially causal pathways but does not indicate the direction of causality.

Table 2. Attributes of women in the Measures of Maternal Stress (MOMS) study.

Variable Frequency (%) or

Mean (Range)

Participants 744a

Hospital

Children’s Hospital of Philadelphia 175 (24%)

Northwestern University 191 (26%)

University of Pittsburgh 200 (27%)

University of Texas Health Science Center at San Antonio 178 (24%)

Age, mean (IQR) 29 (25, 33) years

Race

Black 127 (17%)

Hispanic / Latino 145 (20%)

Non-Hispanic White 145 (58%)

Other 39 (5%)

Income

<15k 108 (16%)

15–50k 221 (33%)

50–100k 193 (29%)

>100k 146 (22%)

Education

Less than high school 198 (27%)

High school / GED 254 (34%)

Some college 289 (34%)

2-year college degree (Associate’s) 36 (5%)

Refused to answer 1 (<1%)

Maternal adverse events

Preeclampsia 36 (5%)

Gestational Hypertension 77 (11%)

Pre-gestational Diabetes 24 (3%)

Gestational Diabetes 56 (8%)

Infant adverse events

Infant in Hospital 2 (2,3) days

Neonatal Intubation 21 (3%)

Preterm birth 57 (8%)

a No subjects were excluded from the analysis, although some subjects were missing information for specific

variables.

https://doi.org/10.1371/journal.pone.0223319.t002
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Fig 2 shows that the availability and use of differing control variables may, at least partly,

explain differences between publications finding significance, even while using similar regres-

sion models. PC-KCI provides the high-level structure needed for understanding those differ-

ences, as well as potential causal pathways, whereas regression estimates specific functional

relationships between a single outcome and its covariates. Their uses are complementary. For

example, a graph constructed using PC-KCI can be used to understand mediation relations

between two variables A and B connected in the graph after controlling for potential

Fig 1. Type I error rate (A) & Type II error rate (B) for the KCI test varying sample size (200 and 400) and number of variables (2–5).

https://doi.org/10.1371/journal.pone.0223319.g001

Fig 2. Relationship between graph structure and regression results. Note: The left-hand side shows the true

underlying causal structure of a fictitious dataset with enough observations to detect significance. For example, a and b

jointly influence d; d and e jointly influence the outcome. Further, there are no unmeasured variables affecting two or

more variables in the data collected, variables a through f. The right-hand side shows the expected regression results

given the underlying causal structure. Model 1 regresses the outcome on all variables, a through f. Notice that while a,

b, and c are, in fact, indirect causes of the outcome through d and e, Model 1 renders these associations not significant

because it is controlling for the mediating variables, d and e. Model 2 regresses the outcome on all variables except d,

which is left out of the model. Without d, the model finds new associations with a, b, and f because that pathway is no

longer blocked by d.

https://doi.org/10.1371/journal.pone.0223319.g002
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confounders C that are connected to both A and B. There are two important caveats with this

approach: 1) this can only be done if the researcher is sure that both A and B do not cause C,

and 2) statistics (p-values, confidence intervals) based on regression models that use the graph

structure will not necessarily have their nominal levels of significance. For the latter reason we

examine only the structure of the dependency relationships in the MOMs data, avoiding spe-

cific parametric models. An alternative approach would split the data into two parts, one for

learning the structure with PC-KCI, the other for estimating parametric models given the

structure. Another would be to use some sort of adjustment on the p-values and confidence

intervals based on the number of tests used in the PC-algorithm, or possibly an approach simi-

lar to post-selection adjustment (although such an approach does not yet exist for the PC-algo-

rithm) [15]. PC-KCI also has other uses, such as providing a general test of conditional

association between two variables even when the specific functional relationship is not of inter-

est, can suggest potential causal pathways, and can broadly cluster variables into groups to

check whether they are highly (or loosely) associated.

Results

We ran PC-KCI twice, first only allowing edges for associations testing at P< 0.01 (Fig 3, solid

lines); second, allowing edges for P< 0.05 (Fig 3, dashed lines, though solid if an edge was also

in the P< 0.01 graph).

Links to the algorithms can be found in the supplemental material, S1 Text and S2 Text.

Potential causal pathways

In analyzing the results of the algorithm, two types of relationships (or pathways) emerge—

those that confirm prior research, and those that extend or add to prior knowledge. First, we

examine relationships in the graph that confirm established prior research on adverse preg-

nancy outcomes. These variables are shaded red in Fig 2. The most obvious relationships are

among the neighbors of infant adverse pregnancy outcomes, where gestational weeks is closely

related to preterm premature rupture of membranes (PPROM), length of stay in the neonatal

intensive care unit (NICU), and percentile gestational weight at birth. Similar patterns emerge

between gestational weeks at birth and most maternal adverse outcomes (maternal gestational

diabetes, preeclampsia, and gestational hypertension).

The positive relationship between BMI, C-Reactive Protein (CRP) and earlier gestational

age at delivery confirms what has been established in the pregnancy literature [16–18]. Simi-

larly, race, a documented risk factor for preterm birth [19–20], was connected to pre-gesta-

tional diabetes, which itself was connected to gestational weeks. In our findings, Hispanic vs

White ethnicity was connected to pre-gestational diabetes which we know from the literature

to be a population trend. Each of these relationships confirms what we know from many pub-

lished papers and common knowledge of the clinical landscape.

The relationship between race and adverse pregnancy outcomes is nuanced, where path-

ways differ by race. African-American participants were more likely to have elevated hair corti-

sol levels, which, in turn, was associated with pre-eclampsia onset and shorter gestational

weeks at birth, whereas Hispanic participants were more likely to exhibit pre-gestational diabe-

tes leading to shorter gestational weeks. Also, prior preterm birth, maternal age, and Hispanic

ethnicity were connected to whether a patient had a C-section, with Hispanic women in the

sample almost twice as likely to have a C-section (20%) compared to non-Hispanic women

(12%). The graph indicates that this relationship was not mediated by BMI (a commonly cited

cause of C-sections), suggesting other possible explanations, such as patient preference for the

procedure or variation between hospitals (e.g., San Antonio vs. Pittsburgh) in C-section rates.
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The PC-KCI algorithm further found that higher scores on the Childhood Trauma Ques-

tionnaire were associated with lower percentile gestational weight at birth (i.e. infants who are

small for gestational age) and, furthermore, that this was related to social problems and per-

ceived social stress in adulthood.

Prior literature has shown a relationship between economically disadvantaged childhood

and shorter gestational weeks, when controlling for current income [14]. Here we find that

this outcome was related to current economic disadvantage, as indicated by insurance type (or

lack thereof), suggesting that factors related to economic status that are distinct from income,

may play a role in the preterm birth pathway. We also used PC-KCI to identify variables that

were not directly statistically associated with each other, given the other variables used to create

the graph, to inform future analyses for predicting adverse pregnancy outcomes. For example,

many of the inflammatory biomarkers included were not found to directly connect to adverse

pregnancy outcomes in this analysis. Existing literature on inflammatory biomarkers and

adverse pregnancy outcomes suggests that these pathways are complex, and as in the case of

CRP, are complicated by other factors such as adiposity. These findings indicate the impor-

tance of accounting for these indirect pathways between predictor and outcomes variables.

Fig 3. Graphical output from PC-KCI algorithm, identifying potential pathways from stress variables to adverse pregnancy outcomes for 4 US birth cohorts, 2013–

2015. Note: Solid lines indicate p< .01 associations, while dashed lines indicate p< .05. Blue dots indicate an example pathway missed by PC-KCI (false negative results).

https://doi.org/10.1371/journal.pone.0223319.g003

Using graph learning to understand adverse pregnancy outcomes and stress pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0223319 September 30, 2019 9 / 13

https://doi.org/10.1371/journal.pone.0223319.g003
https://doi.org/10.1371/journal.pone.0223319


Given the compelling evidence that inflammatory markers play a role in pre-term births,

including IL-6 and TNF-alpha [21], this work adds to the literature by suggesting that these

markers may operate through onset of medical conditions in pregnancy, such as gestational

diabetes.

It is also important to note that some variables in the graph that are not connected by a

pathway may still be statistically associated (a false negative result). Such an omitted edge is

indicated by a dotted blue line in Fig 2. Forthcoming work has found that participants who fall

in the top quartile of TNF-alpha serum concentration are more likely to experience preterm

labor. PC-KCI did not detect this relationship, though TNF-alpha is marginally related to pre-

term birth. This is explained by the fact that when conditioning (controlling), for hair cortisol,

gestational diabetes, and pre-gestational diabetes, the relationship between TNF-alpha and ges-

tational weeks is no longer significant. PC-KCI is a conservative algorithm, prone to omitting

edges rather than adding them, but in this case, the omission was due to the confounding

influences of other variables in the putative pathway.

Discussion

We found several important clinical results that suggest promising areas for prediction of

adverse pregnancy outcomes. In particular, certain stress-related biopsychosocial variables

were related to preeclampsia, including change in corticotropin releasing hormone and hair

cortisol levels measured at 12–21 weeks of pregnancy. Detecting preeclampsia risk early in

pregnancy may allow for early intervention using low-dose aspirin prophylaxis [22–24]. Addi-

tionally, some notable pathways related to race/ethnicity, such as Hispanic ethnicity being

linked to greater levels of pre-gestational diabetes, which in turn is linked to fewer gestational

weeks (i.e. prematurity) as compared to black race, which was linked to higher levels of hair

cortisol, presence of preeclampsia and, in turn, to fewer gestational weeks. Childhood trauma

was associated with adverse infant outcomes, namely small size for gestational age at birth.

Moreover, this relationship was related to perceived social stress in adulthood, suggesting that

those who experienced certain types or magnitude of childhood trauma may experience

increased social stressors in adulthood that can also influence risk for adverse birth outcomes.

Further examination of this connection is warranted.

Because the proposed approach is exploratory in nature, we emphasize that these results are

tentative, with the purpose of contributing to the discussion surrounding adverse outcome

pathways. Formal analyses based on the patterns discovered using PC-KCI need to be con-

ducted with new data and approaches to confirmatory hypothesis testing, such as preplanned

and pre-registered modelling approaches.

With proper cautions, this method and other graph-learning methods can be applied to a

wide range of clinical and epidemiological datasets to gain insight on the relationships between

suspected risk factors for clinical outcomes, and to improve the process of choosing pathways

for further study. We propose that probabilistic graphical model algorithms could lead to

more effective discovery of those physiological and psychosocial mechanisms responsible for

complex clinical outcomes.

Limitations

Statistical associations between two variables in prospective cohort studies are generally

induced by direct causation (X -> Y), in which one variable causes the other, or confounding

(X<- Z -> Y), in which there is a third, unmeasured variable that causes two measured vari-

ables. Statistical methods for distinguishing between these cases are limited and often contro-

versial within the statistical community. For this reason, we proceed with caution in making
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causal claims based solely on observational data. However, the absence of statistical association

generally indicates that two variables are not causally linked, given that there are enough data

to detect an association.

The independence tests are probabilistic with an attendant degree of risk of false positives

and false negatives. PC-KCI is likely to be too conservative, with a higher chance of false nega-

tives or missing edges between variables in the graph. For analyses based on a priori theoretical

models, a regression approach could produce somewhat different results, compared to the

exploratory approach of PC-KCI. As with all statistical methods, external expertise is required

to interpret the presence or absence of potential linkages.

Another issue is missingness in the data. Unfortunately, imputing missing values will only

weaken dependence relationships, increasing the false negative rate on the edges, resulting in

fewer edges than the shown model. Imputation methods combined with non-parametric

graph learning are an important area for future research. In this analysis, we dropped observa-

tions only when a specific hypothesis test did not have sufficient information for a particular

observation. That is, before performing each hypothesis test that PC required, we dropped var-

iables for that specific test when they contained observations only for the requisite variables for

missing values, but restored the dropped variables for subsequent independence tests.

In this work, we used a machine learning algorithm, PC-KCI, to model the statistical depen-

dence relationships between multiple adverse pregnancy outcomes and risk factors. We ana-

lyzed the Measurement of Maternal Stress (MOMS) study data to provide an overview of the

type of results that this approach can yield. By applying a probabilistic graphical model algo-

rithm, PC-KCI, to data from a large, multi-center pregnancy cohort, we confirmed previous

findings in the literature, identified measures that may have limited predictive value in the

presence of other more proximal measurements, and suggested nuanced and novel pathways

to preterm birth that may warrant further exploration.
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9. Kramer MS, Lydon J, Séguin L, Goulet L, Kahn SR, McNamara H, et al. Stress pathways to spontane-

ous preterm birth: the role of stressors, psychological distress, and stress hormones. American journal

of epidemiology. 2009 Apr 10; 169(11):1319–26. https://doi.org/10.1093/aje/kwp061 PMID: 19363098

10. Szegda K, Bertone-Johnson ER, Pekow P, Powers S, Markenson G, Dole N, Chasan-Taber L. Depres-

sion during pregnancy and adverse birth outcomes among predominantly Puerto Rican women. Mater-

nal and child health journal. 2017 Apr 1; 21(4):942–52. https://doi.org/10.1007/s10995-016-2195-6

PMID: 27995411

11. Glynn LM, Schetter CD, Hobel CJ, Sandman CA. Pattern of perceived stress and anxiety in pregnancy

predicts preterm birth. Health Psychology. 2008 Jan; 27(1):43. https://doi.org/10.1037/0278-6133.27.1.

43 PMID: 18230013

12. Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. MIT press; 2000.

13. Zhang, K., Peters, J., Janzing, D., and Schölkopf, B. (2011a). “Kernel-based conditional independence

test and application in causal discovery,” in Proceedings of the 27th Conference on Uncertainty in Artifi-

cial Intelligence (UAI 2011) (Barcelona).

14. Miller GE, Culhane J, Grobman W, Simhan H, Williamson DE, Adam EK, Buss C, Entringer S, Kim KY,

Garcia-Espana JF, Keenan-Devlin L. Mothers’ childhood hardship forecasts adverse pregnancy out-

comes: role of inflammatory, lifestyle, and psychosocial pathways. Brain, behavior, and immunity. 2017

Oct 1; 65:11–9. https://doi.org/10.1016/j.bbi.2017.04.018 PMID: 28450221

15. Tibshirani RJ, Taylor J, Lockhart R, Tibshirani R. Exact post-selection inference for sequential regres-

sion procedures. Journal of the American Statistical Association. 2016 Apr 2; 111(514):600–20

16. Rebelo F, Schluessel MM, Vaz JS, Franco-Sena AB, Pinto TJ, Bastos FI, Adegboye AR, Kac G. C-

reactive protein and later preeclampsia: systematic review and meta-analysis taking into account the

Using graph learning to understand adverse pregnancy outcomes and stress pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0223319 September 30, 2019 12 / 13

https://doi.org/10.1016/j.psyneuen.2017.05.026
https://doi.org/10.1016/j.psyneuen.2017.05.026
http://www.ncbi.nlm.nih.gov/pubmed/28641158
https://doi.org/10.1016/j.psyneuen.2015.08.019
http://www.ncbi.nlm.nih.gov/pubmed/26372770
https://doi.org/10.1067/mob.2001.111066
http://www.ncbi.nlm.nih.gov/pubmed/11262465
https://doi.org/10.1016/j.clp.2011.06.007
https://doi.org/10.1016/j.clp.2011.06.007
http://www.ncbi.nlm.nih.gov/pubmed/21890014
https://doi.org/10.1007/s00737-013-0367-6
http://www.ncbi.nlm.nih.gov/pubmed/23812738
https://doi.org/10.1093/aje/kwf176
https://doi.org/10.1093/aje/kwf176
http://www.ncbi.nlm.nih.gov/pubmed/12505886
https://doi.org/10.1016/s0002-9378(96)70042-x
https://doi.org/10.1016/s0002-9378(96)70042-x
http://www.ncbi.nlm.nih.gov/pubmed/8942502
https://doi.org/10.1089/jwh.2016.6118
http://www.ncbi.nlm.nih.gov/pubmed/29215314
https://doi.org/10.1093/aje/kwp061
http://www.ncbi.nlm.nih.gov/pubmed/19363098
https://doi.org/10.1007/s10995-016-2195-6
http://www.ncbi.nlm.nih.gov/pubmed/27995411
https://doi.org/10.1037/0278-6133.27.1.43
https://doi.org/10.1037/0278-6133.27.1.43
http://www.ncbi.nlm.nih.gov/pubmed/18230013
https://doi.org/10.1016/j.bbi.2017.04.018
http://www.ncbi.nlm.nih.gov/pubmed/28450221
https://doi.org/10.1371/journal.pone.0223319


weight status. Journal of hypertension. 2013 Jan 1; 31(1):16–26 https://doi.org/10.1097/HJH.

0b013e32835b0556 PMID: 23188419

17. Ernst GD, de Jonge LL, Hofman A, Lindemans J, Russcher H, Steegers EA, et al. C-reactive protein lev-

els in early pregnancy, fetal growth patterns, and the risk for neonatal complications: the Generation R

Study. American journal of obstetrics and gynecology. 2011 Aug 1; 205(2):132–e1. https://doi.org/10.

1016/j.ajog.2011.03.049 PMID: 21575931

18. Felder JN, Baer RJ, Rand L, Jelliffe-Pawlowski LL, Prather AA. Sleep disorder diagnosis during preg-

nancy and risk of preterm birth. Obstetrics & Gynecology. 2017 Sep 1; 130(3):573–81

19. Braveman PA, Heck K, Egerter S, Marchi KS, Dominguez TP, Cubbin C, et al. The role of socioeco-

nomic factors in black–white disparities in preterm birth. American journal of public health. 2015 Apr;

105(4):694–702. https://doi.org/10.2105/AJPH.2014.302008 PMID: 25211759

20. Mc Kinnon B, Yang S, Kramer MS, Bushnik T, Sheppard AJ, Kaufman JS. Comparison of black–white

disparities in preterm birth between Canada and the United States. CMAJ. 2016 Jan 5; 188(1):E19–26.

https://doi.org/10.1503/cmaj.150464 PMID: 26553860

21. Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD. Longitudinal profiling of inflammatory

cytokines and C-reactive protein during uncomplicated and preterm pregnancy. American journal of

reproductive immunology. 2014 Sep; 72(3):326–36. https://doi.org/10.1111/aji.12265 PMID: 24807462

22. Rolnik DL, Wright D, Poon LC, O’gorman N, Syngelaki A, de Paco Matallana C, et al. Aspirin versus pla-

cebo in pregnancies at high risk for preterm preeclampsia. New England Journal of Medicine. 2017 Aug

17; 377(7):613–22. https://doi.org/10.1056/NEJMoa1704559 PMID: 28657417

23. Meher S, Duley L, Hunter K, Askie L. Antiplatelet therapy before or after 16 weeks’ gestation for pre-

venting preeclampsia: an individual participant data meta-analysis. American journal of obstetrics and

gynecology. 2017 Feb 1; 216(2):121–8. https://doi.org/10.1016/j.ajog.2016.10.016 PMID: 27810551

24. Roberge S, Demers S, Bujold E. Antiplatelet therapy before or after 16 weeks’ gestation for preventing

preeclampsia. American Journal of Obstetrics & Gynecology. 2017 Jun 1; 216(6):620–1.

Using graph learning to understand adverse pregnancy outcomes and stress pathways

PLOS ONE | https://doi.org/10.1371/journal.pone.0223319 September 30, 2019 13 / 13

https://doi.org/10.1097/HJH.0b013e32835b0556
https://doi.org/10.1097/HJH.0b013e32835b0556
http://www.ncbi.nlm.nih.gov/pubmed/23188419
https://doi.org/10.1016/j.ajog.2011.03.049
https://doi.org/10.1016/j.ajog.2011.03.049
http://www.ncbi.nlm.nih.gov/pubmed/21575931
https://doi.org/10.2105/AJPH.2014.302008
http://www.ncbi.nlm.nih.gov/pubmed/25211759
https://doi.org/10.1503/cmaj.150464
http://www.ncbi.nlm.nih.gov/pubmed/26553860
https://doi.org/10.1111/aji.12265
http://www.ncbi.nlm.nih.gov/pubmed/24807462
https://doi.org/10.1056/NEJMoa1704559
http://www.ncbi.nlm.nih.gov/pubmed/28657417
https://doi.org/10.1016/j.ajog.2016.10.016
http://www.ncbi.nlm.nih.gov/pubmed/27810551
https://doi.org/10.1371/journal.pone.0223319

