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Abstract

A tuberculosis (TB) model that accounts for heterogeneity in host susceptibility to tuberculo-

sis is proposed, with the aim of investigating the implications this may have for the effective-

ness of public health interventions. The model examines the possibility that recovered

individuals treated from active TB and individuals treated with preventive therapy acquire

different levels of immunity. This contrasts with recent studies that assume the two cohorts

acquire the same level of immunity, and therefore both groups are reinfected at the same

rate. The analysis presented here examines the impact of this assumption when designing

intervention strategies. Comparison of reinfection rates between cohorts treated with pre-

ventive therapy and recovered individuals who were previously treated for active TB pro-

vides important epidemiological insights. It is found that the reinfection rate of the cohort

treated with preventive therapy is the one that plays the key role in qualitative changes in TB

dynamics. By contrast, the reinfection rate of recovered individuals (previously treated from

active TB) plays a minor role. Moreover, the study shows that preventive treatment of indi-

viduals during early latency is always beneficial regardless of the level of susceptibility to

reinfection. Further, if patients have greater immunity following treatment for late latent

infection, then treatment is again beneficial. However, if susceptibility increases following

treatment for late latent infection, the effect of treatment depends on the epidemiological

setting. That is: (i) in (very) low burden settings, the effect on reactivation predominates

and the burden declines with treatment; (ii) in moderate to high burden settings the effect

of reinfection predominates and burden increases with treatment. The effect is most domi-

nant between the two reinfection thresholds, RT2 and RT1, respectively associated with

individuals being treated with preventive therapy and individuals with untreated late latent

TB infection.
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Introduction

Tuberculosis (TB) is a bacterial disease whose primary aetiological agent, Mycobacterium
tuberculosis (Mtb) has become one of the most critical challenges to modern public health.

Mtb is an ancient pathogen that has plagued humanity since antiquity [1–4] and has eluded all

attempts to control it. Despite this long history and the fact that effective therapies for TB have

been available for decades, it is currently estimated that a quarter of the world’s population is

infected with TB [5] and ten to eleven million new cases of active disease emerge every year

[6]. As of 2016, data from the World Health Organization show that TB is now the leading

cause of death worldwide [6, 7], responsible for a staggering 1.7 million deaths per year

globally.

After coming into contact with Mtb, individuals may progress directly to active infectious

disease (primary progression) or enter a state of latent Mtb infection (LTBI) from which they

may develop active disease after a variable period of time through “reactivation”. This pattern

is consistent with epidemiological evidence indicating that the risk of active TB is highest in

the first five years from exposure and declines thereafter, with the highest risk period being

immediately after infection [8]. The risk of reinfection or superinfection with further epi-

sodes of exposure to Mtb is unclear, and although there is likely to be some degree of immu-

nity to subsequent infections, little is known about the extent of protection [9, 10]. Models

emphasize that understanding the degree of reduction of TB risk following previous infec-

tion in comparison to primary infection is critical to understanding the epidemiology of TB

[8]. For example, following introduction of a drug-resistant Mtb strain into a population

where TB burden is high, the proliferation of the strain may be hampered by the size of the

effective susceptible population, which may be largely determined by the level of immunity

among individuals with LTBI [11]. As a consequence, if latent infection provides sufficient

protection against future infection, then the rate of infection with the resistant strain will fall,

markedly curtailing the TB epidemic. However, issues such as disparities in infection rates

between communities burdened with human immuno-deficiency virus (HIV) make it diffi-

cult to study reinfection directly, as the detrimental impact of HIV on immunity surpasses

immunity provided by latent infection [8]. There have been past attempts to estimate the risk

of reinfection amongst latently infected individuals, including through population models

such as [12–15], which have shown risk reductions ranging from 41-81%. Together, these

studies suggest that partial but substantial protection (from TB) is provided against future

episodes of disease.

Besides reinfection of LTBI, individuals who have had active TB but have recovered, are

also at risk of reinfection. For this reason, many models incorporate a compartment account-

ing for recovered individuals who remain susceptible to further episodes of TB (recurrent TB).

It is important to note that there are two mechanisms by which recurrent TB can occur: (i)

relapse with the previously responsible strain or (ii) reinfection from a new strain of TB. The

latter contribution of exogenous reinfection with Mtb (in comparison to the endogenous reac-

tivation of LTBI) to recurrent TB is a subject that is still debated as the two mechanisms cannot

be easily disentangled [16]. However, advances in clinical medicine and gene technology, such

as DNA fingerprinting techniques, can now distinguish the first episode of TB from the second

[17–20]. Further, these techniques can determine whether a new episode of TB is caused by

infection with the same strain as previously or a newly encountered strain, enabling classifica-

tion of TB episodes as either relapse or reinfection, respectively. However, there is no consen-

sus on whether recovered/treated individuals should be assigned a higher, lower or equivalent

rate of infection in comparison to either latently infected or to uninfected individuals (suscep-

tible). This raises the important question of how different levels of susceptibility across a
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population may interact to affect Mtb transmission dynamics. Some different approaches to

exploring the impact of rates of recurrent TB adopted in the past include: assuming recovered

individuals have no risk of reinfection [21, 22]; assuming relapse is responsible for all recurrent

cases [23]; assuming equal risk of reinfection as for latently infected individuals [24]; assuming

recovered individuals have equal rates of reinfection as for susceptible individuals [25]; incor-

porating both reinfection and relapse pathways after treatment [26]. Therefore, there is no

consensus on whether recovered individuals have no risk of future infection, reduced risk,

equal risk, or increased risk.

A previous review of recurrent TB episodes revealed that the proportion of recurrent cases

that were due to subsequent infection with a new strain as opposed to relapse with the same

strain varied markedly from 0-100% [27]. The review emphasized that relapse and reinfection

should be treated as separate mechanisms and the two mechanims are likely to be responsible

for the extent of variability in results. According to [28–31], rates of reinfection after successful

treatment have been found to be variable in highly endemic regions, which likely reflects the

degree of continuing exposure after treatment. Estimates of rates of recurrent TB in various

settings often reach several thousand per 100,000 person-years, including estimates as high as

7850 per 100,000 persons-years [32]. A meta-analysis of such studies found that reinfection

rates after successful treatment are higher than the background rate of TB in the community

[33].

Currently, drugs are available that can be used to treat both individuals with LTBI and

individuals with active TB, with the two most important first-line drugs being isoniazid and

rifampcin. These two medications are effective in the treatment of active TB disease and as pre-

ventive therapy for patients who have previously been infected but are yet to manifest symp-

toms. Isoniazid preventive therapy (IPT) is the most commonly used preventive regimen

globally and has established efficacy in dramatically reducing a patient’s future risk of progres-

sion to active TB [34]. Past case studies of isoniazid preventive therapy (IPT) among latently

TB infected individuals (conducted in South Africa gold mines) suggested that IPT is effective

at the individual level, significantly reducing the risk of subsequent diseases. However, the

effect of IPT may be lost immediately when treatment is discontinued, which led the authors

to conclude that the role of IPT at the population level is unclear. However, they also called

for further research, since the effectiveness at the population level may have been compro-

mised by a number of factors, such as post-treatment reinfection of miners or inadequately

treated LTBI [35]. Other factors such as a high prevalence of HIV and silicosis, which are

known to be strong risk factors for tuberculosis, may have also influenced the population level

effect of IPT. Therefore, for IPT to be effective, it may need to be administered continuously

amongst individuals at highest risk of TB.

Although, previous studies have considered population-level heterogeneity in susceptibility

to reinfection between previously treated and latently infected persons [16, 36, 37], no previous

work has considered differential susceptibility across all four possible exposure and treatment

histories (i.e., fully susceptible, LTBI, treated LTBI and treated TB disease), together with the

population level impact of all relevant public health interventions. Moreover, it is highly likely

that the levels of susceptibility of the two previously treated populations differ considerably,

given the likelihood that those treated for latent infection may retain some of the considerable

immunological protection conferred by this infection, whereas the level of protection con-

ferred by previous active TB is highly uncertain. In this study a TB model is presented with the

aim of investigating: (i) how variability in risk of reinfection alters TB dynamics in a model

accounting for heterogeneity in host susceptibility; (ii) how this variability in risk of reinfection

influences the effectiveness of public health interventions.
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Model description

Following contact with Mtb an individual may develop TB disease as a result of one of three

possible routes. These are fast primary progression after a recent infection, endogenous reacti-

vation of LTBI and exogenous reinfection of a previously infected individual [38]. Here a

deterministic mathematical model of the transmission of Mtb, taking into consideration the

treatment of latently infected individuals with IPT is developed. Numerous infectious diseases

demonstrate considerable latent periods during which an individual harbours the disease

but does not manifest symptoms and is not infectious. A key feature of TB is its long latency

period. This characteristic has crucial epidemiological implications [23], and thus most mathe-

matical models of Mtb transmission in the literature incorporate latent compartments [39].

Through clinical observation it has been noted that following infection with TB, different rates

of progression to active TB exist and that these rates decrease with time from infection. For

example, 12.9% of patients with infection confirmed with interferon-gamma release assays fol-

lowing exposure to a smear-positive index case progressed to active TB in 23 months [40]. By

contrast, after the initial high risk period, the rate at which reactivation TB occurs is relatively

low and is estimated at 5-10% over 20 years [23]. To account for these marked differences, past

mathematical models devoted to tracking TB dynamics have incorporated two major pathways

from susceptible to actively infected: fast and slow TB progression. In such models, a fraction

of exposed susceptibles progresses directly to active TB, bypassing the latency compartment

[11, 23, 41, 42]. This modelling method enables a slight modification of the standard exponen-

tial function that governs time spent in the exposed compartment [43]. Other approaches

include employing a stepwise reduction in the rate of progression occurring five years after

exposure [14] or an arbitrary distribution of the latent period [41, 44].

In recent TB transmission models, compartments for both early and late latency are

increasingly utilized to account for high and low risk periods following infection [16, 36, 45–

47]. In such compartmental configurations all individuals progress to the early latent compart-

ment following infection, after which a fraction may progress to infectious TB while the

remainder transit to the low-risk late latent compartment [22, 47–49]. In consideration of the

above discussion, the present study stratifies latent Mtb infection into two cohorts: a cohort at

high risk of developing active TB, which is referred to as early LTBI, and a later stage of indi-

viduals with low risk for developing active TB, which shall be referred to as late LTBI. There-

fore, the overall population is partitioned into six mutually exclusive classes: susceptible S

which comprises individuals who have not come into contact with tuberculosis; early latently

infected L1 which represents individuals who have recently been infected with Mtb (generally

within a period of less than two years); late latently infected L2 which represent individuals

with persistent latent TB who have contained TB infection and whose TB infection remains

inactive; infectives I which represents individuals with active TB and are capable of infecting

others; P which represents individuals who are being or who have been treated with isoniazid

preventive therapy; recovered R which represents individuals who were previously infected

and have been successfully treated. The total population is assumed to be large enough to be

modelled deterministically and random mixing is assumed.

For the sake of mathematical tractability, here it is assumed that the birth rate compensates

for TB-induced and background mortality (similar to the simplification used in some of the

classical studies in the field, as for example in some of the key studies of Blower et al. [21, 23],

Ziv et al. [47] and Dye et al. [50]). Thus, λ = μ + dI is the recruitment rate and all state variables

are expressed as a fraction of the total population. The susceptible population comprises indi-

viduals who enter into this compartment at a rate λ and they diminish as individuals are

infected with Mtb at a density-dependent infection rate βI, where β is the transmission
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coefficient. Newly infected individuals enter the early latent compartment L1 and it is assumed

that a proportion of individuals in the early latent compartment are detected following screen-

ing for TB and are treated with IPT at rate θ, progressing to compartment P. A proportion of

individuals in the early latent compartment progress to the active TB compartment I at a rate

fϕ, while the remaining proportion proceeds to the late latent compartment at a rate (1 − f)ϕ.

Individuals in the late latent compartment may also receive IPT and thus progress to com-

partment P at a rate ρ. Furthermore, individuals in the late latent compartment can transit into

the infectious compartment I due to endogenous reactivation of their latent TB at a rate η.

Only persons in the I compartment are infectious, and as such compartments L1, L2 and P

do not contribute to the force of infection. Therefore, the infectious compartment is generated

by fast progression of TB, endogenous reactivation from late latency and relapse of recovered

individuals at a rate ω. The subpopulation is diminished when individuals are successfully

treated at rate τ or as a result of spontaneous recovery (self cure) at a rate α.

Previously infected individuals may be fully susceptible to exogenous reinfection and

infected at the same rate as the susceptible population (S(t)), or partially immune or have no

immunity against reinfection. Consequently, late latently infected individuals, individuals

treated with IPT and recovered individuals are reinfected at rates σi β (where i = 1, 2, 3),

respectively, with σi 2 [0, 1](i = 1, 2, 3) accounting for partial immunity against exogenous

reinfection. Note that σi = 1(i = 1, 2, 3) corresponds to a scenario where late LTBI, treated

LTBI and recovered individuals are infected at the same rate as susceptible individuals, while

σi> 1(i = 1, 2, 3) implies that all post-infection cohorts have increased susceptibility to reinfec-

tion in comparison to susceptible individuals. This would also correspond to some past studies

which have shown that individuals who have recovered from TB infection are more susceptible

to future infection and in such a scenario σi> 1, (i = 1, 2, 3) [33].

All individuals experience natural death at a constant rate μ, including infectious individu-

als who suffer an additional TB-induced death at rate d. Transitions between compartments

are shown diagrammatically in Fig 1. Combining the aforementioned assumptions, the follow-

ing system of nonlinear ordinary differential equations govern the model:

dS
dt

¼ l � mS � bIS;

dL1

dt
¼ s1bIL2 þ s2bIP þ s3bIRþ bIS � ðyþ mþ �ÞL1;

dL2

dt
¼ ð1 � f Þ�L1 � ðmþ Zþ rþ s1bIÞL2;

dI
dt
¼ �fL1 þ ZL2 þ oR � ðmþ d þ tþ aÞI;

dP
dt
¼ yL1 þ rL2 � ðmþ s2bIÞP;

dR
dt
¼ ðtþ aÞI � ðmþ oþ s3bIÞR:

ð1Þ

The proposed model equations are different from the recently published model by Ragon-

net et al. [46], in that each reinfection pathway is explicitly distinguished and individuals

treated with IPT are not distinguished according to their time since infection. Moreover, since

both early and late latently infected individuals are treated with isoniazid preventive therapy,

instead of having two compartments for each as in [46], in this study the two compartments

are coalesced into a single compartment for parsimony. Another important paper [36]
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incorporated treatment of early and late latent individuals but assumed that individuals treated

with IPT and recovered individuals have identical risks of reinfection after recovery (i.e., σ2 =

σ3). In the present study this assumption is relaxed by adding another compartment of individ-

uals treated with IPT, so that the risk of exogenous reinfection can be varied between late

latently infected individuals, individuals treated with IPT and recovered individuals. The moti-

vation behind this is that there is a reasonable estimate of the value of σ1 (see [8, 16, 36, 51–

53]), whereas σ2 and σ3 are highly uncertain.

The parameter values used in investigating the aforementioned objectives are selected from

the relevant literature on TB epidemic models. The natural death rate μ is set to correspond to

an average lifespan of 70 years [36]. From [54], the duration of TB from the first onset of TB

symptoms to treatment or death is approximately three years. Consequently, both parameter d
and α are estimated by assuming that d + α = 1/3 and 2d� α. Thus, d is taken as d = 1/9� 0.1

From evidence that about 5-10% of the infected population manifest active TB shortly after

infection [55, 56], parameter f is set to 0.05-0.1. Parameter ϕ is selected from a range of values

ϕ 2 [1.5, 12] [16, 36, 46, 47, 56]. The rate of endogenous reactivation among untreated late

latent individuals is taken as η = 0.0002 per year, relapse among those who were previously

cured through either therapeutic interventions or spontaneous cure is set to ω = 0.00002 per

year; both adopted from [12, 14]. The relative risk of reinfection among untreated late latent

individuals, σ1 is fixed at 0.25 as in [36, 51], with the justification that it agrees with the maxi-

mum level of immunity rendered by BCG (Bacille Calmette-Guérin) vaccination [57]

(although the effects of varying this parameter from its baseline value are explored in detail

below). The parameter σ2 corresponds to the relative risk of reinfection among individuals

treated with IPT, while σ3 corresponds to the relative risk of reinfection among recovered

Fig 1. Schematic representation of the model. The square boxes represent classification of the general population into six mutually

exclusive subpopulations, i.e., susceptibles S(t), early latents L1(t), late latents L2(t), individuals treated with isoniazid preventive therapy

P(t), individuals with active TB I(t), and recovered individuals R(t). All arrows indicate either inflow or outflow or transition between

compartments. Blue arrows illustrate transition of latently infected individuals as a result of treatment with IPT. Red dashed arrows

show reinfection of late latently infected individuals, individuals treated with IPT and recovered individuals, respectively represented by

σi, i = 1, 2, 3.

https://doi.org/10.1371/journal.pone.0206603.g001
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individuals. Exploring the effects of varying these highly uncertain parameters (including their

epidemiological effects and their influence on the effectiveness of public health interventions)

is the primary purpose of this study. The baseline parameter value for therapeutic intervention

among individuals manifesting TB symptoms is set at τ = 2 per year, which corresponds to

a mean duration of infectiousness of six months [36] (which implicitly assumes that the R

compartment incorporates those currently under treatment for active disease). Last, the trans-

mission coefficient β is varied over a wide range. A summary of the parameters and their

respective values are shown in Table 1.

Basic reproduction number R0

In epidemic theory the basic reproduction number, denoted by R0, is one of the most impor-

tant model quantities, given its ability to predict the triggering of an epidemic. R0 is defined as

the number of secondary infections that would occur when a single infectious individual is

introduced into an entirely susceptible population, and considered over the lifetime of the dis-

ease. Following the method in [60] the basic reproduction number for the model system (1) as

computed in S1 Appendix is given as:

R0 ¼
bðmþ oÞ�ðf ðmþ rÞ þ ZÞ

ððmþ dÞðmþ oÞ þ mðtþ aÞÞðmþ Zþ rÞðyþ mþ �Þ
: ð2Þ

(See S2 Appendix for biological interpretation of this expression (2) for R0.) In general it is

known that a value of R0 < 1 implies that each individual is only able to infect less than one

individual on average, such that the disease will die out, whereas a value of R0 > 1 implies that

each individual is able to infect more than one individual and that endemic disease will persist

within the population. Hence, R0 = 1 is a crucial epidemic threshold in determining the epi-

demic trajectory.

Fig 2A illustrates that in the complete absence of reinfection pathways (σ1 = σ2 = σ3 = 0), the

model dynamics are quite simple. When R0 < 1 there is a disease free equilibrium (I� = 0), or

DFE, and when R0 > 1 there is one endemic equilibrium. (Note the logarithmic scale in the fig-

ure which hides the DFE).

Table 1. Parameters and definitions for model Eq (1).

Parameter Definition baselinevalue range References

β Transmission coefficient – 0-500 yr−1 [16, 36]

μ Natural death rate 1/70 yr−1 – [16, 36, 46, 47]

d TB-induced death rate 0.1 yr−1 - - [41, 54]

ϕ Rate at which infected individuals exit early latent compartment L1 12 yr−1 1.5-12 [16, 36, 46, 47]

f Fraction of TB infected population that progress to active TB soon after infection 0.05 0.05-0.1 [55]

η Rate of endogenous reactivation for late latents 0.0002 yr−1 - - [24, 58]

τ Treatment rate of active TB 2 yr - - [16, 36, 59]

α Spontaneous cure/self cure 2/9 yr−1 - - -

θ Treatment rate of LTBI L1 with IPT 1 variable [36]

ρ Treatment rate of LTBI L2 with IPT 0.1 variable [36]

ω Rate of relapse following recovery 0.00002 yr−1 - - [12, 14]

Levels of susceptibility

σ1 Multiplier for exogenous reinfection for latent L1 0.25 0.25-1 [8, 16]

σ2 Multiplier for exogenous reinfection for population treated with IPT 0.5 0.25-2 [8, 16, 33]

σ3 Multiplier for exogenous reinfection for recovered population 0.5 0.25-2 [8, 16, 33]

https://doi.org/10.1371/journal.pone.0206603.t001
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Reinfection thresholds

With the introduction of reinfection pathways, the non-linear dynamics of model Eq (1) yield

a different bifurcation structure. Besides the threshold at R0 = 1 (red dotted line), there are

other “reinfection thresholds” which play a critical role in determining endemic equilibria [36,

51]. They are typified by the blue endemic curve in Fig 2B, which is obtained by plotting I� ver-

sus the transmission coefficient β for the full model (1). The figure illustrates the existence of a

low endemic region (low I� for β< 200) and a high endemic region (high I� for β> 200). As is

typical, disease prevalence increases by two orders of magnitude when transmission increases

across the reinfection threshold [51, 52]. [51, 52] introduced a technique for determining rein-

fection thresholds, The thresholds were shown to occur when rates of reinfection are just suffi-

cient to maintain an endemic disease in the absence of contributions from other pathways

(i.e., primary infection and reactivation mechanisms).

Using this technique, the reinfection thresholds of model (1) can be approximated by ana-

lysing special submodels that distinguish reinfection from other transmission processes such

as primary infection, reactivation and relapse [61]. The first step requires setting endogenous

reactivation and relapse to zero (i.e., βIS = 0 and η = ω = 0). It is then possible to calculate

three reinfection thresholds from the following respective submodels:

1. RT1: The threshold due to reinfection during late latency (L2). In this scenario, reinfection

of recovered individuals and those previously treated for latent infection are switched off

(i.e., R(t) = P(t) = 0);

Fig 2. Bifurcation diagram of equilibrium TB prevalence I� as a function of β. (A) In the absence of reinfection the epidemic threshold occurs at

R0 = 1. (B) Bifurcation diagrams of the full model equilibria (See S3 Appendix) and reinfection submodel (3) equilibria superimposed on the same axes.

In both figures the red dotted vertical line marks the bifurcation point R0 = 1. Black vertical dashed line marks the point where reinfection thresholds

RT1, RT2 and RT3 converge. Parameters as in Table 1. In both panels semi-logarithmic scale is used for clarity.

https://doi.org/10.1371/journal.pone.0206603.g002
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2. RT2: The threshold due to reinfection of individuals previously treated for LTBI (P). In this

scenario, reinfection of recovered individuals and those with latent infection are switched

off (R(t) = L2(t) = 0);

3. RT3 The threshold due to reinfection of recovered individuals (R). In this scenario, reinfec-

tion of latently infected individuals and those previously treated for LTBI are switched off

(i.e., L2(t) = P(t) = 0).

The following example gives calculations for finding the first reinfection threshold RT1

in model (1). As mentioned, reactivation and primary infection mechanisms are set to zero

(βIS = 0 and η = ω = 0), and post-infection levels of population immunity risk are assumed to

be homogeneous or equal (that is σ1 = σ2 = σ3). In this configuration, the rates of infection of

compartments L2, P and R become equivalent, so that it is possible to merge these three com-

partments. Using the procedure outlined in [61], the reinfection submodel is

dðL2 þ P þ RÞ
dt

¼ lþ ð1 � f Þ�L1 þ ðtþ aÞI þ yL1 � mðL2 þ P þ RÞ � s1bIðL2 þ P þ RÞ;

dL1

dt
¼ s1bIðL2 þ P þ RÞ � ðyþ mþ �ÞL1;

dI
dt
¼ �fL1 � ðmþ d þ tþ aÞI:

ð3Þ

The Jacobian matrix of the reinfection submodel (3) evaluated at the disease free equilib-

rium (1, 0, 0) is then

JR ¼

� m ð1 � f Þ�þ y ðd þ tþ aÞ � s1b

0 � ðyþ mþ �Þ s1b

0 �f � ðmþ d þ tþ aÞ

0

B
@

1

C
A: ð4Þ

Setting the determinant of the Jacobian matrix (4) to zero yields the critical value of the first

reinfection threshold,

b ¼
1

s1

ðyþ mþ �Þðmþ d þ tþ aÞ
�f

¼ RT1: ð5Þ

We set parameters ϕ = 12 and θ = 1 while others remain as shown in Table 1. This yields

RT1� 200 (see Fig 2B where RT1 is marked with a black dotted line). The reinfection thresh-

old expressed in terms of R0 is obtained by substituting (5) into Eq (2), leading to

RRT1
0
¼

1

s1

ðmþ d þ tþ aÞðmþ oÞðf�ðmþ rÞ þ Z�Þ
f�ððmþ dÞðmþ oÞ þ mðtþ aÞÞðmþ Zþ rÞ

: ð6Þ

Note that, if the reactivation and relapse mechanisms are now set equal to zero (ω = η = 0)

then expression (6) reduces to R0� 1/σ1 which is equivalent to the simplest form of reinfection

threshold in terms of R0, as originally obtained by Gomes et al. [51]. The other reinfection

thresholds RT2 and RT3 are computed similarly as shown in S4 Appendix. The equilibrium of

the reinfection submodel (3) can be easily obtained by setting the right-hand terms to zero and

evaluating for I� as

I� ¼
f� b �

ðyþmþ�ÞðmþdþtþaÞ
s1 f�

h i

b½f�þ ðmþ d þ tþ aÞ�
: ð7Þ
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(See S4 Appendix for other steady states).

Fig 2B shows that the submodel approximates the behaviour of the full model in the vicinity

of the reinfection threshold RT1. The black solid endemic curve in Fig 2B represents the equi-

librium value of I� (see Eq (7)) for the submodel Eq (3) as a function of β. Above β = 200 there

is a positive endemic equilibrium but below this value only the disease-free equilibrium is pres-

ent. Thus, the theoretically predicted reinfection threshold for the submodel (3) is confirmed

to be RT1 = 200. There is a transition from low to high TB burden with the proportion of

active TB increasing by about two orders of magnitude when β increases beyond β� 200 (as

can also be observed in [36, 51]).

The impact of reinfection parameters σi

Interpretation of risks of reinfection

First, it is useful to reflect on how the reinfection parameters σi(i = 1, 2, 3) should be inter-

preted by re-examining a typical infection term σi β in Eq (1). By σi< 1; (i = 1, 2, 3) account-

ing for partial immunity against exogenous reinfection among post-infection cohorts. σi = 1

(i = 1, 2, 3) corresponds to a scenario where late LTBI, treated LTBI and recovered individu-

als are infected at the same rate as susceptible individuals. σi> 1(i = 1, 2, 3) implies that all

post-infection cohorts have increased susceptibility to reinfection in comparison to suscepti-

ble individuals. That is individuals who have already been infected have higher risk of rein-

fection, when compared with a typical susceptible individual who has never been infected.

This indicates that individuals may have increased susceptibility to tuberculosis and is bio-

logically plausible, e.g., due to local tissue damage to the respiratory tract impairing innate

immunity. The latter would also correspond to some past studies which have shown that

individuals who have recovered from TB infection are more susceptible to future infection

[33].

Homogeneous reinfection risk (σ1 = σ2 = σ3 < 1)

Fig 2B indicates a typical bifurcation diagram (marked by a blue endemic curve) for the

case where σi< 1(i = 1, 2, 3). Here all cohorts susceptible to reinfection have equal risk of

reinfection (σ1 = σ2 = σ3 = 0.25). This is our reference frame case. The reinfection thresholds

RT1 = RT2 = RT3� 200 divide the transmissibility axis into low and high endemic regions.

For β ⪅ 50 (equivalently R0 < 1), I� = 0. For 50 ⪅ β ⪅ 200 then I��10−3, when β� 200 then

I� � 10−2 and when β> 200 then I� ! 10−1.

Heterogeneity in susceptibility to reinfection

We now proceed to investigate how reinfection parameters σ2 and σ3 impact TB dynamics

compared to the reference frame model for which σ1 = σ2 = σ3 = 0.25. Setting σ1 = 0.25, σ2 =

0.5, σ3 = 0.25 results in Fig 3A which shows that increasing σ2 results in an increase in TB prev-

alence compared to the reference model. On the other hand, setting σ1 = σ2 = 0.25 and σ3 = 0.5

results in Fig 3B which indicates that σ3 has little effect on TB prevalence in comparison to the

same increase in σ2 (cf., Fig 3A).

Further model dynamics are explored over a wider range of reinfection parameters by

again modifying the relative risks of reinfection among individuals treated with IPT (σ2) and

those previously recovered from active TB (σ3). The relative rate of reinfection among LTBI is

fixed to σ1 = 0.25, consistent with the pertinent literature described above and with [36, 51,

52]. The remaining two risk of reinfection parameters, (σ2 and σ3) are varied and may take val-

ues of 0.125, 0.50 and 1.5, thereby creating heterogeneity in susceptibility to TB transmission.

Heterogeneity and its impact on public health interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0206603 November 14, 2018 10 / 26

https://doi.org/10.1371/journal.pone.0206603


From left to right the three columns of panels in Fig 4 show an increasing risk of reinfection

among recovered individuals (σ3) while from top to bottom each row of the figure shows an

increasing risk of reinfection among individuals treated with IPT (σ2).

It is observed that as σ2 increases (i.e., moving from top to bottom of each column in Fig 4),

there is a structural change in the bifurcation curve, and TB prevalence rises. In contrast,

within each row of panel 4 there is no significant qualitative change in the bifurcation structure

as σ3 is varied (parameter values σ3 = 0.125, 0.50, 1.50) i.e., moving from left to right.

Moreover, considering a scenario where either individuals treated with IPT or recovered

individuals (or both) have a significant loss of immunity by readjusting σ2 and σ3 such that

they can take values greater than one results in bi-stability phenomena whereby TB can be

endemic below the endemic threshold R0 = 1. This is observed in Fig 4. However, the occur-

rence of backward bifurcation is attributed to σ2 and not σ3 as illustrated in the last row of pan-

els of Fig 4 where backward bifurcation sets in when σ2 > 1. By backward bifurcation we mean

a situation where both stable and unstable equilibria coexist when R0 is less than one. More

simulations show that σ3 has minimal effect as can be observed in Fig 4C and 4F appearing in

the last column of panel Fig 4.

Other features: Hysteresis

Selecting parameters such that σ2 = σ3 = 0.125, and σ1 = 0.25 while other parameters remain

at baseline values, results in Fig 5A, which shows a hysteresis phenomenon. Hysteresis

implies that multiple equilibria, both stable and unstable, occur simultaneously above the

Fig 3. Illustration of the relative importance of σ2 and σ3 to equilibrium dynamics. Parameters as in Table 1. Reference homogeneous model σ1 = σ2

= σ3. (A) Impact of increasing σ2. (B) Impact of increasing σ3.

https://doi.org/10.1371/journal.pone.0206603.g003
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Fig 4. Exploration of the full range of plausible values of the relative risk of reinfection parameters. All panels show

equilibrium prevalence as a function of the transmission coefficient β. From left to right, each column shows an increase in the

relative risk of reinfection among recovered individuals σ3, while from top to bottom each row shows increasing risk of

reinfection among individuals treated with IPT σ2. Other parameter values remain at baseline values in Table 1. σi values are

presented such that individuals previously treated for LTBI or for active disease may have 1) lesser susceptibility than that

estimated for LTBI (σ2, σ3 < σ1), 2) intermediate susceptibility between LTBI and full susceptibility (σ2 or σ3 > σ1, but< 1) or 3)

greater susceptibility than full susceptible persons (σ2 or σ3 > 1). The red dotted vertical line marks the point at which R0 = 1. The

dotted red segment of the endemic curves represents the unstable equilibria while the blue line represents stable equilibria.

https://doi.org/10.1371/journal.pone.0206603.g004
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epidemic threshold R0 = 1 (see [62, 63]). In Fig 5A the unstable equilibrium is marked by a

red dotted line that separates two stable equilibria: low endemic and high endemic. Rather

similar to a backward bifurcation, there can be jumps between the two stable equilibria. In

the regime where the contact rate is approximately β = 253 there is a low endemic equilib-

rium. A small epidemiological change, such as a slight rise in β, (which pushes I above the

unstable equilibrium marked by the red dashed line) may trigger a jump to the high endemic

equilibrium.

No partial immunity

As discussed, the degree of protection conferred by initial infection with TB is still controver-

sial. Gomes et al. [16] and Verver et al. [33] suggest that the risk of reinfection parameters σ1,

σ2, σ3 can in some cases be close to or greater than unity, so that individuals who have already

been infected may have the same or even higher risks of reinfection as compared to typical sus-

ceptible individuals who have never been infected. As discussed above, this situation seems

less intuitive, but remains plausible. For example, Gomes et al. [16] estimated σ3 = 0.51 with

confidence interval of [0.00, 2.37] using a heterogeneous model, while with a homogeneous

model σ3 = 3.87 with confidence interval of [1.61, 7.79].

Consider now a scenario in which all cohorts subject to reinfection have the same suscep-

tibility to infection as susceptible individuals (note that this is equivalent to a classic SEIS

model). That is, σ1 = σ2 = σ3 = 1. This leads to the bifurcation diagram in Fig 5B and demon-

strates that TB will jump to a high endemic levels as soon as the basic reproduction number

exceeds R0 = 1. Moreover, if all cohorts subject to reinfection have higher rates of infection

than susceptible individuals, i.e., σi> 1, then the phenomenon of backward bifurcation

Fig 5. Emergence of hysteresis and backward bifurcation effects with changes to reinfection parameters. Parameters as in Table 1. (A) Occurrence

of hysteresis. (B) No reinfection thresholds. All cohorts have immunity equal to susceptible population. (C) Backward bifurcation. All cohorts have no

partial immunity and have increased susceptibility to reinfection compared to susceptibles.

https://doi.org/10.1371/journal.pone.0206603.g005
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occurs as shown in Fig 5C and TB can exist in a high endemic state on either side of the

threshold R0 = 1.

Impact of intervention on reinfection

Effect of treating early LTBI

The effect of treating early LTBI for different levels of susceptibility to reinfection is examined.

Recall that treatment of early latent TB with preventive therapy (IPT) is modelled by parameter

θ. First, assume that the relative rate of reinfection among late LTBI (σ1) is less than the levels

of reinfection of both recovered individuals (σ3) and individuals treated with IPT (σ2). Con-

sider the risk of reinfection parameters σ2 = σ3 = 0.5 and σ1 = 0.25. Fig 6A illustrates model

dynamics for different values of the treatment parameter θ, and shows that treatment of early

latent LTBI decreases TB prevalence regardless of the higher risk of reinfection (i.e., σ2 > σ1

and σ3 > σ1).

Now consider a scenario where the level of susceptibility to reinfection of late LTBI is high

in comparison to the levels of susceptibility to reinfection of both recovered and individuals

treated with IPT. Selecting σ2 = σ3 = 0.125 and σ1 = 0.25, yields the bifurcation diagram in Fig

6B. Again it is observed that treatment of early LTBI via θ decreases TB prevalence. These

same results are plotted with linear scales in Fig 6C and 6D. Observe that the magnitude of TB

reduction is relatively stronger when θ> 1. Note that values of θ of the order presented in Fig

6 may be plausible, given that the proportion of infections identified and treated immediately

is given by θ/(θ + ϕ + μ) where (ϕ + μ� 12).

Effect of treating late LTBI

In a previous related study, Gomes et al. [36] investigated a scenario where intervention (i.e.,

treatment of late LTBI) is assumed to increase or decrease risks of reinfection i.e., the values

of σi. However this study did not distinguish between individuals treated with IPT and individ-

uals previously assumed to have recovered due to antibiotic treatment or self-cure. Thus,

contrary to Gomes et al. [36] where only two groups that were subject to reinfection were con-

sidered, the model presented here has three such cohorts and four levels of susceptibility to

infection across the population. Distinguishing between individuals treated for active TB and

individuals treated with IPT provides a more comprehensive analysis of treating late LTBI

when the population is subjected to different levels of reinfection.

Recall that parameter ρ represents treatment of late LTBI with IPT. Bifurcation diagrams

obtained for different levels of reinfection of individuals treated with IPT (modified by σ2) and

recovered individuals (modified by σ3) to reinfection of late LTBI (modified by σ1) are com-

pared in Fig 7). Panels are again presented with σ2 increasing from top to bottom while σ3

increases from left to right. First, assuming intervention decreases the level of susceptibility to

reinfection, then both recovered individuals and individuals treated with IPT may be given a

lower rate of reinfection in comparison to late LTBI. As an example, we set σ2 = σ3 = 0.125

while σ1 = 0.25, and obtain the typical bifurcation diagram in Fig 7A. The baseline no-treat-

ment scenario is obtained by setting ρ = 0 while the extreme case is illustrated by assuming

ρ!1. Fig 7A illustrates that in a scenario where σ2, σ3 < σ1, treatment of late LTBI reduces

TB prevalence. This decrease in TB prevalence is largely attributable to the general reduction

in susceptibility to reinfection. In addition, Fig 7A indicates the existence of bistable equilibria

(hysteresis effect) in which stable equilibria are separated by an unstable equilibrium (dashed

red line).

Performing another simple numerical experiment can shed some light on the differences

between reinfection parameters σ2 and σ3. Hence, assuming σ2 < σ1 and σ3 > σ1, and plotting

Heterogeneity and its impact on public health interventions

PLOS ONE | https://doi.org/10.1371/journal.pone.0206603 November 14, 2018 14 / 26

https://doi.org/10.1371/journal.pone.0206603


Fig 6. Impact of treating early latent individuals (θ) with IPT therapy under different risks of susceptibility to

reinfection σ1. (A) Risks of reinfection among individuals treated with IPT and recovered individuals are greater than risk of

reinfection of late LTBI. That is σ2, σ3 > σ1. (B) The level of susceptibility to reinfection among late LTBI is lower than for

both individuals treated with IPT and individuals treated from active TB. (C) and (D) respectively represents figures (A) and

(B) plotted in linear scale. Treatment of late LTBI and individuals with active TB are respectively set at ρ = 0.1 and τ = 2 while

other parameters are as shown in Table 1.

https://doi.org/10.1371/journal.pone.0206603.g006
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Fig 7. Effect of treatment for late latent infection under the assumption that treatment decreases (panels (A) and (B)) and

increases (panels (C) and (D)) susceptibility to reinfection, and assuming that treatment for active disease decreases (panels (A)

and (D)) and increases (panels (B) and (D)) susceptibility to reinfection. Treatment of individuals with active TB is fixed to τ = 2, and

treatment of individuals with early latent TB is fixed to θ = 1, while treatment of late latent individuals is introduced at rates; ρ = 0, 0.1, 1,

10 and the limit ρ!1. Other parameters as shown in Table 1. (A) σ2, σ3 < σ1. (B) σ2 < σ1 < σ3. (C) σ3 < σ1 < σ2. (D) σ1 < σ2, σ3. The

black dashed endemic lines represent the baseline case where there is no treatment of late LTBI (i.e., ρ = 0) while the blue dashed

endemic lines represents immediate treatment for the entire population (ρ!1). In both figures (A) and (B) the dashed red lines of the
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TB prevalence as a function of β results in Fig 7B, which shows dynamics which are almost the

same as Fig 7A. That is treatment of late LTBI remains beneficial despite σ3 = 0.5 being double

σ1. These and similar numerical results imply again that σ3 is unimportant, while σ2 is the

main parameter of interest. The respective reinfection thresholds associated with individuals

treated with IPT (RT2), recovered individuals (RT3) and late LTBI (RT1) are marked on Fig 7

with black dotted lines. Considering the regions bounded by reinfection thresholds, it is clear

from Fig 7B that treatment has the most beneficial impact within the region bounded by RT1

and RT2, and the position of RT3 has little influence.

Assume now that σ1 = 0.25, σ2 = 0.5 and σ3 = 0.125 so that the level of reinfection among

individuals treated with IPT is relatively large. Such set of risk of reinfection parameters leads

to Fig 7C which shows that for certain values of transmission coefficient β, treatment of late

LTBI lead to an increase in TB prevalence. Again it is evident from Fig 7C that the reinfection

thresholds RT2 and RT1 bound the parameter space where treatment of late LTBI has most

impact. Outside this region treatment has a smaller effect.

Finally, assuming susceptibility to reinfection among individuals treated with IPT and

recovered individuals increases after treatment, results in Fig 7D where σ2 = σ3 = 0.50 while

σ1 = 0.25. Fig 7D again shows that increasing treatment of late LTBI may lead to an increase in

TB prevalence when σ2, σ3 > σ1. Note that the greatest increase in TB prevalence also occurs

between the reinfection thresholds RT2 (= RT3) and RT1.

All of these results imply that the relative magnitude of risk of reinfection σ1 and σ2 are vital

in determining whether treatment will increase or decrease TB prevalence.

Gomes et al. [36] investigated the effect of treating late latent TB under two assumptions:

a) susceptibility to reinfection increases after treatment of late LTBI, and b) susceptibility

to reinfection decreases after treatment of late LTBI. They found that if treatment of late

LTBI increases the risk of reinfection of recovered individuals σ2 then TB prevalence

increases, while if treatment of LTBI is assumed to decrease risk of reinfection of recovered

individuals σ2, then TB prevalence decreases [36]. As mentioned above, in Gomes et al.

[36] both individuals treated for active TB and individuals treated with preventive therapy

were assumed to be indistinguishable and therefore classified as one cohort of recovered

individuals.

Further, it is important to investigate a scenario where latently infected individuals have

the same level of reinfection as individuals treated with IPT and recovered individuals.

Thus, considering σ1 = σ2 = σ3 = 0.25 while varying treatment results in Fig 8A which

depicts that treatment has a positive impact between the region bounded by R0 = 1 and RT1

(= RT2 = RT3) and minimal impact above the reinfection thresholds RT1 (= RT2 = RT3).

Fig 8B is obtained using the same parameter values as Fig 8A except that the reactivation

mechanisms are switched off (i.e., ω = η = 0). It is observed that all the endemic curves under

different treatment values merge. However, further exploration of a scenario where reactiva-

tion mechanisms are neglected while levels of reinfection are unequal (i.e., σ1 < σ2 = σ3)

results in Fig 8D which is qualitatively similar to when reactivation mechanisms are included

(see Fig 8C). This observation suggests that reactivation pathways do not play a significant

role when it comes to determining the outcome of treatment of late LTBI; rather it is the rate

of reinfection and particularly reinfection of individuals treated with IPT that greatly influ-

ence treatment outcome.

endemic curves represent unstable equilibria while blue solid lines represent stable equilibria. All figures are plotted with semi-

logarithmic scale.

https://doi.org/10.1371/journal.pone.0206603.g007
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Fig 8. Treatment of late latent infection under the assumption of no effect on susceptibility to reinfection (panels (A) and (B)) and

increased susceptibility (panels (C) and (D)), with reactivation mechanisms present (panels (A) and (B)) and removed (panels (B) and

(D)). Parameters used are τ = 2, θ = 1, ρ = 0, 0.5, 1 and ρ!1 while other parameters remain as in Table 1. The risks of reinfection used are

shown in each figure.

https://doi.org/10.1371/journal.pone.0206603.g008
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Discussion

In this study, a mathematical TB model accounting for heterogeneity in susceptibility to rein-

fection has been proposed. Unlike previous work, we distinguish four different levels of sus-

ceptibility to infection among the disease-free population. Analysis of the model yielded the

following results:

1. Reinfection of previously infected individuals can lead to unusual dynamics, such as back-

ward bifurcation and hysteresis effects. This is epidemiologically important because it

could lead to extreme changes in disease burden following relatively minor epidemiologi-

cal changes. The backward bifurcation effect is likely to be particularly important for

TB, which is or has been endemic in virtually all regions of the world, but with decreasing

burden. Therefore, abrupt declines in burden could well be observed as TB prevalence

declines towards the bifurcation point between endemic disease and disease-free

equilibrium;

2. It was found that the risk of reinfection among individuals treated with IPT (i.e., σ2) plays a

central role in qualitative changes in model dynamics, particularly in shifting TB prevalence

between low and high burden. In contrast, the risk of reinfection (i.e., σ3) among the recov-

ered cohort who were previously treated from active TB (or self-cure) plays an insignificant

role in terms of the qualitative dynamics of the model;

3. Treatment of early latent infection is universally beneficial irrespective of the level of rein-

fections among cohorts subject to reinfection. That is, treatment of early latent TB decreases

TB prevalence. The benefit is strongest if individuals treated with IPT have a relatively low

risk of reinfection i.e., compared to late LTBI. That is, when σ2 < σ1. (See eg., Fig 6B or 6D);

4. Similar to previous findings [36], the assumption that treatment decreases the risks of rein-

fection among both cohorts of individuals treated with IPT and individuals recovered from

active TB was considered. Under this assumption, treatment of late latent infection has a

consistently positive impact (see Fig 7A) and therefore may be highly synergistic with other

interventions;

5. Alternatively, the assumption that treatment of late latent infection increases the risk of

reinfection among IPT-treated individuals yields contrasting results to case (iii) above. That

is, treatment of late LTBI increases TB prevalence in most settings, although treatment is

more detrimental above the reinfection threshold, particularly in an intermediate preva-

lence zone lying between RT2 and RT1, as shown in Fig 7D;

6. Assume now that treatment of late latently infected individuals increases the risk of reinfec-

tion for individuals treated with IPT (i.e., σ2 > σ1) but decreases the risks of reinfection

among recovered individuals (i.e., σ3 < σ1). Our results still show that increasing treatment

of late LTBI increases the prevalence of active TB (see Fig 7C). This observation suggests

that the level of immunity/susceptibility for patients who have previously received preven-

tive therapy is the key quantity determining whether treatment will decrease or increase

prevalence of active TB. Future research should focus on quantifying the value of this key

epidemiological parameter (i.e., σ2);

7. It is observed that reactivation mechanisms (in particular reactivation from late latent infec-

tion (η) and from recovered individuals (ω)) play a minimal role in determining treatment

outcomes, except in very low burden settings (i.e., a prevalence below 10−4 or 10 cases per

100,000 population).
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Note that Gomes et al. [36] argued that the qualitative effects presented in their paper were

generally robust against reasonable changes in parameter values and model assumptions.

Gomes et al. assumed that individuals who were previously treated for active TB and individu-

als treated with preventive therapy are not differentiable and therefore can be treated as a sin-

gle group. In particular both σ2 and σ3 were coupled as a single parameter, obscuring the

understanding of the role of each type of immunity. However, our study shows that relaxing

this assumption yields new epidemiological insights. This follows from the fact that it is impos-

sible to tell from Gomes et al. whether an increase in prevalence of active TB is attributable to

reinfection of previously treated individuals or those who have been treated with IPT. Thus,

epidemiological studies able to quantify σ2 accurately would be important in shedding light on

TB dynamics.

WHO TB burden estimates

TB is present in every region and country of the world but its distribution varies greatly with

the most highly endemic countries reporting rates of disease around 1000 per 100,000 per

year, while the least endemic countries have rates as low as 5 per 100,000 per year. There can

be little doubt that this observation of 200-fold differences in disease burden relates in part to

heterogeneity in socio-economic development, living conditions, prevalence of comorbidities

and the strength of health systems. However, given such a huge gulf in disease rates, additional

factors may well be at work. Here we postulate that decreased susceptibility to reinfection in

comparison to first infection acts to create a threshold effect, which can lead to a 100-fold

increase in burden once crossed. Similarly, disease may be considerably easier to control once

prevalence has dropped below the reinfection threshold and enters the low endemic, controlla-

ble zone. That is, while socio-economic development and improvements in treatment pro-

grams could explain gradual decreases in burden, this additional phenomenon may help to

explain more dramatic shifts. For example, the recent rapid declines in TB burden in China

and other countries of East Asia could be partly attributable to this threshold effect.

Empirical evidence for the role of reinfection heterogeneity is difficult to find, given high-

quality data on TB burden has only recently become available. However, many regions of

the world appear to show significant divides between high and low burden countries (Fig 9).

Although this is not clearly apparent in all regions and an overall threshold is not evident (Fig

10), this grouping of countries is arguably seen in current WHO data [6]. The absence of a

clear divide could relate to factors such as comorbidities (e.g., HIV infection), differences in

health systems and socio-economic development, as well as the fact that TB transmission fre-

quently occurs over a much smaller scale than a nation state. Therefore, the reported overall

burden for individual countries actually represents the summation of many heterogeneous

sub-epidemics, particularly for large countries such as China and India.

Limitations and conclusion

Mathematical modelling is an important tool for epidemiologists since it provides insights

where empirical epidemiological observations cannot. With the proposed model, the key

parameter influencing preventive treatment outcomes is identified. It was found that the rein-

fection parameter accounting for reinfection of individuals treated with IPT (σ2), and not the

parameter accounting for reinfection of recovered individuals (σ3), alters treatment outcome.

Further, changes in σ2 can either be beneficial or detrimental when there are treatment pro-

grams. The need to quantify the parameter is important if epidemiologists are to accurately

estimate its effect on TB dynamics. Moreover, it is observed that reactivation mechanisms (in
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particular reactivation from late latent infection and from recovered individuals) play a mini-

mal role in determining treatment outcomes except in very low endemic settings.

Limitations of our model include that individuals being treated from early and late latent

compartments are coalesced into a single compartment so as to simplify the model (although

the effect of distinguishing these groups following preventive treatment has been previously

explored [46]). This could be addressed in conjunction with our approach of distinguishing

four susceptibility categories. Moreover, increased epidemiological realism could be incorpo-

rated, including more accurate parameterisation to specific settings. For example incomplete

efficacy of preventive treatment could be reasonably considered and explored within the con-

text of the model presented here as a proportional reduction in treatment rates.

Also, it is important to note that at this time it is unknown whether treatment with IPT con-

fers additional immunity or removes the pre-existing immunity that we know people gain

from untreated LTBI [35]. Some TB-family exposures increase immunity (e.g. BCG-vaccina-

tion, LTBI), whereas others appear to increase susceptibility (past episodes of disease) at the

population level. From an immunological perspective, much is still not fully understood about

the dynamic interaction between host and pathogen. Therefore, it is plausible that immunity

could be increased or decreased. Whether this leads to more severe or milder disease is also

uncertain. Although resistance to antituberculous agents is associated with poorer treatment

outcomes [64], IPT-treated individuals do not tend to have higher rates of drug resistance at

the population level; rather MDR-TB emerges in settings that have had poor historical pro-

grammatic performance, which are typically ones that have not used IPT widely. Nevertheless,

Fig 9. Illustration of world TB burden by WHO region obtained from the global TB Report data [6]. The size of the circle

is proportional to the population of the country. Incidence is plotted relative to mortality not to illustrate the relationship

between these two quantities, but rather as two complementary illustrations of disease burden. Clustering of countries into

high and low burden groups is arguably observed to some degree, although this may be obscured by other epidemiological

effects.

https://doi.org/10.1371/journal.pone.0206603.g009
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our modelling study shows the necessity of trying to learn the impact of preventive therapy on

immunity.

Finally, the proposed model is more applicable to high burden settings, as transmission in

low-burden settings is limited. However, the use of IPT in high-burden settings is a critically

important issue in global TB control. For instance see Ragonnet et al. [46] who strongly advo-

cate for widespread use of IPT in high-burden settings. There is also increasing interest in this

programmatic intervention, as WHO recommends expanding IPT in settings with an inci-

dence of up to 100 per 100,000, which is not low in the global context (the global rate being

142 per 100,000 [43, 45, 46]).
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