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Abstract: During brain development, the genome must be repeatedly reconfigured in order to
facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this
process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment
may require a lexicon of remodelers with different specificities and activities. Here, we focus on the
nucleosome remodeling and deacetylase (NuRD) complex. We review NuRD biochemistry, genetics,
and functions in neural progenitors and neurons.

Keywords: NuRD; neurodevelopment; neurogenesis; gliogenesis; intellectual disability; autism
spectrum disorder; chromatin remodeling

1. Introduction

Neurodevelopmental disorders (NDDs) are a highly heterogeneous and common
group of conditions. NDDs include a number of “spectrum” conditions that can range
widely in their severity, such as autism, attention-deficit/hyperactivity disorder, intel-
lectual disability, epilepsy, and developmental delay. Relatedly, NDD etiology is highly
complex. Genetics play a major role in NDDs, with hundreds of genes linked to dis-
ease. Moreover, the mutational landscape of NDDs is additionally complicated, with de
novo mutations, structural rearrangements, and risk alleles all making important con-
tributions [1–4]. Adding further complexity, environmental factors such as fetal alcohol
exposure and gestational maternal immune activation are also causative.

To understand the mechanisms that drive NDD pathogenesis, we must first un-
derstand neurodevelopment. How is the production of different cell types and tissues
programmed? Nowhere is this question more challenging to answer than in the developing
brain, where hundreds of different neural subtypes must be produced, each of which must
be programmed to ‘wire and fire’ with exquisite precision. Since cellular diversification
must be achieved via the configuration and reconfiguration of an invariant genome, the
role of epigenetic regulation in neurodevelopment has been the subject of intense inter-
est. Indeed, chromatin remodelers—the genes responsible for epigenome dynamics—are
prominently associated with NDDs. Deciphering how disparate chromatin remodeling
functions contribute to neurodevelopment and NDDs remains an important unsolved prob-
lem. Here, we focus on the contribution of the nucleosome remodeling and deacetylase
(NuRD) complex to brain development and NDD etiology.

2. NuRD Complexes

The NuRD complex was first characterized by several groups more than 20 years
ago [5–7]. Among chromatin remodeling complexes, NuRD uniquely possesses histone
deacetylase (HDAC) activity in addition to nucleosome remodeling activity. These key
enzymatic activities are provided by (class I) histone deacetylases, typically HDAC1 and
HDAC2, as well as Chromodomain Helicase DNA-binding (CHD) proteins, namely CHD3
(Mi-2α), CHD4 (Mi-2β), and CHD5. CHD proteins are members of the SWI/SNF (switching
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defective/sucrose non-fermenting) superfamily of chromatin remodelers, and contain SNF2
(sucrose nonfermenting 2)-like ATP-dependent helicase domains that mobilize nucleosomes
(Figure 1).

The NuRD complex contains a number of additional subunits, each of which is en-
coded by multiple paralogous genes (Figure 2a). Recent research from multiple groups sug-
gests that a metastasis-associated protein (MTA) 1/2/3 dimer recruits four Retinoblastoma-
binding protein 4 (RBBP4; RbAp48) and/or RBBP7 (RbAp46) proteins, along with two
HDAC1/2 subunits to form a histone deacetylase module [8–11] (Figure 2b). Methyl-CpG-
binding domain protein 2/3 (MBD2/3) binds across the MTA1 dimer interface and recruits
a single GATA zinc finger domain containing 2A (GATAD2A; p66α) or GATAD2B (p66β)
protein. GATAD2 proteins in turn interact with a single CHD3, CHD4, or CHD5 subunit.
As CHD, GATAD2, and MBD subunits are thought to be monomeric within NuRD, the
recruitment of each of these proteins appears to be mutually exclusive with their respective
paralogs [12,13]. The multiplicity of paralogous NuRD genes would appear to permit a
variety of subunit configurations, which may explain in part how NuRD functions can be
fine-tuned to regulate disparate biological processes (discussed further below).

Many NuRD subunits possess protein domains that recognize specific chromatin
motifs [14]. For instance, CHD3/4/5 each contain two sequential plant homeodomains
(PHDs) that bind histone H3 with particular affinity for methyl (H3K9me3) and acetyl
(H3K9ac) modifications [15–20]. These modifications are enriched at gene regulatory
elements—both active and inactive. Conversely, PHD/nucleosome interactions are inhib-
ited by H3K4 trimethylation, which is associated with active promoters. Research suggests
that in CHD4, the tandem PHD fingers engage concomitantly with both histone H3 tails
within a single nucleosome [17–19,21]. While chromodomains often bind to modified
histone marks, Drosophila Mi-2 chromodomains did not exhibit such a preference [22].
The tandem chromodomains within CHD3/4/5 may instead be important for reinforcing
ATPase/nucleosome interactions [23]. GATAD2A/B and RBBP4/7 subunits have also been
shown to bind histones strongly in vitro [24]. GATAD2A/B and MTA1/2/3 additionally
contain a single GATA-type zinc finger domain, although their affinity for DNA binding
has not been well-characterized [25]. MBD3 possesses a methyl-CpG-binding domain
(MBD). However, unlike other MBD proteins, MBD3 does not exhibit a preference for
5-methylcytosine in vitro [26], but instead appears to prefer 5-hydroxymethylcytosine [27].
Accordingly, both NuRD and MBD3 recruitment to the genome partially depends on DNA
methylation in embryonic stem cells. On the other hand, Drosophila NuRD complexes
appear to function similarly to their vertebrate counterparts despite the near absence of
DNA methylation in flies. While this large complement of chromatin recognition modules
can potentially endow NuRD with a complex valency for different chromatin states, a
constellation of transcription factors have also been shown to play a role in recruiting
NuRD to its targets (see below).

Genomic technologies have provided a definitive view of how chromatin states relate
to NuRD occupancy. As with other chromatin remodeling complexes, NuRD is enriched at
many transcriptional start sites and accessible regulatory elements [28,29]. However, NuRD
complexes are also functionally associated with gene repression. Indeed, at the cell biologi-
cal level, NuRD proteins are often enriched within pericentromeric heterochromatin [30,31].
Moreover, there is an intimate linkage between NuRD and Polycomb repressor complexes
(PRCs) at subsets of genomic locations [28,32]. Accordingly, biochemical and functional
interactions between these complexes have been repeatedly observed in neural cells (see
below) [33–36].
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Figure 1. NuRD and nucleosome remodeling. (A) The ATPase/Helicase domain of Chd4 consists of two RecA-like lobes 
surrounding a DNA binding cleft and ATPase active site. This enzymatic domain uses a ‘twist defect’ mechanism to break 
histone-DNA contacts, resulting in a ~5 bp DNA translocation relative to the nucleosome [21,37]. DNA translocation reg-
ulates nucleosome spacing, thereby affecting chromatin access. Nucleosome sliding can lead to compaction or decompac-
tion of the local chromatin environment, which can expose or occlude regulatory elements to alter the expression of target 
genes. During cerebellar development, NuRD suppresses the accessibility of regulatory elements, and decommissions a 
subset of promoters [29,38]. (B) Nucleosome remodeling can also facilitate the deposition of new histones and histone 
variants [39]. For a comprehensive view of nucleosome remodeler mechanisms, see [40]. 

 
Figure 2. The NuRD complex. (A) Six core subunits of the NuRD complex have been identified, with each subunit being 
encoded by a homologous gene family. These are the chromodomain-helicase DNA-binding proteins 
(CHD3/CHD4/CHD5), the GATA zinc finger domain proteins (GATAD2B/GATAD2A), the histone deacetylases 
(HDAC1/HDAC2), the methyl-domain binding proteins (MBD2/MBD3), the metastasis-associated proteins 
(MTA1/MTA2/MTA3), and the retinoblastoma binding proteins (RBBP4/RBBP7). CHD and HDAC subunits confer both 
ATP-dependent nucleosome remodeling activity and histone deacetylase activity, respectively. Not all of the subunits are 
exclusive to the NuRD complex. For instance, RBBP4/7 subunits are also found in Polycomb complexes, as well as the CAF 
histone chaperone complex. (B) Proposed stoichiometry of the complex (see text for details).  

Figure 1. NuRD and nucleosome remodeling. (A) The ATPase/Helicase domain of Chd4 consists of two RecA-like lobes
surrounding a DNA binding cleft and ATPase active site. This enzymatic domain uses a ‘twist defect’ mechanism to break
histone-DNA contacts, resulting in a ~5 bp DNA translocation relative to the nucleosome [21,37]. DNA translocation regu-
lates nucleosome spacing, thereby affecting chromatin access. Nucleosome sliding can lead to compaction or decompaction
of the local chromatin environment, which can expose or occlude regulatory elements to alter the expression of target genes.
During cerebellar development, NuRD suppresses the accessibility of regulatory elements, and decommissions a subset of
promoters [29,38]. (B) Nucleosome remodeling can also facilitate the deposition of new histones and histone variants [39].
For a comprehensive view of nucleosome remodeler mechanisms, see [40].
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Figure 2. The NuRD complex. (A) Six core subunits of the NuRD complex have been identified, with each subunit being
encoded by a homologous gene family. These are the chromodomain-helicase DNA-binding proteins (CHD3/CHD4/CHD5),
the GATA zinc finger domain proteins (GATAD2B/GATAD2A), the histone deacetylases (HDAC1/HDAC2), the methyl-
domain binding proteins (MBD2/MBD3), the metastasis-associated proteins (MTA1/MTA2/MTA3), and the retinoblastoma
binding proteins (RBBP4/RBBP7). CHD and HDAC subunits confer both ATP-dependent nucleosome remodeling activity
and histone deacetylase activity, respectively. Not all of the subunits are exclusive to the NuRD complex. For instance,
RBBP4/7 subunits are also found in Polycomb complexes, as well as the CAF histone chaperone complex. (B) Proposed
stoichiometry of the complex (see text for details).
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3. Neurodevelopment

In humans, brain development takes many years, and includes many distinct phases
and processes. Beginning at gastrulation, ectodermal cells are converted into neuroepithe-
lial progenitors via neural induction. Neuroepithelial cells form the neural plate, and the
neural tube thereafter. These progenitors concomitantly take on positional information
along the rostral-caudal and dorsal-ventral axes, and thereby become specialized to pro-
duce lineages that subsequently generate and populate specific brain regions and circuits.
This process begins at neurogenesis. Neuroepithelial cells differentiate into neural progeni-
tor cells, which self-renew and produce neuronal daughter cells. Next, neural progenitors
typically enter a gliogenic phase, where they produce astrocytes or oligodendrocytes. Neu-
ronal and glial daughter cells collaborate to generate specific tissue architectures and circuit
structures, with neurons responding to environmental cues to migrate, and to pathfind
their axons and dendrites. In humans, the histogenesis of the brain is largely complete
by the end of the second trimester. Thereafter, neural progenitor cells become depleted in
most regions. Neurons are permanently postmitotic, and glial cells are quiescent. Cellular
proliferation therefore wanes in most regions of the perinatal brain. However, neurode-
velopment continues at a furious pace postnatally. Waves of synaptogenesis, pruning,
and myelination refine circuits. Waves of apoptosis delete neurons with inappropriate
connections. Infants learn at an astonishing rate, as the brain goes through critical periods
for sensory experience, language, and motor tasks. A comprehensive review of brain de-
velopment goes well beyond the scope of this review, but the reader is directed to excellent
general reviews on brain development [41–44], as well as to reviews focused on specific
brain regions that we cite in subsequent sections.

With ~80 billion neurons, ~80 billion glial cells [45], trillions of synapses, and a myriad
of distinct neuroanatomical structures, it seems impossible that the development of some-
thing as complex as the human brain could ever be robust. Indeed, neurodevelopmental
disorders can be traced to vulnerabilities in virtually every process sketched out in the
above paragraph. Moreover, the central nervous system depends on a variety of extrinsic
inputs and supports. Research suggests that neurodevelopmental disorders can also be
traced to dysfunction originating outside of the central nervous system, including from
the peripheral nervous system, vasculature, and maternal insults [46–49]. Importantly,
evidence suggests that numerous mechanisms contribute to neurodevelopmental disorders,
and that brain dysfunction does not universally map to a single neuroanatomical structure
or circuit.

4. NuRD Complexes and Neurodevelopmental Disorders

Mutations in chromatin remodelers are prominently linked to intellectual disability
(ID) and autism spectrum disorder (ASD) [50–52]. ID and ASD are related conditions, both
in terms of etiology and phenotype, and they are frequently co-diagnosed [53,54]. The
current treatment and management of these disorders is limited and often requires lifelong
attention. For these reasons, ID and ASD represent an increasingly significant human and
economic burden.

IDs are characterized by a generalized impairment of mental function and deficits in
social and practical adaptive behaviors, which undermine the independence of afflicted
individuals. Common examples include Down syndrome and Fragile X syndrome, but
also conditions with environmental etiology such as fetal alcohol syndrome. The estimated
prevalence of ID is approximately 1% across the population [55]. ASD affects approximately
one in every ~70 children, and as many as 1 in 42 boys [56,57], and has been increasing
in prevalence. Prototypical symptoms include deficits in language and social behavior,
learning disability, and repetitive behaviors.

Mutations in NuRD complex genes are associated with both ID and ASD (Table 1).
CHD3 mutations lead to Snijders Blok-Campeau syndrome. CHD4 mutations lead to
Sifrim-Hitz-Weiss syndrome, while GATAD2B mutations lead to GATAD2B-associated
neurodevelopmental disorder. Each disorder is rare, with only ~30 to 50 individuals
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diagnosed to date in each case. These syndromes are designated as “NuRDopathies” due
to their overall similarity (reviewed in [58,59]). They are also designated as overgrowth
and intellectual disability (OGID) syndromes, as afflicted individuals typically present
with ID and macrocephaly [60–65]. The neurological symptoms and brain malformations
associated with NuRDopathies overlap considerably, whereas the reported phenotypes in
other organ systems are more divergent [59].

Table 1. NuRD complex genes and neurodevelopmental disorders. Depicted genes are confirmed to
interact with NuRD for their neurodevelopmental functions.

Gene Mutations Neurodevelopmental Disorders References

CHD3 de novo (LOF) ASD, ID, speech delay
(Snijders Blok-Campeau syndrome) [61,66]

CHD4 de novo (LOF) ID, macrocephaly, speech delay
(Sifrim-Hitz-Weiss syndrome) [60,64]

GATAD2B de novo (LOF) ID, macrocephaly, epilepsy, speech delay
(GATAD2B-Associated Neurodevelopmental Disorder) [62,65,67]

MBD3 de novo ASD [68]
CASZ1 de novo ASD, ID [2,69]

SATB2 de novo ASD, ID, epilepsy, developmental delay
(SATB2-associated syndrome, Glass syndrome) [70,71]

De novo mutations in CHD3 and CHD4 are clustered within the SNF2 ATPase
domains and appear to structurally or functionally undermine their enzymatic func-
tions [21,61,63,64]. Structural models of NuRD indicate that GATAD2B is critical for
tethering CHD proteins to the NuRD complex [72,73], and many GATAD2B-associated
mutations disrupt or truncate the CR1 or CR2 domains that are thought to, respectively,
bind MBD3 or CHD proteins [67]. As CHD3/4 and GATAD2B mutations typically under-
mine the chromatin remodeling module within the resultant NuRD complex, this suggests
that developmental defects might be driven by the persistence of functionally abrogated
complexes that might compete with wild-type NuRD for genomic occupancy.

De novo mutations in MBD3 have additionally been observed in ASD patients, al-
though it remains unclear whether these mutations are causative [68]. Interestingly, cerebral
overgrowth is observed in many ASD patients [74–76], raising the possibility that the NuRD
complex might regulate processes that are central to ASD etiology.

5. NuRD Complexes and Neural Progenitor Proliferation

NuRD function is essential for the development of the neocortex (cerebral cortex).
Conditional deletion of either Mbd3 or Chd4 during nervous system development leads
to perinatal lethality [13,77]. In both of these mutant models, neural progenitors under-
proliferate, leading to neocortical hypoplasia [13,77], but the exact mechanism responsible
remains to be clarified. In cell lines, CHD4 has been shown to participate in the DNA
damage response [78–80], and CHD4 deficiency has been repeatedly shown to trigger
to ATM-dependent intra-S-phase checkpoint activation [31,79,80]. The reported linkages
between NuRD, heterochromatin structure, DNA damage response, and mitotic check-
points could potentially explain the cortical hypoplasia observed in conditional mutant
mice. Accordingly, elevated cell death was observed in the Chd4 conditional knockout
neocortex [13]. However, it remains much more challenging to explain why human clini-
cal mutations in NuRD genes are instead associated with neocortical overgrowth. Brain
overgrowth typically arises due to progenitor pool expansion, implying misregulation of
self-renewal vs. differentiation. In mice, elevated neuronal differentiation was observed
after knockdown or knockout of Mbd3, suggesting that gene misregulation might underlie
progenitor depletion [77,81]. The contrasting phenotypes associated with mouse versus
human mutations might be related to differences in genetics (conditional knockout vs.
haploinsufficiency/dominant negative), or perhaps reflect evolutionary differences. In the
future, it will be important to understand the mechanistic basis for these opposite effects.
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6. NuRD Complexes and Developmental Timing

Brain function is predicated on the generation of a huge array of specialized neural
cell types with different electrophysiology, morphology, and gene expression profiles.
To generate neurons and glia in the correct sequences, progenitors must progressively
change their developmental potential. Different phases of developmental potential are
conceptualized as ‘competence states’, within which a progenitor has the potential to
generate given cell-types in response to cell-intrinsic or -extrinsic cues [82,83]. Importantly,
transitions in progenitor competence are well-known to be regulated by a variety of
epigenetic mechanisms [84–86].

In vertebrates, the most thoroughly studied competence transition is the switch from
neurogenesis to gliogenesis. Throughout the central nervous system, progenitors first
generate neurons—often in stereotyped sequences. Most progenitors then irreversibly
switch their output to produce glial cells before ceasing division [87]. During neocortical
development (Figure 3), leading-edge single-cell approaches have provided an unparalleled
insight into the molecular events that underlie competence transitions in vivo. These
techniques have demonstrated that during the transition from neurogenesis to gliogenesis,
progenitors undergo dramatic shifts in gene expression [76,88–90], which are accompanied
by extensive chromatin remodeling [91,92].

During neocortical development, gliogenesis is timed to perinatal and postnatal stages
of mouse development. Heterochromatic determinants, including DNA methylation and
Polycomb, play a key role in this process [93,94]. Notably, Tsuboi et al. demonstrated
that the NuRD complex cooperates with Polycomb to prevent premature neocortical glio-
genesis [36]. Over developmental time, Tsuboi et al. showed that Mbd3 was increasingly
recruited to the locus of Neurog1 (Neurogenin, Ngn1). Neurog1 encodes a basic helix–loop–
helix transcription factor that promotes neuronal determination [95], although its role in
the neocortex is nuanced [96]. Mbd3 was in turn required for the timed recruitment of
Polycomb to Neurog1 at the onset of gliogenesis, which is concomitant with promoter
deacetylation [93]. Accordingly, conditional deletion of Mbd3 from neocortical progenitors
led to prolonged and upregulated expression of the basic helix–loop–helix transcription
factors Nhlh1, Nhlh2, Neurod1, and Neurod2, which are induced by Neurogenins and directly
repressed by Mbd3 itself [77,97].

Interestingly, whereas Tsuboi et al. found that Mbd3 conditional ablation led to
prolonged neurogenesis during the gliogenic developmental window, Sparmann et al.
found that Chd4 knockdown led to premature gliogenesis [35]. Notably, Sparmann et al.
discovered that Chd4 protein interacted with the Polycomb subunit Ezh2 in neocortical
progenitors. While Rbbp4/7 were co-purified in the Chd4/Ezh2 complex, other NuRD
proteins were not observed. Moreover, RNAi knockdown of Mbd3 failed to phenocopy
Chd4 knockdown. Sparmann et al. concluded that Chd4 likely functioned independently
of NuRD to suppress premature gliogenesis. Interestingly, a novel complex called ChAHP
(CHD4, ADNP, HP1) has recently been described [98], which includes ADNP, a home-
odomain transcription factor with prominent linkage to ASD [99]. These observations raise
the possibility that CHD4 might regulate neurodevelopment independently of NuRD. On
the other hand, Knock et al. found that in Mbd3 conditional mutants, a subset of glial
genes was prematurely upregulated. Taken together, these studies suggest that NuRD acts
to reinforce the temporal competence state of progenitors, suppressing both premature
gliogenesis during early phases of neocortical development and suppressing aberrant
neurogenesis during late stages.

The above studies demonstrate considerable functional integration between NuRD
and polycomb proteins. Accordingly, neocortical Polycomb mutants exhibit accelerated
temporal development and premature gliogenesis [90,100]. Moreover, de novo mutations
in human polycomb genes have been linked to OGID syndromes and ASD [101–103].
Likewise, conditional Hdac1 and Hdac2 double mutants resemble Chd4 or Mbd3 condi-
tional knockout phenotypes in many respects, including reductions in brain size, reduced
progenitor proliferation, and impaired neuronal migration [104]. Mechanistically, these
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linkages can be explained by the demonstrated ability of NuRD-associated HDACs to
recruit polycomb to target genes [32]. However, as both polycomb and HDAC can function
independently of NuRD, it remains to be formally determined whether these chromation
modifiers regulate neurodevelopment through common or divergent pathways.

Additional support linking NuRD to developmental timing has been uncovered in the
developing retina. Like the neocortex, the retina possesses multipotent neural progenitors
that undergo competence transitions to generate neurons and glia with a stereotyped birth
order [105,106]. To understand the mechanisms underlying developmental timing in the
retina, we examined a zinc finger transcription factor called Casz1. We previously showed
that murine Casz1 is dynamically expressed during retinal development and alters the
output of retinal progenitors [107]. To understand how Casz1 functions mechanistically,
we and others performed proteomics and found that Casz1 interacts with the NuRD
complex [34,108]. In multipotent retinal progenitors, the interaction between Casz1 and
NuRD regulated the production of neurons versus glia. When either Casz1 or the NuRD
complex was abrogated, the production of earlier-born rod photoreceptors was decreased,
while later-born Müller glia were concomitantly increased [34]. This effect required HDAC
activity and was phenocopied by overexpressing a fragment of GATAD2A that functions as
a dominant negative to block the association of Chd4 protein with NuRD [72]. Suppression
of gliogenesis was also phenocopied by Polycomb loss-of-function. Although we did not
formally demonstrate that NuRD controls Polycomb recruitment, Polycomb proteins were
observed to associate with Casz1 [33,34], suggesting a physical linkage between these
protein complexes. We propose that Casz1 suppresses gliogenesis by recruiting the NuRD
complex to target genes, leading to histone deacetylation and Polycomb occupancy. An
important future aspect of this work should examine the genomic changes that underlie
these effects.

In the retina, interactions between NuRD and temporal transcription factors such as
Casz1 may additionally explain how the NuRD complex can be redeployed at different
developmental stages to control fate decisions. Casz1 is the vertebrate orthologue of the
Drosophila temporal transcription factor castor. In Drosophila ventral nerve cord neuroblasts,
castor sits downstream of a cascade of sequentially expressed temporal transcription factors
including the zinc finger transcription factor hunchback [82]. The vertebrate orthologue of
hunchback is Ikzf1 (Ikaros), which analogously acts upstream of Casz1 to regulate early reti-
nal competence [109], suggesting that the fly temporal cascade is at least partly conserved in
vertebrate neural lineages. Interestingly, as with Casz1, Ikzf1 is well known to interact with
NuRD [110–113]. Indeed, Drosophila Mi-2 was first purified from a complex that included
hunchback and Polycomb proteins [114]. During retinal development, NuRD might first
be recruited to Ikzf1 target genes, and later shifted to Casz1 targets to orchestrate temporal
development. CASZ1 has recently been linked to ASD [2], and so it will be important to
determine whether it regulates neurodevelopment elsewhere in the brain.
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Figure 3. Development of the murine neocortex. At E10, neuroepithelial cells (white) in the ventricular zone (VZ) prolif-
erate to expand the progenitor pool. By E12, neuroepithelial progenitors differentiate into radial glial cells (light blue). 
Radial glia begin to undergo self-renewing asymmetric divisions, producing neuronal precursors that contribute to the 
preplate (PP; dark brown). By E14, the preplate has split into the marginal zone (MZ) and subplate (SP). Subsequent waves 
of neurons migrate radially along basal processes of radial glia, and take up positions in the cortical plate (CP), settling in 
an inside out fashion: deep layers (yellow) are generated first and upper layers (light brown) begin to be generated later. 
By E14, some radial glial cells give rise to intermediate or basal progenitor cells, which in turn, are thought to divide in 
the subventricular zone (SVZ) to give rise to pairs of daughter neurons (shown in dark blue). Radial glial cells transition 
from generating neurons to generating glial cells at around E16 (green). Gliogenesis, layer maturation, axonogenesis, den-
dritogenesis, and circuit refinement continues to unfold postnatally, ultimately yielding the mature six-layered neocortex. 
IFL: inner fiber layer, SEZ: subependymal zone. I–VI: neural layer I–IV. 
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Figure 3. Development of the murine neocortex. At E10, neuroepithelial cells (white) in the ventricular zone (VZ) proliferate
to expand the progenitor pool. By E12, neuroepithelial progenitors differentiate into radial glial cells (light blue). Radial glia
begin to undergo self-renewing asymmetric divisions, producing neuronal precursors that contribute to the preplate (PP;
dark brown). By E14, the preplate has split into the marginal zone (MZ) and subplate (SP). Subsequent waves of neurons
migrate radially along basal processes of radial glia, and take up positions in the cortical plate (CP), settling in an inside out
fashion: deep layers (yellow) are generated first and upper layers (light brown) begin to be generated later. By E14, some
radial glial cells give rise to intermediate or basal progenitor cells, which in turn, are thought to divide in the subventricular
zone (SVZ) to give rise to pairs of daughter neurons (shown in dark blue). Radial glial cells transition from generating
neurons to generating glial cells at around E16 (green). Gliogenesis, layer maturation, axonogenesis, dendritogenesis, and
circuit refinement continues to unfold postnatally, ultimately yielding the mature six-layered neocortex. IFL: inner fiber
layer, SEZ: subependymal zone. I–VI: neural layer I–IV.

7. NuRD Complexes and Neurogenesis

Precocious gliogenesis was not observed in Mbd3 conditional mutant neocortices.
However, during early phases of neocortical development, the Gotoh lab observed that
Polycomb is required to maintain the birth order of neocortical neurons [115]. Similarly,
Knock et al. reported that the identities of neocortical neuronal subtypes became blurred in
Mbd3 conditional mutants, with markers of early-born and late-born neurons inappropri-
ately coexpressed [77]. Finally, the Tole laboratory demonstrated that the NuRD complex
interacts with the homeodomain transcription factor Lhx2 [116], which is a key ‘selector
gene’ required for neocortical progenitor identity [117]. Muralidharan et al. showed that
Lhx2 and Rbbp4 bound and suppressed Sox11, which encodes a transcription factor that
contributes to the identity of early-born neocortical neurons [118]. Together, these studies
suggest that the NuRD complex may additionally cooperate with Polycomb during early
phases of neocortical development.

In addition to Casz1, and Lhx2, the NuRD complex has also been shown to physically
interact with a number of additional transcription factors that are known to regulate
neurogenesis and neuronal cell fate. These include transcription factors expressed in
progenitors (Ikzf1/2 [119], Fezf2 [120–124], Myc [125,126], Sall1 [127,128], Sox2 [129–131]),
early-born neurons (Bcl11a/b [132–135], Fezf2, Zeb2 [136,137]), and late-born neurons
(Satb1/2 [138–140]). Importantly, formal support demonstrating that these transcription
factors depend on NuRD to regulate neurodevelopment is largely lacking. Only Casz1,
Lhx2, and Satb2 have thus far been shown to be necessary for NuRD recruitment, or to
require NuRD for neurodevelopmental functions [10,116,139].

Taken together, studies in the neocortex and retina suggest that neural progenitor
cells utilize the NuRD complex to reinforce multiple temporal competence states, ensur-
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ing that cell production is properly scheduled during development. NuRD appears to
be redeployed at multiple stages to repress both past and future gene expression pro-
grams (Figure 4). The repeated use of Polycomb to repress different stage-inappropriate
gene expression programs via heterochromatic histone modifications might explain why
nucleosome remodeling would be needed to facilitate progenitor competence transitions.
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Figure 4. Effect of NuRD deficiency on neural lineages. Progenitors give rise to diverse neural
populations in a temporally regulated manner. Selected examples illustrate how deficiencies in NuRD
complex subunits impact on temporal development, potentially contributing to neurodevelopmental
disorders. Red scale bars or cells indicate the genetically manipulated populations. (A) Wild-type.
(B) In the Chd4 and Mbd3 conditional knockout neocortex, progenitors underproliferate, leading
to reductions in upper layer neurons [13,77]. (C) Chd4 RNAi has also been linked to premature
gliogenesis in neocortical cells, although this effect may be independent of NuRD [35]. (D) Casz1
conditional mutant retinal progenitors overproduce glia at the expense of rod photoreceptors in a
NuRD-dependent fashion [34]. (E) In neocortical cells, Chd3/5 RNAi disrupts neuronal migration at
distinct phases [13]. Asterisk indicates lethality prior to postnatal gliogenesis.
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8. NuRD Functions in Differentiating and Mature Neurons

Understanding the roles of the NuRD complex during neuronal differentiation has
been challenging, in part due to the perinatal lethality of NuRD conditional knockout mice.
To circumvent these issues, Nitarska et al. used RNAi and transfection-based conditional
genetics to abrogate Chd3/4/5 in a mosaic fashion, permitting functional comparison of
each NuRD complex [13]. Nitarska et al. showed that while the Chd4/NuRD complex
was required to sustain progenitor proliferation, Chd3 and Chd5 acted at subsequent steps
of neuronal differentiation and migration. While NuRD complexes are often assumed
to be ubiquitously expressed, Nitarska et al. found that Chd subunits are dynamically
expressed during neocortical development, with Chd4 being most prominently expressed
in progenitors, and Chd3 and Chd5 upregulating in differentiating neurons. Moreover,
Chd3/4/5 were differentially recruited to target promoters, and this recruitment varied
over time. Finally, abrogation of Chd3 or Chd5 could not be rescued by the complementary
overexpression of alternative Chd proteins. This hints that Chd proteins exist in unique
NuRD complexes with non-redundant functions, in agreement with the finding that Chd
proteins are monomeric within NuRD. It also suggests that NuRD complexes can vary their
functions depending on subunit composition.

While the Nitarska et al. study supports the notion that Chd4 mainly contributes to
progenitor functions in the neocortex, a prominent role for Chd4 in differentiated cerebellar
granule neurons has been demonstrated by the Bonni lab. As with the neocortex, the
differentiation of cerebellar granule cells is accompanied by extensive chromatin remodel-
ing [141]. In a series of landmark papers, NuRD was shown to be required for the plasticity
of granule cells. ‘Neuronal plasticity’ refers to stable changes in the electrophysiological
properties of neurons that are triggered by specific types of prior input. Plastic phenomena
such as long-term potentiation and depression are thought to be key mechanisms that
underpin learning and memory. Over the short-term, plasticity is established by signaling
events that feedback to modify neurotransmission, but long-term maintenance of plasticity
requires changes in gene expression [142], which are regulated in part by ‘immediate-early’
genes, including Bdnf, and the Fos and Jun families [143] (see below).

In the cerebellum, Chd4 is prominently expressed in differentiating granule cells.
The conditional deletion of Chd4 in postnatal granule cells led to defects in granule cell
connectivity and electrophysiology [29], and thereby to behavioral deficits [39]. Yang et al.
performed Chd4 ChIP-seq and found that Chd4 associated with the transcriptional start
sites of nearly 10,000 genes. In conditional knockouts, Yamada et al. and Yang et al. found
that Chd4 was required to suppress promoter accessibility for a host of genes involved
in synaptogenesis, as well as for immediate early genes, including Fos, Jun, and Arc
members [29,39]. Genome-wide alterations in promoter accessibility were relatively subtle
but altered promoter remodeling led to a more marked increase in the accessibility of a
subset of genes (~200), correlating with increases in the active chromatin marks H3K9/14ac,
H3K27ac, and H3K4me3, and transcriptional activation. Yamada et al. recapitulated these
findings on a subset of genes via RNAi targeting Gatad2a and Hdac1, confirming that Chd4
functions via NuRD.

Intriguingly, Yang et al. also found a requirement for Chd4 to regulate variant histone
deposition at target gene promoters. Whereas the expression of canonical histones is re-
stricted to S-phase, variant histones such as H2AX, H2AZ, and H3.3 can be transcribed
throughout the cell cycle [144]. Since neurons are permanently postmitotic, variant his-
tones consequently build up over time—particularly at sites with ongoing nucleosome
remodeling [145]. Yang et al. performed ChIP-seq for the variant histone H2AZ and found
that Chd4 was required for its deposition at the transcriptional start sites of immediate early
genes. In the absence of Chd4, a lack of H2AZ deposition abrogated the repression of these
genes, leading to elevated immediate early gene expression in the absence of neuronal
activity [39]. Consequently, neurons exhibited defects in neurite morphology and synapse
number, leading to exaggerated activity levels during motor tasks, and the impairment of
motor learning.
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Interestingly, in the neocortex, immediate early genes are similarly misregulated in
the absence of Satb1, leading to defects in the synaptic density of mutant neurons [146].
Moreover, hippocampal learning has been shown to be analogously undermined by age-
related downregulation (or artificial abrogation) of Rbbp4 [147,148], suggesting that the
NuRD complex might play similar roles elsewhere in the nervous system. However, as
Rbbp4 and Satb1 may participate in other protein complexes, it remains to be formally
established that NuRD truly underlies these effects.

While Chd4 remodels transcription start sites, it was also found to bind to many distal
regulatory elements. Focusing on enhancers, Goodman et al. found that Chd4 was required
to restrict accessibility at enhancer elements [38]. Elevated accessibility led to increased
recruitment of the cohesin complex to cognate enhancers, which altered higher-order
genome organization. In general, the compartmentalization of topologically associated
domains was not dramatically altered, although some domains became reassigned in
Chd4 conditional mutants. However, looping interactions within domains were markedly
strengthened, elevating interactions between enhancers and promoters. Interestingly, while
Chd4 mutation leads to similar increases in accessibility at enhancers and promoters, H2AZ
deposition was only reduced at promoters, whereas Ctcf recruitment was only elevated
at enhancers.

Importantly, Goodman et al. provide strong support for the notion that Chd4 sup-
presses cohesin binding and thereby genome looping. However, it remains to be deter-
mined whether Chd4 performs these activities via NuRD. Indeed, the recently described
ChAHP complex, containing Chd4 and Adnp, was similarly shown to suppress cohesin
recruitment to cryptic Ctcf sites found within repetitive elements [149]. Nonetheless, the
finding that Chd4 is required to suppress accessibility at enhancer and promoter elements
agrees very well with genomic work from non-neural model systems [28,113,150,151].

9. Future Perspectives

Human Clinical Genetics has identified a large number of genes that can contribute to
ASD and ID. Despite this fact, it remains unclear how these genes lead to neurodevelop-
mental disorders. For example, a number of different mechanisms have been proposed
to explain ASD pathogenesis, including imbalances in brain excitation versus inhibition,
defective neural connectivity, and defects in neocortical neurogenesis [152–155]. Landmark
research by a number of groups has provided important insight into how NuRD functions
contribute to neurodevelopment.

Work by the Bonni lab in cerebellar granule cells has demonstrated that NuRD abroga-
tion undermines neuronal plasticity, synaptogenesis, and thereby behavior. These studies
have elucidated mechanisms that can directly explain the behavioral deficits associated
with NuRD gene mutations. However, these studies cannot explain how NuRD mutations
might lead to brain overgrowth. In earlier stages of neurodevelopment, a number of
groups, including the Gotoh, Hendrich, and Riccio labs, have demonstrated that the NuRD
complex regulates progenitor proliferation and temporal competence states. NuRD also
regulates the migration of neocortical neurons. Going forward, the challenge will be to
identify and understand the relative contribution of these processes to neurodevelopmental
disorders—in progenitors, neurons, and different brain regions.

Another question that will be critical to address in the future is to understand the
mechanistic basis underlying NuRD-dependent gene regulation in neural cells. In embry-
onic stem cells, Bornelöv and colleagues performed a high-resolution time-course analysis,
revealing that NuRD occupies almost all accessible genomic regions [28]. Indeed, they
found that Chd4 occupied many of these regions even in the absence of Mbd3/NuRD.
NuRD recruitment to accessible sites rapidly remodeled the flanking nucleosomes and
locally reduced accessibility at transcription start sites and enhancers, but interestingly, not
at Ctcf sites. Shifts in nucleosome position reduced the ability of transcription factors and
co-factors to be recruited to these regulatory elements. Consequently, NuRD remodeled
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chromatin and altered gene expression in as little as 30 min, but the expression levels of
most genes were only subtly affected by NuRD activity.

The unprecedented spatial and temporal resolution of the Bornelöv study underscores
the ability of NuRD to globally regulate accessible elements throughout the genome.
However, a somewhat different picture emerged when examining cooperative interactions
between NuRD and transcription factors. Studying the zinc finger transcription factor Ikzf1,
Liang et al. found that Ikzf1 recruited NuRD to target gene promoters, leading to dramatic
abrogation of gene transcription within as little as 12 min [151]. Transcriptional silencing
was associated with loss of accessibility and eviction of RNA polymerase and SWI/SNF
chromatin remodeling complexes. Moreover, within 24 h, target genes were repositioned
into compacted, γ-satellite rich heterochromatin in a CHD4-dependent manner. These
dramatic effects on target gene expression suggest that while NuRD can affect accessibility
on a genome-wide basis, transcription factors might be important for facilitating more
decisive decommissioning functions at particular loci. This might explain why a chromatin
remodeling complex that can autonomously occupy most accessible sites throughout the
genome would nonetheless depend on transcription factor interactions to regulate subsets
of genes.

Research by the Bonni lab in the developing cerebellum has provided the most de-
tailed view of how NuRD controls the genome in neural cells. Similarly to the work by
Bornelöv et al., they demonstrated that NuRD has widespread recruitment to regulatory
elements. Like Liang et al., they found that a subset of target genes were completely de-
commissioned by NuRD [29,39]. Clearly, transcription factor-dependent and -independent
roles for NuRD are likely to affect neurodevelopment, and additional work will be required
to assess their relative importance. Conversely, NuRD activity also remodels transcription
factor occupancy [28], and it will be important to assess to what degree this activity un-
derlies NuRD functions. Likewise, the changing landscape of NuRD paralog expression
described by the Riccio lab during brain ontogeny will need to be taken into account in
future work.

Finally, a critical missing piece of the puzzle is to understand how mutations associated
with neurodevelopmental disorders alter NuRD complex composition and function. As the
mutations associated with NuRDopathies are usually heterozygous de novo point muta-
tions, neurodevelopmental pathogenesis may be driven by haploinsufficiency. Since NuRD
abrogation affects global genome accessibility, subtle changes in complex levels could easily
lead to widespread transcriptome misregulation. Alternatively, mutant proteins might
incorporate into complexes, which would consequently be functionally defective. Defective
complexes might compete with wild-type NuRD for genome occupancy in a dominant
negative fashion. The large number of chromatin interaction modules present in NuRD
subunits might also play a role in neurodevelopmental defects. Mutations that disrupt
chromatin recognition or affect transcription factor interactions might lead to reduced or
aberrant recruitment of NuRD to the genome. Distinguishing between these possibilities
will be of critical importance for uncovering how NuRD function and dysfunction underlies
neurodevelopmental disorders.
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