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Abstract: Planctomycetes such as Planctopirus limnophila offer a promising source of bioactive
molecules, particularly when they switch from planktonic to sessile growth, but little is known about
the corresponding biosynthetic gene clusters and how they are activated. We therefore screened for
factors that promote sessile growth and biofilm formation to enable the cultivation of P. limnophila
in a fixed-bed reactor. We carried out screening in microtiter plates focusing on biofilm formation
and changes in optical density in response to various C:N ratios, metal ions, and oxidative stress. We
used MTT assays and crystal violet staining to quantify biofilm formation. Positive factors were then
validated in a fixed-bed bioreactor. The initial screen showed that D1ASO medium supplemented
with NH4Cl to achieve a C:N ratio of 5.7:1, as well as 50 µM FeSO4 or CuSO4, increased the biofilm
formation relative to the control medium. Exposure to H2O2 did not affect cell viability but stimulated
biofilm formation. However, the same results were not replicated in the fixed-bed bioreactor, probably
reflecting conditions that are unique to this environment such as the controlled pH and more vigorous
aeration. Although we were able to cultivate P. limnophila in a fixed-bed bioreactor using a chemically
defined medium, the factors that stimulate biofilm formation and inhibit planktonic growth were
only identified in microtiter plates and further evaluation is required to establish optimal growth
conditions in the bioreactor system.

Keywords: Planctomycetes; Planctopirus limnophila; chemically defined medium; fixed-bed cultiva-
tion; biofilm formation; MTT assay; crystal violet staining; metal ions; C:N ratio; oxidative stress

1. Introduction

Planctomycetes are ubiquitous bacteria that have attracted scientific interest because
their genomes contain numerous biosynthetic gene clusters [1–5]. They belong to the
Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum [6] and play a key role
in the global nitrogen cycle [7,8]. Planctomycetes lack the general divisome protein FtsZ
and cell division involves polar budding or binary fission [9,10]. The freshwater model
strain Planctopirus limnophila has a dimorphic life cycle with a motile phase that allows
attachment to surfaces (or each other) with its holdfast structures followed by matura-
tion into sessile stalked mother cells that form buds [11,12]. Planctomycetes are found
in soils worldwide [13], but most known strains live in aquatic habitats [14], where they
often colonize biotic surfaces, such as microalgae, macroalgae, and marine snow, to form
biofilms [15–18]. Early studies suggested that Planctomycetes share certain traits with
eukaryotic cells, such as a nucleus-like structure [19], an endocytosis-like uptake mecha-
nism [20], a compartmentalized cell structure [21], or a cell wall lacking peptidoglycan [22].
Due to new analytical techniques, these assumptions have recently been challenged. It has
been demonstrated that Planctomycetes do possess peptidoglycan [11] and the structures
previously described as cell compartments are in fact invaginations of the periplasm [23,24].
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Planctomycetal uptake of macromolecules still requires more detailed characterization,
however, recent studies suggest a different mechanism than the previously suspected
vesicle-mediated uptake [23]. Cell surface alterations, so-called crateriform structures that
form pili-like fibers, seem to be rather involved in the uptake of large polysaccharides from
the environment [23].

The gene clusters present in Planctomycetes are promising sources of new bioactive
substances, several of which have already been isolated [5,25,26]. However, it is unclear
how the silent gene clusters are activated. From an ecological perspective, the production
of secondary metabolites by planktonic cells appears to be of little benefit, as the secreted
molecules are directly diluted to inactive concentrations [5]. This issue could be overcome
by the development of microenvironments such as biofilms. In many biofilm-forming
microorganisms, the switch from motile to sessile growth is coupled to changes in gene ex-
pression and metabolism [27–30], including the formation of secondary metabolites [31,32].
Given their slow growth, Planctomycetes still manage to dominate biofilm communities
without being outcompeted by faster-growing heterotrophs [18,33,34], suggesting mecha-
nisms to defend their habitats against competitors [26].

Biofilms are aggregated cells embedded in a self-produced matrix of exopolymeric sub-
stances consisting mainly of polysaccharides, proteins, lipids, and extracellular DNA [35,36].
Life within a biofilm offers protection against environmental insults, such as desiccation,
extreme pH, heavy metals or antibiotics [37–39] and allows the cell community to retain
and assimilate nutrients more effectively [35,40]. Biofilm formation can be considered as
an adaptive response to hostile environments, triggered and controlled by an interplay of
diverse environmental cues and intercellular communication [37,41,42]. Through release of
self-produced signaling molecules, cells are able to interact within the biofilm regulating
both its morphology and composition [5,41,43]. This type of communication, known as
quorum sensing (QS), affects gene expression in a cell density-dependent manner [44] and
was recently hypothesized to occur in the planctomycete strain Stieleria maiorica Mal15T,
which produces stieleriacines, presumably to alter biofilm community composition in its
natural habitat [5]. As a step toward the production of bioactive compounds in cultured
P. limnophila, we determined how sessile growth can be improved by promoting biofilm
formation in a chemically defined medium. We screened for important factors initially in
microtiter plates, testing different C:N ratios, metal ions and oxidative stress (exposure
to H2O2). We quantified biofilm formation by combining MTT assays, which detect liv-
ing cells, and crystal violet (CV) staining, which detects living and dead cells. Finally,
we selected the most important factors affecting surface growth in microtiter plates and
investigated their impact in a fixed-bed bioreactor.

2. Materials and Methods
2.1. Bacterial Strain and Media

Planctopirus limnophila strain DSM 3776 was obtained from the German Collection
of Microorganisms and Cell Cultures (Deutsche Sammlung von Mikroorganismen und
Zellkulturen, DSMZ). The cells were cultivated in the recently developed chemically defined
medium D1ASO [45] comprising 10 mM sodium phosphate buffer (pH 7.5), 50 mL/L amino
acid solution (ASO), 34 mL/L Hutner’s salts solution, 23.18 mM KNO3, 2.32 mM NH4Cl,
10 g/L glucose and 0.02 mg/L cyanocobalamin. To assess different C:N ratios, we changed
the amount of NH4Cl as shown in Table 1.

To investigate the influence of metal ions, we added FeSO4, ZnSO4 or CuSO4 at three
different concentrations (50, 100 or 500 µM) to come up with the nine variants shown in
Table 2. We also investigated the effect of oxidative stress on biofilm formation by adding
H2O2 to the medium, reaching final concentrations of 0.005–50 mM. All chemicals were
obtained from Sigma-Aldrich (Taufkirchen, Germany), Merck (Darmstadt, Germany) or
Carl Roth (Karlsruhe, Germany).
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Table 1. Final concentrations of KNO3 and NH4Cl to modify the C:N ratio of D1ASO medium +
10 g/L glucose.

Medium C:N KNO3 (mM) NH4Cl (mM)

D1ASO (control) 13.1:1 23.18 2.32
Medium 2 9.6:1 23.18 11.6
Medium 3 7.2:1 23.18 23.2
Medium 4 5.7:1 23.18 34.8

Table 2. Final concentrations of metal ions in D1ASO medium.

ZnSO4 (µM) CuSO4 (µM) FeSO4 (µM)

D1ASO 6.5 0.3 15.2

Zn (50) 56.5 0.3 15.2
Zn (100) 106.5 0.3 15.2
Zn (500) 506.5 0.3 15.2
Cu (50) 6.5 50.3 15.2
Cu (100) 6.5 100.3 15.2
Cu (500) 6.5 500.3 15.2
Fe (50) 6.5 0.3 65.2

Fe (100) 6.5 0.3 115.2
Fe (500) 6.5 0.3 515.2

2.2. Cultivation of P. limnophila in Microtiter Plates

Cryopreserved P. limnophila cells were inoculated to an initial optical density (OD600) of
0.2 in 1.5 mL of each medium (pH 7.5) in 24-well plates. The plates were incubated at 28 ◦C
for 48 h, shaking at 100 rpm in a Multitron Standard orbital shaker (Infors, Bottmingen,
Switzerland). Each well was lined with a Siporax Mini Professional carrier (Sera, Heinsberg,
Germany) for biofilm analysis. After carrier removal, we determined the OD600 of the
cells remaining in the liquid phase. Prior to crystal violet biofilm staining, P. limnophila
was cultured in 96-well plates at 28 ◦C for 48 h without shaking. The various media were
inoculated with cryopreserved cells to an initial OD600 of 0.2, and 150 µL was transferred
to each well.

2.3. Cultivation of P. limnophila in the Bioreactor

Cells were cultured at 28 ◦C in 2-mL fixed-bed reactors, each fitted with six Siporax
carriers. Three fixed beds were connected in parallel to a conditioning vessel and the culture
medium was circulated using an ISM 931 peristaltic pump (Ismatec Wertheim, Germany)
at a flow rate of 4 mL/min.

We used a 0.5-L MiniBio 500 stirred-tank bioreactor (Applikon, Delft, Netherlands)
with a 0.3-L working volume as the conditioning vessel. The culture was agitated at
200 rpm using two Rushton impellers and was aerated with a micro-sparger at 0.1 vvm.
The bioreactor was equipped with pH, temperature, and dissolved oxygen probes, and
the pH was maintained at 7.5 by adding 1 M NaOH as required. The initial OD600 was
0.1. Biofilm formation was stimulated by the addition of sterile FeSO4, CuSO4 or NH4Cl as
required once the conditioning vessel had reached OD600 = 0.5. After 60 h, the cultivation
was stopped and the medium was pumped out at a flow rate of 1 mL/min. The carriers
were removed from the fixed beds and prepared for biofilm analysis.

2.4. MTT Assay

The cell mass in the biofilm was determined as previously described [46] with modi-
fications. Carriers were removed from the 24-well plates after 48 h and washed twice in
sterile 0.9% (w/v) NaCl to remove loose cells. They were then transferred to 24-well plates
containing 1.5 mL per well of fresh D1ASO medium supplemented with 150 µL 5 g/L
3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT) and were incu-
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bated as above. The formazan product was solubilized by transferring the contents of each
well to a centrifuge tube with 4.5 mL dimethylsulfoxide (DMSO) containing 0.4 M ammonia
and vortexing for 2 min. The samples were centrifuged for 3 min to separate cell residues,
and 75 µL of the supernatant was transferred to a 96-well plate and the absorbance was
measured at 550 nm in a Synergy HT microplate reader (Bio-Tek Instruments, Winooski,
VT, USA). Sterile D1ASO medium was used as the blank and was handled as described for
the other samples.

The overgrown carriers from the 2-mL fixed beds were transferred to centrifuge tubes
containing 6 mL fresh D1ASO medium and 0.6 mL MTT solution and were incubated for
30 min. The formazan product was solubilized by adding 18 mL ammonia containing
DMSO, and subsequent steps were carried out as described above. The cell dry weight
(CDW) was calculated by multiplying the absorbance reading by 3 to reflect the increase in
volume from 2 mL (per fixed bed) to 6 mL.

Absorbance values were transformed to OD600 values based on the experimentally
determined correlation between A550nm and OD600, as shown in Equation (1) (2 h MTT
assay) and Equation (2) (0.5 h MTT assay). This was derived by plotting OD600 against
absorbance for a dilution series, followed by linear fitting at adjusted R2 = 0.98315 (1)
and adjusted R2 = 0.98248 (2). The dilutions were prepared in triplicate. The relationship
between OD600 and CDW (g/L) for P. limnophila is described by Equation (3) [45].

A550nm = 0.36452 · OD600 + 0.05059 (1)

A550nm = 0.07233 · OD600 + 0.06081 (2)

CDW = 0.2905 · OD600 + 0.0294 (3)

2.5. Crystal Violet Staining

The total biofilm, comprising living and dead cells as well as exopolymeric substances,
was quantified as previously described [47], with modifications. After the cultivation of
cells in 96-well microtiter plates, the medium was discarded and the plates were washed
twice with tap water to remove loose cells. The biofilms were then stained with 200 µL
0.1% (w/v) crystal violet for 15 min at room temperature. The stain was discarded and the
plates were washed twice with tap water and dried at 60 ◦C for 3 h. The bound crystal
violet was dissolved in 250 µL 70% ethanol and 150 µL of each sample was transferred to a
new well. The absorbance was measured at 590 nm in the Synergy HT microplate reader.

2.6. Measurement of OD600

OD600 values were measured using a BioSpectrometer basic (Eppendorf, Hamburg,
Germany). For readings > 0.3, samples were diluted in 0.9% (w/v) NaCl.

3. Results
3.1. Effect of C:N Ratio on Biofilm Formation in Microtiter Plates

The C:N ratio of the standard D1ASO medium was 13.1:1. Reducing this ratio by
adding NH4Cl (Table 1) had a positive effect on the sessile growth of P. limnophila, with
more extensive carrier colonization observed in all three media variants. When biofilm
formation was measured using the MTT assay, there were significant differences between
the control medium and the C:N ratios of 5.7:1 and 9.6:1 (Figure 1A). The same trend was
apparent when the biofilms were stained with crystal violet, although the differences were
not significant (Figure 1B). The C:N ratio of 9.6:1 also resulted in a higher OD600 than the
control medium, suggesting that the extensive colonization of the carriers was facilitated by
the presence of more suspended cells that were available for surface attachment. However,
a further reduction in the C:N ratio was associated with fewer cells in the liquid phase
compared to the control medium, suggesting that the proliferation of planktonic cells was
inhibited (Figure 1C). To visualize the biomass distribution, we converted the MTT assay
and OD600 results to CDW concentrations using empirical correlations (Figure 1D). C:N
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ratios lower than 9.6:1 clearly influenced the distribution of cells between the liquid phase
and carrier. This suggests that the addition of supplementary nitrogen above a threshold
concentration promotes cell attachment to surfaces and fewer cells are therefore present in
the liquid phase, which is consistent with previous work [48].
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Figure 1. Effects of different C:N ratios on P. limnophila growth and biofilm formation in microtiter
plates. (A) MTT assay results (absorbance readings at 550 nm). (B) Crystal violet absorbance readings
at 590 nm. (C) OD600 readings in the liquid phase. (D) Distribution of the CDW (g/L) between
the carriers and liquid phase. Data are means ± standard deviations (n = 3 biological replicates).
Statistical analysis for MTT assay, OD600 and CV staining was based on a two-sample t-test compared
to control values (D1ASO), * P < 0.05.

3.2. Effect of Metal Ions on Biofilm Formation in Microtiter Plates

The metal ion content of the medium was increased by adding three different concen-
trations of Fe, Cu, and Zn. MTT assays indicated a significant increase in absorbance for the
media supplemented with Fe (50), Fe (500), and Cu (50), indicating that these concentrations
enhanced surface colonization (Figure 2A). Crystal violet staining confirmed the results for
Fe (50) and Cu (50), whereas Fe (500) instead showed a decline in absorbance (Figure 2B).
However, crystal violet staining revealed a significant increase in absorbance for Fe (100)
and Cu (100), the former also showing an increase in the MTT assay but the latter showing
a decrease in the MTT assay. The lowest absorbance values in both assays were observed
when the medium was supplemented with Cu (500) and Zn (500).

Increasing the concentration of Cu or Zn universally reduced the OD600 in the liquid
phase (Figure 2C). The OD600 results for Fe (100 and 500) cannot be taken at face value be-
cause Fe precipitates at concentrations exceeding 100 µM and the particles contribute to the
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reading. Cu (500) and Zn (500) had a bacteriostatic effect, suggesting these concentrations
are toxic but sublethal.

The addition of metal ions clearly influenced the distribution of biomass between
the carriers and the medium (Figure 2D). Zn (500), Cu (100), and Cu (500) resulted in a
balanced ratio of sessile and motile cells but low biomass yields.
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Figure 2. Effects of different Fe, Cu, and Zn concentrations (Table 2) on P. limnophila growth and
biofilm formation in microtiter plates. (A) MTT assay results (absorbance readings at 550 nm).
(B) Crystal violet absorbance readings at 590 nm. (C) OD600 readings in the liquid phase. (D) Distri-
bution of the CDW (g/L) between the carriers and liquid phase. Data are means ± standard deviations
(n = 3 biological replicates). Statistical analysis for MTT assay, OD600 and CV staining was based on a
two-sample t-test compared to control values (D1ASO medium), * P < 0.05.

3.3. Effect of Oxidative Stress on Biofilm Formation in Microtiter Plates

We investigated the influence of different concentrations of H2O2 on P. limnophila
biofilm formation because this chemical is known to trigger oxidative stress pathways
in other bacteria [49]. The MTT assay indicated that H2O2 had no significant effect at
concentrations between 5 µM and 50 mM (Figure 3A). In contrast, crystal violet staining
showed a significant increase in biofilm formation at H2O2 concentrations of 5 mM, 50 µM,
and 5 µM (Figure 3B). The OD600 of the liquid phase was reduced in the presence of 50 mM
H2O2 indicating that cell growth was inhibited, but the OD600 increased significantly in
the presence of 5 mM H2O2 (Figure 3C). Accordingly, the distribution of biomass between
the carrier and the liquid phase was only affected at H2O2 concentrations of 5–50 mM
(Figure 3D).



Microorganisms 2022, 10, 801 7 of 13

Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

concentrations between 5 µM and 50 mM (Figure 3A). In contrast, crystal violet staining 
showed a significant increase in biofilm formation at H2O2 concentrations of 5 mM, 50 µM, 
and 5 µM (Figure 3B). The OD600 of the liquid phase was reduced in the presence of 50 
mM H2O2 indicating that cell growth was inhibited, but the OD600 increased significantly 
in the presence of 5 mM H2O2 (Figure 3C). Accordingly, the distribution of biomass be-
tween the carrier and the liquid phase was only affected at H2O2 concentrations of 5–50 
mM (Figure 3D). 

 
Figure 3. Effects of different H2O2 concentrations (5 µM to 50 mM) on P. limnophila growth and 
biofilm formation in microtiter plates. (A) MTT assay results (absorbance readings at 550 nm). (B) 
Crystal violet absorbance readings at 590 nm. (C) OD600 readings in the liquid phase. (D) Distribu-
tion of the CDW (g/L) between the carriers and liquid phase. Data are means ± standard deviations 
(n = 3 biological replicates). Statistical analysis for MTT assay, OD600 and CV staining was based on 
a two-sample t-test compared to control values (D1ASO medium), * P < 0.05. 

3.4. Effect of Cultivation Parameters on Biofilm Formation in Bioreactors 
Having identified the factors that affect P. limnophila growth and biofilm formation 

in microtiter plates, we investigated their impact in a fixed-bed cultivation process. OD600 
measurements in the conditioning vessel revealed growth inhibition when the C:N ratio 
was reduced to 5.7:1 (Figure 4A), which is consistent with the microtiter plate screening 
results. However, unlike the screening experiments, we observed no significant effect 
when we added Fe or Cu (Figure 4A), even though the latter inhibited cell growth in mi-
crotiter plates. MTT assay revealed no significant changes compared to the control me-
dium when we reduced the C:N ratio to 5.7:1 or increased Fe or Cu concentrations by 50 

Control 50 mM 5 mM 0.5 mM 0.05 mM 0.005 mM
0.0

0.1

0.2

A 55
0n

m

A

Control 50 mM 5 mM 0.5 mM 0.05 mM 0.005 mM
0.0

0.2

0.4

0.6

0.8

1.0

1.2

*
*

A 59
0n

m

B *

Control 50 mM 5 mM 0.5 mM 0.05 mM 0.005 mM
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

*

O
D

60
0

C

Control 50 mM 5 mM 0.5 mM 0.05 mM 0.005 mM
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
D

W
 [g

/L
]

 carrier
 liquid phase

D

Figure 3. Effects of different H2O2 concentrations (5 µM to 50 mM) on P. limnophila growth and biofilm
formation in microtiter plates. (A) MTT assay results (absorbance readings at 550 nm). (B) Crystal
violet absorbance readings at 590 nm. (C) OD600 readings in the liquid phase. (D) Distribution
of the CDW (g/L) between the carriers and liquid phase. Data are means ± standard deviations
(n = 3 biological replicates). Statistical analysis for MTT assay, OD600 and CV staining was based on a
two-sample t-test compared to control values (D1ASO medium), * P < 0.05.

3.4. Effect of Cultivation Parameters on Biofilm Formation in Bioreactors

Having identified the factors that affect P. limnophila growth and biofilm formation in
microtiter plates, we investigated their impact in a fixed-bed cultivation process. OD600
measurements in the conditioning vessel revealed growth inhibition when the C:N ratio
was reduced to 5.7:1 (Figure 4A), which is consistent with the microtiter plate screening
results. However, unlike the screening experiments, we observed no significant effect when
we added Fe or Cu (Figure 4A), even though the latter inhibited cell growth in microtiter
plates. MTT assay revealed no significant changes compared to the control medium when
we reduced the C:N ratio to 5.7:1 or increased Fe or Cu concentrations by 50 µM, although
the addition of Fe resulted in a slight increase in biomass on the carriers and the lower
C:N ratio, and the Cu treatment resulted in a slight reduction in biomass (Figure 4B). The
distribution of biomass between the carrier and liquid phase shifted towards growth in the
fixed-bed setting compared to the microtiter plates. The lower C:N ratio of 5.7:1 led to a
higher biomass concentration in the fixed bed than in the conditioning vessel (Figure 4C).
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4. Discussion

The formation of bacterial biofilms is accompanied by changes in gene expression and
metabolic profiles [27–29], potentially involving the activation of multiple biosynthetic gene
clusters. Silent biosynthetic gene clusters identified in Planctomycetes may therefore encode
the enzymes responsible for the synthesis of novel bioactive compounds, but this has not
been explored in detail because Planctomycetes are difficult to cultivate. The development
of the chemically defined medium D1ASO overcame this hurdle for the freshwater strain
P. limnophila, leading to CDWs exceeding 13 g/L in bioreactor processes [45].

As a step toward the production of novel secondary metabolites using P. limnophila, we
investigated the conditions required to stimulate biofilm formation in fixed-bed bioreactors.
Little is known about planctomycetal biofilm formation, so we initially focused on the
identification of factors that influence growth and biofilm formation in our chemically
defined medium at the microtiter plate scale. We analyzed the biofilms using two methods
based on different principles: the MTT assay, in which a soluble dye is converted into
an insoluble formazan product whose abundance correlates with the metabolically active
biomass, and crystal violet staining, which measures the abundance of living and dead
cells. The use of two methods prevents false positives in the MTT assay caused by the
increased metabolic activity of cells on the carriers. The MTT assay data were prioritized
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for validation of the most important parameters in the bioreactors because the fixed bed
should primarily contain living cells.

The microtiter plate screen with different C:N ratios revealed that higher nitrogen
levels promoted sessile growth on the carriers and fewer cells accumulated in the liquid
phase. Similarly, higher ammonium levels promoted sessile growth and biofilm forma-
tion by Rhodopirellula baltica, possibly via an Amt transporter fused to a sensory histidine
kinase [48]. Genes that may encode such an ammonium sensor kinase are present in the
R. baltica genome and in the genomes of other Planctomycetes, including P. limnophila [48].
The aggregation of biofilm-forming cells in response to ammonium may be a defensive reac-
tion that reduces the surface area and creates an additional barrier to the environment [48].
Alternatively, the sudden availability of nitrogen in a nutrient-depleted environment may
activate biofilm formation as a means to accumulate nutrients and protect them from
competitors.

The microtiter plate screen with different metal ions revealed that Zn and Cu have
a strong inhibitory effect on planktonic cells in the liquid phase. The OD600 in the liquid
phase correlated negatively with increasing metal concentrations, but this effect was less
striking in the biofilm assays. Fe (500) led to much higher absorbance readings than Zn
(500) and Cu (500), indicating that Fe is less toxic toward P. limnophila than the other metals,
even if the OD600 reading in the liquid phase was influenced by Fe precipitates. Both Fe
and Cu induced P. limnophila biofilm formation.

In earlier studies, the growth of Gemmata spp. was enhanced by the addition of
FeSO4 [50] and two planctomycetal strains isolated from Fe(OH)2 deposits were found
to be attached to Fe precipitates [51]. Fe promotes biofilm formation in Pseudomonas
aeruginosa [52,53], Escherichia coli [54], Bacillus subtilis [55], Staphylococcus aureus [56], and
Vibrio cholerae [57]. In some Campylobacter jejuni strains, oxidative stress induced by Fe
resulted in the production of more extracellular DNA and exopolymeric substances [58].
Tests with a range of metals showed that Zn was the least toxic toward Rhodopirellula sp. LF2,
with no visible effects up to a concentration of 58.7 µM and cells remaining viable up to a
concentration of 293.3 µM, probably reflecting the involvement of Zn in more physiological
processes than the other metals tested [59]. Similarly, Zn at equivalent concentrations
did not show negative effects against P. limnophila in our MTT assay, but we observed a
lower OD600 in the liquid phase compared to the control medium. It is not possible to
compare this outcome directly with the earlier study because the latter relied on the use of
agar plates; hence, the distribution between sessile and motile cells was not reported [59].
The analysis of Rhodopirellula sp. LF2 revealed that Cu is more toxic than Zn at the same
concentration [59], which also appeared to be the case for P. limnophila based on our OD600
measurements in the liquid phase. However, the MTT assay for Cu (50) and the crystal
violet staining for Cu (50) and Cu (100) generated higher absorbance values compared to Zn,
indicating a stronger positive effect on sessile growth. The stabilizing effect of cationic metal
ions, such as Cu, Zn, and Fe, on B. subtilis biofilms has been previously demonstrated [55].
Therefore, further studies are required to determine whether P. limnophila biofilm formation
is directly influenced by metal ions or whether they exert an indirect stabilizing effect.

Biofilm formation has been linked to oxidative stress in Helicobacter influenzae [60],
C. jejuni [58], Streptococcus mutans [61], and E. coli [62]. H2O2 is often used to induce oxida-
tive stress, and this was shown to trigger biofilm formation in Mycobacterium avium [49].
However, H2O2 had no effect against P. limnophila in our MTT assays although the addition
of 50 mM H2O2 inhibited cell growth based on the lower OD600 reading in the liquid phase.
Crystal violet staining indicated a significant increase in biofilm formation in the presence
of 5 mM, 50 µM, and 5 µM H2O2 based on the detection of dead as well as metabolically
active cells.

Having established the parameters that affected cell growth and biofilm formation
in microtiter plates, we transferred the experiments to a bioreactor to evaluate the impact
of such factors on a larger scale. We replicated the effect of the lower C:N ratio on motile
cell growth, but not the effect of 50 µM Cu. Indeed, none of the factors identified at the
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microtiter plate scale significantly influenced biofilm formation in the fixed-bed reactor, and
only the addition of Fe had a slight positive effect on biofilm formation. This discrepancy
may reflect differences between the cultivation systems in terms of pH control and aeration.
The pH was maintained at 7.5 in the bioreactor and the cells were aerated with a micro-
sparger, whereas oxygen exchange in the microtiter plates occurred only by surface aeration
and the pH was not regulated. Given that Fe2+ is oxidized to the less bioavailable Fe3+

at pH > 5 [50], the adjusted pH in the bioreactor may limit Fe availability, and the more
intense aeration in the bioreactor may enhance the oxidation of Fe2+. The investigation of
Gemmata spp. has revealed the absence of a complete set of genes involved in Fe acquisition
and that growth can be enhanced by E. coli filtrates containing siderophores [50,63]. The
ability of P. limnophila to take up Fe3+ should be evaluated in future studies.

5. Conclusions

Microtiter plate screening experiments revealed several factors with the potential to
support P. limnophila sessile growth and biofilm formation in a fixed-bed reactor. We also
determined the concentrations of metals, NH4Cl, and H2O2 that inhibit cell growth and
showed that the relative proportions of sessile cells on carriers and motile cells in the liquid
phase can shift depending on the C:N ratio and metal ion concentrations. The screening
results suggested that a C:N ratio of 5.7:1 as well as the presence of additional 50 µM Fe or
Cu significantly increased the absorbance signal in the MTT assay with largely consistent
(although not statistically significant) results in the crystal violet assay. However, none of
the identified factors significantly increased biofilm formation in the bioreactor, and only the
presence of additional 50 µM Fe resulted in a slight positive effect on P. limnophila surface
growth under these conditions. Overall, our data suggest that P. limnophila is influenced
by the bioreactor system pH and/or aeration, which will be investigated in more detail
in future studies. Although the factors we identified in the microtiter plate screen did not
significantly increase the biomass in the bioreactor, we have nevertheless demonstrated the
first successful cultivation of P. limnophila in a chemically defined medium using a fixed-bed
bioreactor system.
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