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ABSTRACT Most of previous empirical studies with genome-wide prediction were focused on within-
environment prediction based on a single-environment (SE) model. In this study, we evaluated accuracy
improvements of across-environment prediction by using genetic and residual covariance across correlated
environments. Predictions with a multienvironment (ME) model were evaluated for two corn polygenic leaf
structure traits, leaf length and leaf width, based on within-population (WP) and across-population (AP)
experiments using a large maize nested association mapping data set consisting of 25 populations of
recombinant inbred-lines. To make our study more applicable to plant breeding, two cross-validation
schemes were used by evaluating accuracies of (CV1) predicting unobserved phenotypes of untested lines
and (CV2) predicting unobserved phenotypes of lines that have been evaluated in some environments but
not others. We concluded that (1) genome-wide prediction provided greater prediction accuracies than
traditional quantitative trait loci-based prediction in both WP and AP and provided more advantages over
quantitative trait loci -based prediction for WP than for AP. (2) Prediction accuracy with ME was significantly
greater than that attained by SE in CV1 and CV2, and gains with ME over SE were greater in CV2 than in
CV1. These gains were also greater in WP than in AP in both CV1 and CV2. (3) Gains with ME over SE
attributed to genetic correlation between environments, with little effect from residual correlation. Impacts
of marker density on predictions also were investigated in this study.
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Traditional quantitative trait loci (QTL)-based prediction (QP) in
marker-assisted selection (MAS) is defined as a two-step process to
predict breeding values (BVs) of untested lines for traits of interest
based on QTL identified from a typical biparental plant breeding
population. In the first step, QTL are identified based on phenotypic
and genotypic data via various QTL mapping methods such as step-
wise regression (Lande and Thompson 1990), interval mapping
(Lander and Botstein 1989; Haley and Knott 1992), composite in-

terval mapping (CIM) (Jansen 1993; Zeng 1993, 1994; Wang et al.
1999), and inclusive CIM (Li et al. 2007). In the next step, identified
QTL passing a particular significance threshold are included in a sin-
gle model, and the combined effects of all QTL alleles are estimated
simultaneously by either maximum likelihood or multiple linear re-
gression-based methodologies (Edwards and Johnson 1994; Meuwissen
et al. 2001; Bernardo and Yu 2007). These effects are then used in
MAS schemes to predict BVs of untested individuals based solely on
genotypic data in a subsequent off-season nursery or green house
selection (Lorenzana and Bernardo 2009).

The accuracy of QP is contingent on the numbers of QTL
identified and their respective estimated effects. Although it is
relatively easy to detect QTL with large phenotypic effects, it is
difficult to identify QTL with intermediate or small effects (Lander
and Botstein 1989; Xu 2003). This difficulty may be attributed to
limited sample sizes of mapping populations and low heritabilities
of target traits. Lack of sufficient replication and precision pheno-
typing also was indicated as possible reasons for low power of QTL
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mapping. Regardless, the power of QTL discovery determines the
prediction accuracy during MAS and is responsible for the concom-
itant decrease in overall MAS efficiency. It is well known that QTL
discovery in biparental mapping populations with a limited number
of progeny (, 300) tends to overestimate individual QTL effects,
regardless of statistical methodologies for effect assignment (the
Beavis effect, see Beavis 1994). In severe situations, QTL effects
cannot be estimated when genotypes of QTL are highly correlated
or when population sizes are too small relative to the total number of
putative QTL considered in the model. Therefore, from the perspec-
tive of statistical genetics, QP has focused on two key aspects: im-
proving QTL mapping power and increasing the accuracy of QTL
effects estimation. Although many statistical approaches have been
developed for both purposes, improvement of QP accuracy for
quantitative traits controlled by numerous small-effects QTL
remains a current problem (Bernardo 2001; Heffner et al. 2009).

Simulation and empirical studies have shown that genome-wide
prediction (GWP) (Meuwissen et al. 2001) provides improved accu-
racy in predicting BVs of untested lines over QP by the use of genomic
marker trait associations in plants (Piyasatian et al. 2007; Lorenzana
and Bernardo 2009; Zhong et al. 2009; Crossa et al. 2010; Heffner
et al. 2011; Guo et al. 2012; Riedelsheimer et al. 2012; Zhao et al.
2012), animals (Lee et al. 2008; Legarra et al. 2008; Hayes et al. 2009a;
Luan et al. 2009; Moser et al. 2009; Rolf et al. 2010; Mujibi et al. 2011;
Wolc et al. 2011), and humans (Makowsky et al. 2011). With GWP,
previously unidentified QTL with small effects in QP are captured in
generated predictive models. This was shown to lead to significant
increases of accuracies of derived predictions. In addition, to reduce
the inflation of effect estimation of QTL, effects of each marker are
treated as random draws from a common prior density in GWP. In
practice, these assumptions of a prior probability distribution are
leveraged to limit large fluctuations in marker effect estimates, in-
ducing shrinkage estimates of marker effects. While ridge regression-
best linear unbiased prediction (RR-BLUP), BayesA and BayesB
approaches originally were developed to improve assessments of
QTL effects for GWP strategies (Meuwissen et al. 2001), more
attention has been directed toward extending and improving these
methods to accommodate various types of study populations and
to improve predictive ability (Lee et al. 2008; de los Campos et al.
2009, 2010; Meuwissen et al. 2009; Piepho 2009; Hayes et al. 2009b;
Hayashi and Iwata 2010; Habier et al. 2011; Ober et al. 2011;
González-Camacho et al. 2012).

However, the majority of the aforementioned studies apply to
a univariate single-environment (SE) prediction model in which
phenotypic records or means of a training sample and a validation
sample are obtained from the same set of environments by using the
same year and location effects, with no consideration of genetic and
residual correlation across environments. Recent studies have illus-
trated that the use of genetic and residual covariance across correlated
environments may better the accuracy of across-environment GWP
using a multienvironment (ME) model (Calus and Veerkamp 2011;
Burgueño et al. 2012). However, it is still not clear what the actual gain
in prediction accuracy with ME over SE in typical biparental popula-
tions in plant breeding would be and what is the key factor contrib-
uting to the gains. Therefore, objectives in this study are threefold: (1)
Evaluate the accuracies of across-environment predictions with QP
and GWP based on within-population (WP) and across-population
(AP) experiments with SE and ME models by using data from a large
NAM data set consisting of 25 bi-parental half-sib populations; (2)
assess influences of different genetic and residual covariance structures
on the prediction accuracy of GWP with different ME models; and (3)

conduct an assessment the effects of variation in marker density on
GWP with the SE and ME models. To make our study more practical
and applicable to plant breeding, two cross-validation schemes were
employed to achieve the above objectives by evaluating the accuracies
of (CV1) predicting unobserved phenotypes of untested lines and
(CV2) predicting unobserved phenotypes of lines that have been eval-
uated in some environments but not others.

MATERIAL AND METHODS

NAM population
We retrieved phenotype and genotype data of 4131 recombinant
inbred lines (RILs) from maize NAM populations derived from
crosses between 25 genetically diverse inbreds and the maize elite
parent B73 (Table 1) from the Panzea website (http://www.panzea.
org). A total of 1106 single-nucleotide polymorphism (SNP) markers
were used for genotyping each RIL, covering a genetic map of 1439
cM. The coding rules used for genotypic data were identical to those
used in the within-environment prediction shown in Guo et al.
(2012). To summarize, for individual populations, genotypes of each
SNP of each progeny were coded21 if both alleles were from a diverse
parental line, 1 if from the common parent B73, and 0 otherwise.
Based on coding rules, when several SNPs in complete linkage dis-
equilibrium (LD) were available for a chromosomal region, only one
SNP was selected. In each NAM population, selected SNPs varied
from 785 to 895 whereas the genome coverage ranged from 1371 to
1397 cM. In the current study, we used phenotypic data of each RIL
evaluated for leaf structure traits leaf length (LL) and leaf width (LW)
from two locations, Aurora (AU), NY, and Champaign-Urbana (CU),
IL, over 2 yr (2006 and 2007). A total of four environments were then
defined as E1: AU at 2006; E2: CU at 2006; E3: AU at 2007; and E4:
CU at 2007. Both LL and LW traits were found to have a genetic
architecture affected by a large number of QTL of small effect (Tian
et al. 2011). Based on phenotypic information from 2 yr and two
locations, the broad sense heritability H2 on a mean basis (Supporting
Information, File S1) ranged from 0.60 to 0.84 for the LL trait and
from 0.60 to 0.82 for the LW trait (Table S1). Over 25 NAM pop-
ulations, the average of H2 was 0.74 for both traits, reflecting a high
precision of phenotyping efforts.

Models for estimation of marker effects
Two methods, CIM and RR-BLUP, were used to estimate marker
effects based on genotypic and phenotypic data in a training data set
in CV1 with balanced phenotypic records and CV2 with unbalanced
phenotypic records which were discussed in details in next section.
Prediction accuracies with CIM and RR-BLUP were used to measure
estimates with QP and GWP strategies, respectively. Two models, SE
and ME, were applied in both methods based on training sets obtained
from WP and AP. In total, there were four models developed for each
method: AP-ME, AP-SE, WP-ME, and WP-SE. In the discussion of
each method, we start with the most complex model, AP-ME, and
then simplify to obtain others.

The AP-ME model with CIM was extended from multi-trait QTL
mapping (Jiang and Zeng 1995) to accommodate multipopulation
analysis, which can be written as

Y ¼ XbþWsþQaþ e (1)

where Y = [y1, y2, . . ., yn]T is an n · mmatrix of phenotypic data for n
lines from p NAM populations and m environments, and y1, y2,. . .,yn
are vectors composed of observations across m environments; X is
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an n · (1 + p) incidence matrix for n lines from p populations
representing population structure with the first column ones; b is
a (1 + p) · m matrix of individual population effects with the first
column representing the overall mean; W is an n · f matrix of
genotypes of cofactor markers; s is an f · m matrix of cofactor
marker effects with f the number of cofactor markers; Q is an n ·
1 matrix of QTL genotypes; a is an 1 · m matrix of additive effects
of a putative QTL at a tested position; and e = [e1, e2, . . ., en]T is
a matrix of residuals ei (i = 1, 2, . . ., n), which is assumed to be
correlated between environments and to follow a multivariate nor-
mal distribution with means zero and covariance matrix

C ¼

2
6664

e211 e212 ⋯ e21m
e221 e222 ⋯ e22m
⋮ ⋮ ⋱ ⋮

e2m1 e2m2 ⋯ e2mm

3
7775.

In this model, the population effects b, cofactor effects s, and QTL
additive effects a were treated as fixed effects and residual e as
random effects. QTL genotype Q was not observed and was
replaced with its expected value obtained from the probability
distribution of QTL genotypes conditional on the closest flanking
markers (Haley and Knott 1992). Cofactor markers were selected
by a modified stepwise selection procedure (Buckler et al. 2009).
Extensions of this model to others were straightforward. For WP-
ME, model (1) with population structure excluded from X became
a single-population ME analysis (Jiang and Zeng 1995). AP-SE was
similar to model (1) but was reduced to a univariate regression
model for SE analysis, which was further simplified into a WP-SE
model without population structure (Zeng 1993, 1994). To deal

with unbalanced phenotypic records in a training data set, the
modified CIM method developed by Guo and Nelson (2008)
was applied to WP-ME and AP-ME in CV2 by iteratively im-
puting missing phenotypic data conditional on their posterior
distributions.

On the basis of the aforementioned models, CIM was
performed by scanning whole genomes with a fixed step size of 1
cM based on genotypic and phenotypic data in a training data set
at each replicate of CV1 and CV2. A QTL was identified at the
position in which the test statistic logarithm of odds (LODs) score
assumed its maximum in the region under consideration with
a LOD threshold (Utz et al. 2000). Cofactor selection in CIM
requires a significance level that we estimated to be 0.0001 based
on permutation tests for AP-SE and AP-ME (Buckler et al. 2009;
Tian et al. 2011) and relaxed to 0.01 with WP-SE and WP-ME due
to the decreased training sample size. Another key requirement
was to determine LOD thresholds for identifying QTL. In the
current study, LOD thresholds were estimated from 5000 permu-
tation tests based on a genome-wide significance level 0.05 (Doerge
and Churchill 1996). In WP-SE and AP-SE, phenotypic records for
each RIL were randomized within each NAM population, whereas
in WP-ME and AP-ME, permutation tests were performed by
shuffling phenotypic records for multiple environments at once
to preserve their correlation structure. Note that permutation tests
were conducted for each model in CV1 and CV2 based on full data
sets from each of the 25 NAM populations. Once QTL were iden-
tified using empirical LOD thresholds, effects of QTL were esti-
mated by a multivariate multiple regression model with population
structure.

The AP-ME model with RR-BLUP was an extension from the
model proposed by Burgueño et al. (2012) as

n Table 1 Population information for the 25 NAM populations used for analysis in the current study

PopId Crosses Sample Size Marker Number Genomic Coverage, cM

1 B73·B97 167 805 1386
2 B73·CML103 173 813 1396
3 B73·CML228 180 889 1396
4 B73·CML247 165 828 1397
5 B73·CML277 156 820 1385
6 B73·CML322 173 838 1394
7 B73·CML333 165 827 1388
8 B73·CML52 163 834 1390
9 B73·CML69 176 840 1389
10 B73·Hp301 158 794 1387
11 B73·IIL4H 152 825 1389
12 B73·Ki11 170 822 1386
13 B73·Ki3 103 791 1397
14 B73·Ky21 182 817 1395
15 B73·M162W 163 827 1378
16 B73·M37W 172 788 1389
17 B73·Mo18W 178 818 1386
18 B73·MS71 171 771 1371
19 B73·NC350 176 827 1388
20 B73·NC358 156 809 1395
21 B73·Oh43 164 811 1389
22 B73·Oh7B 156 789 1396
23 B73·P39 161 828 1378
24 B73·Tx303 168 807 1394
25 B73·Tzi8 183 859 1381
Mean 165 819 1389

NAM, nested association mapping.
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where yi (i = 1, 2,. . ., m) is a vector of phenotypic data for n lines
from p NAM populations at the environment i; m is the total num-
ber of environments; Xi is an n · (1 + p) incidence matrix for n lines
and p populations representing the population structure with the
first column ones; bi is a vector of individual population effects
(including the overall mean); Zi is an n · k matrix of marker gen-
otypes with k the total number of markers; ai is a vector of marker
effects; and ei is a vector of residuals. The above model can be re-
written in reduced matrix form as

Y ¼ Xbþ Zaþ e (2)

where Y = [y1T, y2T, . . ., ymT]T; b = [b1
T, b2

T, . . ., bm
T]T; a = [a1

T,
a2

T, . . ., am
T]T; and eT = [e1T, e2T, . . ., emT]T. In this model, the

population effects b were treated as fixed effects. The marker effects
a were treated as random effects following a multivariate normal
distribution Nð0;G05IKÞwith G0 the additive genetic covariance
matrix between a and a9, IK a k · k identity matrix, and 5 the
Kronecker product of matrices. G0 can be defined as

G0 ¼

2
6664

s2
11 r12s11s22 ⋯ r1ms11smm

r21s22s11 s2
22 ⋯ r2ms22smm

⋮ ⋮ ⋱ ⋮
rm1smms11 rm2smms22 ⋯ s2

mm

3
7775

where sii
2 is the genetic variance of lines in environment i (i = 1, 2, . . .,m),

rij (i = 1, 2, . . ., m, and j = 1, 2, . . ., m) is the genetic correlation of
lines between environment i and j; and rij = rji. The genetic co-
variance matrix of Y can be defined as

G ¼ G05A

where A is an n · n genetic relationship matrix, which can be
calculated using genome-wide markers as

A ¼ MMT=2
Xk
i

pið12 piÞ

where M is an n · k matrix of marker genotypes and pi is the
frequency of an allele at locus i (i = 1, 2, . . ., k) (VanRaden 2008).
Note that the matrix M is equivalent to Zi (i = 1, 2, . . ., m) in the
CV1 scheme. The residuals e were considered as random effects
following a multivariate normal distribution N(0, R) where R is
a residual covariance matrix calculated by

R ¼ R05IN

where IN is an n · n identity matrix, and R0 is an m · m matrix of
the residuals in different environments, written as

R0 ¼

2
6664

e211 r11e11e22 ⋯ r1me11emm

r21e22e11 e222 ⋯ r2me22emm

⋮ ⋮ ⋱ ⋮
rm1emme11 rm2emme22 ⋯ e2mm

3
7775

where eii2 is the residual variance in environment i (i = 1, 2, . . ., m),
rij (i = 1, 2, . . ., m; j = 1, 2, . . ., m) is the residual correlation of lines
between environment i and j, and rij = rji. When model (2) was
modified into AP-SE, it was reduced to a univariate model, and
G0 and R0 became a special case of the multivariate model with
diagonal entries denoting the genetic and residual variances,
respectively. In WP-SE and WP-ME, the population structure X
was reduced to the column vector of ones. These models were ap-
plied to estimate marker effects based on training data sets with
balanced phenotypic records in CV1. For training sets with
unbalanced phenotypic records in CV2, marker genotype matrix
Zi in environment i may not be equal to Zj in environment j. The
genetic covariance between line l and q across environment i and j in
G was modified into Gijlq = {ZilZjq

Tsij
2/2

P
ph(1 - ph)} where Zil is

the genome-wide marker genotype row vector for line l in environ-
ment i, Zjq is the genome-wide marker genotype row vector for line
q in environment j, sij

2 is the entry of G0 at row i and column j, and
ph is the frequency of an allele at locus h (h = 1, 2, . . ., k). The
residual covariance was Rijlq = {eij2} with eij2 the element at the ith
row and the jth column of R0 if line l in environment i and line q in
environment j are from the same genotype, and zero otherwise,

A key requirement in model (2) was to estimate the covariance
matrix G0 and R0. In this study, G0 and R0 were estimated by the
multivariate restricted maximum likelihood (REML) approach pro-
posed by Vattikuti et al. (2012) based on model (2). Because estimates
of variance components from multivariate REML were sensitive to
initial values, estimates from univariate and bivariate REML were used
as the initial values for the multivariate REML analysis. Although G0

and R0 were estimated in each NAM population for WP, they were
estimated once by combining full data sets from all NAM populations
for AP. Once estimation for G0 and R0 were done, environment-
specific marker effects a along with the population effects b were
estimated by solving Henderson’s mixed-model equations (Henderson
1984).

Cross-validation
We used validation methods to estimate the prediction accuracy of
each model described previoulsy. Cross-validation is a statistical
technique of splitting data into training and validation sets by using
the validation set to evaluate prediction ability of the trained model.
Two cross-validation schemes, CV1 and CV2 (Figure 1), were con-
sidered in the study based on different prediction purposes relevant to
practical breeding problems (Calus and Veerkamp 2011; Burgueño
et al. 2012). In CV1, the goal was to predict unobserved phenotypes
of untested lines or newly generated lines based solely on genotypes;
and in CV2, missing phenotypes of lines in an environment were
predicted with genotypes and phenotypes from other environments.
A total of 100 replicates of cross-validation were performed for each
scheme, and the validation results were averaged over each replicate.
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In each replicate of CV1 (Figure 1), RILs in each population were
randomly split into a training data set comprising 60% of the sam-
ples and a validation data set of the remainder (Legarra et al. 2008;
Lorenzana and Bernardo 2009; Guo et al. 2012). Phenotypic records
of each line in the validation set were set to missing for all environ-
ments. In CV2 (Figure 1), a specific proportion (40%) of phenotypic
records for each environment independently were set to missing at
random. Therefore, phenotypic information was balanced for train-
ing sets generated in CV1, and unbalanced in CV2. Lines lacking
phenotypic data for all environments were dropped in CV2. Theo-
retically, the proportion of these lines in each NAM population was
(0.40)4 = 2.56% across four environments. Excluding these lines had
little effect on CV2 analysis.

In both CV1 and CV2 described above, training and validation sets
were from a single population by the use of WP information. As an
alternative practice, AP information can be used for prediction in the
absence of WP information (Legarra et al. 2008; Zhao et al. 2012),
mimicking a framework of using historical data to predict line per-
formances of a cross. In CV1, the AP training set was generated by
combining all RILs from the other 24 NAM populations. In CV2, the
AP training set was generated with RILs of 25 NAM populations
including the test population. In this case, each line in the training
set contained unbalanced phenotypic records. It is worthy of men-
tioning that both WP and AP were used to predict performances of
lines from the identical validation set in CV1 and CV2, respectively.

Although training was performed with WP and AP approaches in
CV1 and CV2, validation was conducted within each NAM population
for each environment. In each replicate, prediction accuracies were
measured as the correlation coefficient between estimated BVs and
observed phenotypes of lines in the validation set using

ŷi ¼ m̂þ
Xk
j¼1

zijâj

where ŷi is the estimated estimated BV of individual i in the valida-
tion sample; m̂ and âj are environment-specific overall mean and
marker effects estimated from a training sample using the methods
discussed in the last section; and zij is the genotype of marker j for

line i in the validation set. Note that only QTL were used in the
model with the QP strategy, while all the markers were included for
the GWP strategy. The final reported prediction accuracy was in fact
the mean of the 100 predictions generated across the replicate runs.
Overall accuracies between various models were compared with
a pairwise t-test (a = 0.05) based on identical validation sets within
each NAM population. Gains in prediction accuracy with one model
(e.g., model A) over another one (e.g., model B) were calculated
using (RA – RB) / RB, where RA represents prediction accuracy with
model A and RB prediction accuracy with model B.

Impacts of genetic and residual covariance structure
on GWP
Impacts of genetic and residual covariance on GWP with ME were
assessed by comparing four different models: (1) structured genetic
and residual covariance (SG-SR); (2) structured genetic and un-
structured residual variance (SG-UR); (3) unstructured genetic and
structured residual variance (UG-SR); and (4) unstructured genetic
and residual covariance (UG-UR). SG-SR was the simplest model
among them, in which each of the nondiagonal entries in G0 and R0

estimated above were set to zero, imposing independence on genetic
and residual correlations. This model was equivalent to fitting each SE
model separately with GWP. SG-UR imposed independence on ge-
netic correlation by setting non-diagonal entries to zeros in G0, while
UG-SR removed residual correlation by setting non-diagonal entries
to zeros in R0. UG-UR was completely unstructured and estimated in
the previous section. Influences of residual covariance were evaluated
by comparing SG-SR with SG-UR, whereas impacts of genetic covari-
ance were assessed by comparing UG-SR with SG-SR. Finally, effects
of residual covariance given the genetic covariance were evaluated by
comparing UG-UR with UG-SR.

Effect of marker density on prediction accuracy of GWP
Effects of marker densities on GWP were tested by setting
a conditional genetic distance criterion (c) between two flanking
markers to ensure that each chromosome was evenly covered by
a set of SNPs. For each NAM population, varying numbers of
markers were obtained by selecting values of c (c = 1.6, 5, 10, 15,
20, 25, and 30 cM) without compromising the overall genomic
coverage using the method described by Guo et al. (2012). This
was done to observe the influence of using smaller marker sets than
all available data from the original NAM study. All the identified
polymorphic markers were included in the model at c = 1.6 cM,
meaning that the mean marker distance of the entire marker set
was ~1.6 cM. Note that a training sample proportion 0.6 was al-
ways used when assessing the effect of different marker densities to
ensure different densities were applied to the same training and
validation sets at each replicate of 100 cross-validations.

RESULTS
Accuracies of predictions for traits LL and LW are shown in Table 2.
Prediction accuracy in each cell in this table was the average of pre-
diction accuracies over 25 NAM populations (Table S7, Table S8,
Table S9, Table S10, Table S11, Table S12, Table S13, Table S14, Table
S15, Table S16, Table S17, Table S18, Table S19, Table S20, Table S21,
and Table S22). As discussed previously, QTL for QP were identified
using the empirical LOD thresholds estimated by permutation tests
(Table S2). With GWP, the genetic and residual covariances obtained
from multivariate REML for traits LL and LW (Table S3, Table S4,
Table S5, and Table S6) were used to estimate environment-specific

Figure 1 Example of one replicate of cross-validation in CV1 and CV2.
White boxes represent observed phenotypic records, and black ones
represent missing phenotypic records.
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marker effects with RR-BLUP. We first compared GWP with QP in
CV1 and CV2. Overall, GWP gave consistently greater accuracies than
QP. Increase in accuracy with GWP over QP was statistically signif-
icant in 99% of predictions generated (Table S7, Table S8, Table S9,
Table S10, Table S11, Table S12, Table S13, Table S14, Table S15,
Table S16, Table S17, Table S18, Table S19, Table S20, Table S21,
and Table S22). Gains in accuracies with GWP over QP were larger
for WP than for AP were attributed to two factors: (1) GWP with WP
gave greater accuracies than that with AP; and (2) QP with WP gave
lower accuracies than that with AP due to a decreased number of QTL
identified in WP. Although AP gave improved accuracies for QP over
WP, it still yielded lower predictive power than GWP, which was also
lower than the accuracies with GWP in WP.

Afterward we compared prediction accuracies between the SE and
ME models for GWP. The ME model provided greater prediction
accuracies than the SM model in both CV1 and CV2. Increases in
accuracies were significant in most cases (Table S7, Table S8, Table S9,
Table S10, Table S11, Table S12, Table S13, Table S14, Table S15,
Table S16, Table S17, Table S18, Table S19, Table S20, Table S21,
and Table S22). For WP in CV1, across all populations and environ-
ments, average gains in accuracies with ME over SE were 8% and 12%
for traits LL and LW, respectively. Gains attained a maximum of 48%
in some populations in CV1 (Table S7). For WP in CV2, average
increases with ME over SE reached 40% and 33% for LL and LW
traits, respectively. For AP, gains with ME over SE were reduced to 3%
in CV1 and 10–13% in CV2 for LL and LW traits. On average, across
all populations, environments, and traits, gains with ME over SE were
10% and 37% for WP, and 3% and 11.5% for AP in CV1 and CV2,
respectively. The aforementioned gains were observed based on the
average genetic correlation of 0.77 and 0.87 and the average residual
correlation of 0.31 and 0.39 for WP and AP, respectively (Table S3,

Table S4, Table S5, and Table S6). With different training and vali-
dation sets, it may not be appropriate to evaluate performances of
GWP between CV1 and CV2 on the same ground in this study.
However, given similar accuracies with the SE model obtained from
CV1 and CV2, comparison between them suggested, but did not
prove, that gains with ME over SE were greater in CV2 than that in
CV1 at WP and AP.

Prediction accuracies for GWP using ME with different genetic
and residual variance structures are summarized in Table 3. Similar to
Table 2, each of the accuracies shown in this table was the average of
prediction accuracies over 25 NAM populations. Detailed results can
be found in Table S23, Table S24, Table S25, Table S26, Table S27,
Table S28, Table S29, Table S30, Table S31, Table S32, Table S33,
Table S34, Table S35, Table S36, Table S37, and Table S38. In CV1
and CV2, SG-UR gave prediction accuracies comparable to or less
than that attained by SG-SR, suggesting that addition of residual co-
variance did not benefit predictions, and may have worsened them. In
contrast, prediction accuracies with UG-SR were greater than that
with SG-SR, suggesting that modeling genetic covariance improved
predictions with the ME model. Finally, UG-UR gave comparable
prediction accuracies to UG-SR, suggesting that adding residual co-
variance had little effect on predictions in the presence of the genetic
covariance.

Marker densities of 1.6, 5, 10, 15, 20, 25, and 30 cM were used
corresponding to different numbers of markers in each training
sample via methods described in the previous section. As expected,
prediction accuracies for GWP with SE and ME models improved
with increasing marker density in the example using the NAM
population B73·CML322 (Figure 2). These improvements tended to
diminish to zero when marker density exceeded a threshold of 10 cM,
suggesting that the density selected based on an interval size of 10 cM

n Table 3 Prediction accuracies with ME GWP based on SG-SR, SG-UR, UG-SR, and UG-UR for traits LL and LW based on 25 NAM
populations

LL LW

Scheme Approach Envi SG-SR SG-URa UG-SRb UG-URc SG-SR SG-URa UG-SRb UG-URc

CV1 WP E1 0.38 0.33 (–0.14) 0.42 (0.10) 0.42 (0.00) 0.40 0.37 (–0.09) 0.46 (0.14) 0.46 (0.00)
E2 0.41 0.36 (–0.12) 0.45 (0.08) 0.44 (–0.02) 0.46 0.42 (–0.08) 0.50 (0.09) 0.49 (–0.01)
E3 0.38 0.32 (–0.16) 0.43 (0.12) 0.42 (–0.02) 0.37 0.33 (–0.11) 0.43 (0.16) 0.43 (0.00)
E4 0.37 0.31 (–0.16) 0.42 (0.13) 0.41 (–0.02) 0.48 0.45 (–0.07) 0.52 (0.08) 0.52 (0.00)
Mean 0.39 0.33 (–0.18) 0.43 (0.10) 0.42 (–0.02) 0.43 0.39 (–0.09) 0.48 (0.12) 0.48 (0.00)

AP E1 0.31 0.30 (–0.03) 0.31 (0.02) 0.31 (0.00) 0.36 0.35 (–0.02) 0.37 (0.04) 0.37 (0.00)
E2 0.32 0.32 (–0.02) 0.33 (0.01) 0.33 (0.00) 0.42 0.41 (–0.01) 0.42 (0.01) 0.43 (0.01)
E3 0.29 0.29 (0.00) 0.30 (0.01) 0.30 (0.00) 0.34 0.33 (–0.02) 0.35 (0.03) 0.35 (0.00)
E4 0.30 0.29 (–0.03) 0.30 (0.00) 0.30 (0.00) 0.42 0.41 (–0.02) 0.43 (0.01) 0.43 (0.00)
Mean 0.31 0.30 (–0.03) 0.31 (0.00) 0.31 (0.00) 0.39 0.38 (–0.03) 0.39 (0.00) 0.40 (0.01)

CV2 WP E1 0.39 0.37 (–0.04) 0.54 (0.39) 0.53 (–0.01) 0.41 0.39 (–0.02) 0.55 (0.36) 0.55 (0.00)
E2 0.41 0.40 (–0.03) 0.56 (0.35) 0.56 (0.00) 0.46 0.45 (–0.02) 0.59 (0.27) 0.59 (0.00)
E3 0.38 0.36 (–0.06) 0.53 (0.38) 0.52 (–0.01) 0.37 0.36 (–0.03) 0.52 (0.40) 0.52 (0.00)
E4 0.38 0.36 (–0.05) 0.54 (0.43) 0.53 (–0.01) 0.48 0.47 (–0.02) 0.61 (0.28) 0.61 (0.00)
Mean 0.39 0.37 (–0.05) 0.54 (0.38) 0.54 (0.00) 0.43 0.42 (–0.02) 0.57 (0.33) 0.57 (0.00)

AP E1 0.32 0.32 (0.00) 0.36 (0.12) 0.36 (0.00) 0.36 0.36 (0.00) 0.40 (0.10) 0.40 (0.00)
E2 0.34 0.34 (0.00) 0.37 (0.10) 0.37 (0.00) 0.43 0.42 (–0.01) 0.46 (0.07) 0.46 (0.00)
E3 0.31 0.31 (0.00) 0.35 (0.12) 0.35 (0.00) 0.35 0.35 (0.00) 0.38 (0.09) 0.38 (0.00)
E4 0.31 0.31 (0.00) 0.35 (0.12) 0.35 (0.00) 0.43 0.43 (0.00) 0.46 (0.07) 0.46 (0.00)
Mean 0.32 0.32 (0.00) 0.36 (0.13) 0.36 (0.00) 0.39 0.39 (0.00) 0.43 (0.10) 0.43 (0.00)

ME, multi-environment; GWP, genome-wide prediction; SG-SR, structured genetic and residual covariance; SG-UR, Structured genetic and unstructured residual
covariance; UG-SR, Unstructured genetic and structured residual covariance; UG-UR, Unstructured genetic and residual covariance; LL, leaf length; LW, leaf width;
NAM, nested association mapping; Envi, environment; WP, within population; AP, across population.
a
In parentheses is the gain in prediction accuracy with SG-UR over SG-SR.

b
In parentheses is the gain in accuracy with UG-SR over SG-SR.

c
In parentheses is the gain in accuracy with UG-UR over UG-SR.
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was sufficient to capture LD between QTL and markers in these bi-
parental segregating populations, similar to reports by Guo et al.
(2012).

DISCUSSION
GWP provides a significant predictive advantage over QP in WP and
AP, with increased gains in WP compared with AP. For almost all
cases in WP, GWP shows significantly greater accuracy than QP in
each of the NAM populations. This conclusion is consistent with the
results from previous studies (Lorenzana and Bernardo 2009; Guo
et al. 2012; Zhao et al. 2012). More interestingly, when training sets
are changed from WP to AP, estimations with GWP are reduced,
similar to previous reports in mice (Legarra et al. 2008) and maize
(Zhao et al. 2012). The loss of accuracy fromWP to AP for GWP may
attribute to the differences of genetic backgrounds between training
and validation populations. The differences may also affect QP and
could reduce prediction accuracy fromWP to AP for QP. However, in
this study, we found a gain in accuracy with AP over WP. This could
be explained by the different genetic basis used for prediction between
GWP and QP. Although GWP relies on genetic relationship derived
from genome-wide markers, QP uses a small subset of markers and
focuses more on LD between these markers and QTL. As a result, QP
may be less affected by different genetic backgrounds between training
and validation sets than GWP. The potential loss caused by the dif-
ferent genetic backgrounds in QP could be compensated by the gain
obtained from AP by improved QTL mapping power by utilizing
multiple populations (Yi and Xu 2002; Blanc et al. 2006; Buckler
et al. 2009; Tian et al. 2011). However, even with increased prediction

accuracy with AP, QP still cannot achieve the high prediction accu-
racies attained by GWP with WP. This finding suggests, in practical
breeding, to achieve high prediction accuracies, even with a high cost,
it is still worthwhile to phenotype a proportion of lines from a breeding
population to predict performances of genotypes generated from the
subsequent intercross or backcross generations (Bernardo and Yu
2007).

The use of across-environment information improves prediction
with GWP. Two main results were obtained from this study. First,
modeling covariances between correlated environments with the ME
model gives better predictions compared with SE in both the CV1 and
CV2 schemes. At an average genetic correlation of 0.77, gains of 10%
in CV1 and 37% in CV2 were observed for WP, greater than that of
3% in CV1 and 11.5% in CV2 for AP at a correlation of 0.87.
Although the superiority of ME over SE in CV2 can be explained by
borrowing information from the same lines across environments
(Burgueño et al. 2012), gains in CV1 may likely attribute to more
accurate estimates of environment-specific marker effects by utilizing
genetic correlation. Gains in CV1 and CV2 also were reported based
on a simulation study in animal breeding with the multitrait model,
similar to the ME model tested in this study. This gave increases in
accuracies of 0.03 to 0.14 over the single-trait prediction model that is
similar to the SE model at genetic correlation levels of 0.25 and 0.75
(Calus and Veerkamp 2011). Furthermore, we found that the gain in
CV2 with ME over SE is greater than that in CV1. This conclusion is
also consistent with previously reported results (Calus and Veerkamp
2011; Burgueño et al. 2012). Second, by modeling and comparing
different genetic and residual covariance structures, we found that
gains with ME over SE are attributed to genetic covariance in CV1
and CV2, with little or negative contribution from the residual co-
variance. This finding indicates that accurately estimating the genetic
covariance structure between correlated environments is critical to
improve prediction accuracy with ME models. Although these results
were obtained with relatively simple covariance structures from only
four environments, more studies need to be conducted to confirm if
these gains reflect a general superiority of the ME model with a large
number of environments.

Impacts of marker density also were evaluated for GWP with the
SE and ME models. Overall, our conclusions were consistent with
previous work from within-environment predictions (Lorenzana and
Bernardo 2009; Heffner et al. 2011; Guo et al. 2012; Zhao et al. 2012).
Results indicate that a marker density of 10 cM, approximately cor-
responding to 150 markers, should be used when designing a predic-
tive breeding strategy with GWP in a biparental breeding population.
Although this result is consistent with findings in the previous studies
in plant breeding (Lorenzana and Bernardo 2009; Guo et al. 2012), it
has to be kept in mind that conclusions were drawn based on the
typical biparental segregating populations with extensive LD caused
by limited recombination. In the context of animal and human GWP
where the populations studied are generally composed of complicated
pedigreed individuals, a greater marker density is required to capture
the small LD caused by accumulated historical recombinations. It was
reported that at least 80,000 SNPs in human (Makowsky et al. 2011)
and 5000 to 7500 SNPs in animals (Vazquez et al. 2010) are needed to
reach a high prediction accuracy with GWP. Therefore, marker den-
sities may be determined mainly by LD structure in different types of
breeding populations. Also the goals and resources of a breeding pro-
ject may affect decisions.

In practical plant breeding, GWP needs to be integrated into the
appropriate genome-wide selection schemes where several cycles of
intercrossing may be required to increase genetic gains (Bernardo and

Figure 2 Prediction accuracy in environment E1 for the trait LL using
SE and ME models in GWP with different levels of marker densities.
The training sample proportion is 0.6 in NAM population
B73·CML322. (A) CV1; (B) CV2.
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Yu 2007; Jannink et al. 2010). The CV1 scheme discussed in this study
will mainly serve this purpose, and BVs of newly generated genotypes
will be predicted and used for selection. Though there is no need for
QTL identification in GWP, this does not suggest that the QTL ideo-
type construction strategy deployed in marker-assisted recurrent se-
lection scheme cannot be implemented via GWP (Nakaya and Isobe
2012). At its simplest, the construction of QTL ideotypes may be
accounted for by BVs obtained from GWP. For example, these BVs
can be used in the QTL introgression process to efficiently pyramid 3
to 30 QTL as demonstrated by Bernardo (2009). In contrast, the CV2
scheme investigated in the current paper may be used to predict
missing phenotypes caused by random missingness for a same set
of genotypes evaluated across multiple environments. Overall, when
the focus of a complex trait study is migrated from traditional line
performances to allelic effect evaluation (Heffner et al. 2011), predic-
tion of BVs with GWP may be further improved in CV1 and CV2
schemes. To maximize genetic gains in varied breeding programs per
unit time and cost, it will be critical to design different genome-wide
selection strategies to fully take advantage of the high accuracy of BVs
at key stages of marker-assisted breeding.
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