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Abstract: In recent years there has been a growing interest in the field of non-coding 

RNA. This surge is a direct consequence of the discovery of a huge number of new  

non-coding genes and of the finding that many of these transcripts are involved in key 

cellular functions. In this context, accurately detecting and comparing RNA sequences has 

become important. Aligning nucleotide sequences is a key requisite when searching for 

homologous genes. Accurate alignments reveal evolutionary relationships, conserved 

regions and more generally any biologically relevant pattern. Comparing RNA molecules 

is, however, a challenging task. The nucleotide alphabet is simpler and therefore less 

informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is 

likely to be mostly constrained at the structural level and not at the sequence level. This 

results in very poor sequence conservation impeding comparison of these molecules. These 

difficulties define a context where new methods are urgently needed in order to exploit 

experimental results to their full potential. This review focuses on the comparative 

genomics of non-coding RNAs in the context of new sequencing technologies and 

especially dealing with two extremely important and timely research aspects: the 

development of new methods to align RNAs and the analysis of high-throughput data. 
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1. Introduction 

1.1. The Non-Coding RNA (New)-World 

In recent years, the non-coding RNA (ncRNA) field has rapidly expanded (Figure 1) with a rapid 

increase in the number of newly identified and biologically relevant ncRNAs. Just a decade ago, the 

number of known ncRNAs was restricted to a small amount of housekeeping genes (including 

ribosomal RNAs, transfer RNAs and small nucleolar RNAs) and an even more limited collection of 

regulatory RNAs, such as lin-4 in Caenorhabditis elegans [1] and Xist in mammals [2]. Since then, the 

number of novel ncRNAs has increased dramatically and far more is known about their function, 

biogenesis, length, structural and sequence features. New and ever more sophisticated high-throughput 

technologies, such as tiling arrays and next generation sequencing (NGS) have been applied to 

comprehensively profile the transcriptome of various organisms.  

Figure 1. Number of publications in PubMed found using the keyword “ncRNA” (dark 

grey) and “regulatory RNA” (pale gray). The x-axis represents the timeline, the y-axis the 

number of times the words “ncRNA” and “regulatory RNA” match a publication in 

PubMed normalized by the total number of publications in that year (expressed as one part 

per ten thousand).  

 

This wealth of data has allowed the identification of thousands of novel short ncRNAs, including 

PIWI interacting RNAs [3] and small nucleolar RNAs [4] and has resulted in the compilation or the 

update of many publicly available databases [5–10]. Furthermore, high-throughput approaches have 

revealed extensive and pervasive transcription of long ncRNAs (lncRNAs) [11–13], operationally 

defined as functional RNA longer than 200 base pairs that does not template protein synthesis. In the 

human genome, for instance, the GENCODE consortium annotated 9,640 lncRNA loci representing 

15,512 transcripts [3,14] and in [15] the authors estimated that total number of human lncRNAs genes 

to be about 50,000, more than two-fold greater than the number of protein-coding genes. These 

discoveries were very timely in the context of growing concern for the lack of a significant correlation 

between the number of protein-coding genes and the commonly accepted concept of “organism 

complexity” [4,16,17]. It was proposed that alternative splicing and ncRNAs could be accountable for 

complex gene regulation architectures, meaning that the “Central Dogma” of genetic programming 
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enunciated by Francis Crick in 1958 (RNA is transcribed from DNA and translated into protein) [18] 

had to be slightly altered and at least in higher eukaryotes may be inadequate [16,17]. The biological 

role of most of these novel long untranslated molecules is still a controversial issue. Some authors have 

even raised doubts about whether these transcripts are functional at all [19]. The lack of shared 

discernible features hampers our ability to define lncRNA classes, thus impeding function prediction [20]. 

However mounting experimental evidence illustrates that lncRNAs are implicated in a variety of 

biological processes [21] and are linked to various diseases including cancer [22]. Additionally, the 

functional roles of lncRNA transcripts have been uncovered in signaling sensors [23], embryonic stem 

cell differentiation [11], brain function [24,25], subcellular compartmentalization and chromatin 

remodeling [26]. Some examples include X chromosome inactivation by Xist, the silencing of 

autosomal imprinted genes accomplished by Air, nuclear trafficking regulated by NRON and muscle 

differentiation controlled by linc-MD1 [2,27–29]. In [30] the authors identified a class of lncRNAs 

named ncRNA-a (ncRNA-activator) able to stimulate the expression of proximal protein-coding genes, 

and a recent update on ncRNA-a [31] showed that the co-activator complex Mediator plays a central 

role in the activation process. See [21] and [32] for more examples and lncRNAdb [33] for the central 

repository of known lncRNAs in eukaryotes. lncRNAs are expressed, some are spliced, they are often 

conserved across vertebrates, and their expression is frequently tissue- and/or cell-specific and 

localized to specific subcellular compartments [11,25,34]. It has been shown that lncRNAs can act 

both in cis [30,35] and in trans [36], some acting as precursors for short ncRNAs [37–39], while others 

act independently as long transcripts. As in [40] lncRNAs can be classified as “intergenic” or “genic” 

depending on their position/orientation with respect to protein-coding genes. lncRNAs not overlapping 

any protein-coding gene are tagged as intergenic and then further classified according to their 

transcription orientation with the closest protein-coding loci (same sense, convergent, or divergent). 

The genic lncRNA set are catalogued as “exonic” if overlapping a protein-coding exon. Otherwise, 

lncRNAs are labeled as “intronic”, when positioned within protein-coding introns or as “overlapping”, 

in presence of a protein-coding transcript located within the intron of the lncRNA [40].  

1.2. lncRNA Challenges 

Although the conservation level of different lncRNAs may be not always directly comparable (e.g., 

the evolutionary conservation of genic lncRNAs may be biased by the presence of the protein-coding 

genes), overall approximately half of reported human lncRNA exhibit significant conservation across 

mammals [40]. These levels suggest some key cellular function, even though only a small fraction of 

these transcripts have so far been functionally characterized. Such functional analyses remain however, 

very superficial and lack precise molecular mechanisms explaining the activity of these novel 

transcripts. Our low level of understanding can be in part attributed to the difficulty with working 

experimentally with lncRNAs: detection is difficult for a combination of biological and technical 

aspects. The first relates to the low levels of non-coding genetic expression. After ribosomal RNA 

(rRNA), protein-coding mRNA represents the highest population of RNA species [41]. In previous 

studies [34,42,43] it has been reported that lncRNAs are on average 3 to 10 fold less expressed than 

mRNAs. Besides the complicated task of capturing weaker expression signals, many lncRNAs have 

pronounced tissue/stage specificity [43,44]. In other words, lncRNA genes can easily be left 
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undetected unless the correct cell type and condition are considered. One more complication for 

ncRNA discovery has been the difficulty of sequencing deep enough, a hurdle only recently overcome 

by NGS. Additionally, our ability to assemble and annotate genomes was less advanced than currently 

and we had simplified notions of transcriptome complexity. Most of the classical low-throughput 

approaches, such as RT-PCR and northern blotting, have been successfully used to analyze the 

expression of small numbers of genes, but they were not adequate to address the “pervasive 

transcription” aspect of genomes [45,46]. Furthermore, there are specific classes of ncRNAs, such as 

circular RNAs (circRNAs), that have been extremely hard to identify. circRNAs are a class of  

non-coding RNA family that were discovered more than 20 years ago [47–50]. These RNAs form 

circles that arise from non-canonical splicing events (also known as exon shuffling) that join a splice 

donor to an upstream splice acceptor to produce a circular RNA molecule. Recent studies [51,52] show 

that the human circRNA CDR1as, antisense to the Cerebellar Degeneration-Related protein 1 (CDR1), 

hosts around 70 binding sites for the miR-7 microRNA and is highly associated with the Argonaute 

protein Ago2 as demonstrated by PAR-CLIP and HITS-CLIP experiments [51,52]. Mainly because of 

their non-canonical splicing behavior, circRNAs have eluded detection by next generation sequencing 

until recently. These latest studies adopted a novel computational approach to identify circRNAs  

from high-throughput RNA-seq data and demonstrated their widespread abundance within  

transcriptomes [51,53]. 

In general, a major obstacle for ncRNA detection is the difficulty to perform informative sequence 

comparisons. Standard primary sequence alignment is hampered by the low complexity of the nucleic 

alphabet, making it difficult to produce statistically meaningful RNA alignments. Ribonucleic acid 

chemistry relies on just four primary residues: two purines and two pyrimidines. Consequently, RNA 

gene sequences do not have strong statistical signals, unlike protein-coding genes. For instance two 

RNA sequences must share an identity of at least ~60% to be considered significant in homology 

relationships prediction [54]. Below this level, common ancestry is hard to infer with certainty. By 

comparison, this threshold is around ~20%–35% for proteins [55]. Furthermore, ncRNA appears to be 

evolving rapidly [56] or are under the influence of very specific evolutionary constraints [56]. It was 

proposed that most ncRNAs evolve at higher mutation rates, with the maintenance of secondary 

structures being the main source of selection [57,58]. This assumption makes sense from an 

evolutionary standpoint. As ncRNAs will be left untranslated, the nucleotide sequence itself is not 

constrained to keep the codon reading frame. Of course many exceptions exist. Specific ncRNAs types 

can hold functional sequences and act via their primary sequence (i.e., miRNAs). Previous reports 

have shown that at least some miRNA genes are well conserved across species [59–61], reinforcing the 

idea that sequences encoding a function evolve under purifying selection. Aside from these specific 

and relatively rare examples, it seems that for most known ncRNAs, evolution is limited by structural 

constraints [62,63]. This induces a characteristic pattern of covariance that occurs when a mutation is 

affecting a nucleotide pairing to another in a structured domain (Figure 2). If the mutation breaks the 

base pairing so that the functionality of such a domain is compromised, the matching nucleotide is 

favored to mutate in turn, i.e., is co-varying to restore the base pairing and keep the structure unchanged.  



Int. J. Mol. Sci. 2013, 14 15427 

 

 

Figure 2. RNA mutations are tightly linked to the RNA structure conservation.  

(a) Example where the mutation of a C into an A is compensated by the change G-U. The 

two positions are not independent, but communicating one with the other to maintain the 

structure unvaried; (b) Same hairpin as shown in (a). The presence of the compensatory 

mutation is highlighted by the multiple sequence comparison. 

 

For most aligners these features of RNA are hard to account for when using standard alignment 

procedures that postulate positional independence and seek only to maximize identity. Furthermore, 

RNA can hold functional pseudo-knots. These are structural configurations where at least two RNA 

stem-loops are interposed one into the other. Although some comparative approaches including 

pseudo-knots exist [64,65], these are disregarded by most software due to reasons of computational 

complexity [66]. As a consequence ncRNA sequences are harder to align than proteins, a limitation 

that affects our ability to accurately detect and classify them. The difficulty in comparing ncRNAs 

calls for other information sources that alignment algorithms can use. More than ever, the issue of 

accurately comparing and aligning ncRNAs is of critical importance. This is precisely the problem 

discussed in the following section, where we review established and more recent methodologies able to 

make the best of available RNA information (Section 2). Next we discuss different homology based 

strategies for ncRNA detection (Section 3) and the analysis of high-throughput expression data 

(Section 4). See Table 1 for a summary of the resources described in the text. 

2. Comparing Non-Coding RNAs 

As mentioned, generating meaningful ncRNA alignments is a challenging task and at least in some 

cases, the best accuracy could be achieved by exploiting RNA structural information. However, in 

many situations using such information is complicated. In spite of the development of aligners that 

take into account the RNA secondary structure information, one major issue is the poor availability of 

high quality structures. The problem is at least in part due to the difficulties encountered at 

experimental level in crystallization. Getting crystals from RNA molecules is complicated because of 

their chemical specificity. The accumulation of crystals is prevented by the high RNA flexibility. 

RNAs have flexible structures adopting inter-domain movements and with respect to proteins have 

weaker tertiary interactions [67]. The polyanionic charge of the phosphate backbone makes the 

nucleotide sequence move much more than in proteins and this makes the packaging of crystals much 

harder to achieve. As a consequence, the crystals are either hard to grow or uninformative. Even when 

trying to resolve RNA molecules in solution using NMR, the resonance assignment is more difficult 

for RNA than for proteins [68]. RNAs have only 4 primary nucleosides instead of the 20 different 
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amino-acid side chains found in proteins [69]. Thus, the chemical shift dispersion is narrower in RNA 

than in proteins, resulting in less informative spectra [69].  

2.1. RNA Structure Prediction  

Because of these limitations, RNA structure is usually computationally predicted without any 

experimental support [70,71]. RNA secondary structure inference amounts to the computation of  

base-pairings that shape the in vivo molecule structure. The prediction is performed using primary 

RNA sequence data. Another possibility is including other sources of statistical information to 

constrain structure prediction, for instance an alignment of structurally homologous RNA sequences. 

Regarding single sequence RNA secondary structure predictions, there are two main groups of 

approaches: empirical free-energy parameters [72] and knowledge based [73–75]. The first considers a 

biophysical model to calculate the structure whose folding has the minimum Gibbs free energy (∆G). 

In this approach, [76–80] the nearest stable folding is employed to compute the conformational 

stability of the Minimum Free Energy (MFE) structure. The energy parameters needed in this approach 

were assessed on a set of optical melting experiments on model systems [77–79]. The two most 

popular implementations of the MFE structure prediction algorithm are Mfold [70] and RNAfold [81] 

packages. The latter implements McCaskill’s algorithm [82], an approach to calculate the probability 

of a certain secondary structure in the whole thermodynamic ensemble. This approach is based on the 

partition function, which sums all Boltzmann weighted free energies of each secondary structure that is 

possible given an RNA sequence. In this model, the confidence estimate in a particular base pair i,j is 

given by the sum of the probabilities of all structures containing that base pair i,j divided by the sum 

over all structures [83]. Knowledge based approaches rely on probabilistic models, where statistical 

learning procedures are used instead of empirical measurement of thermodynamic parameters. The 

Stochastic Context Free Grammar (SCFG) model [73] represents one popular example of such 

probabilistic models. The parameters used by the SCFG models are estimated on the set of RNAs with 

known structures (e.g., rRNA).  

Prediction consistency is the main limit of both MFE and knowledge based methods [84]. (See the 

example in Figure 3). The percentage of known base pairs predicted correctly by the secondary 

structure prediction methods ranges from 40% to 75% [73–75,85]. This low figure may be the result of 

three confounding factors. Firstly, folding in vivo can be influenced by RNA chaperones [86], RNA 

editing [87], and even by the transcriptional process itself [88]. At present, there is no software able to 

account for these effects. Secondly, looking for a single structure can sometimes be inadequate. There 

are cases, such as the ribo-switches [89,90], where multiple functional structures can be derived from 

the same sequence depending on conditions such as temperature or other external factors. Standard 

predictors are not well suited to deal with such situations and require dedicated tools able to identify 

potential conformational switches [91,92]. Thirdly, RNAs might contain pseudo-knots, which are 

ignored by most tools due to reasons of computational complexity [66].  
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Figure 3. Consistency of RNA secondary structure predictions. In this example the human 

mir-3180 (Rfam accession id RF02010; AJ323057.1/363-249) was folded using different 

approaches yielding different output structures. (a) Secondary structure of the family as 

estimated by Rfam release 10.1; (b) RNAfold web server prediction based on Vienna RNA 

package version 2.0.0. [93]; (c) Mfold web server prediction, running Mfold version 4.6 [71]. 

 

The best secondary structure prediction accuracy can be achieved using comparative methods [66]. 

These apply to a set of structurally homologous RNA sequences being aligned. For some of these 

computation tools, the output will be the prediction of each individual homologous structure, while in 

other situations the result will be a unique consensus structure. The consensus structure does not exist 

in vivo, but rather it is a model that captures the common, relevant structural aspects conserved within 

the family.  

2.2. Structure Prediction and Alignment Strategies 

Due to the close relationship between sequence and structure, structure prediction and sequence 

alignment can be described as interdependent problems [63]. As theorized by Sankoff [94], the most 

suitable approach should involve the simultaneous alignment and folding of the considered sequences. 

Unfortunately, a strict application of this approach would be computationally prohibitive and the lack 

of an appropriate heuristic solution is reflected by the wealth of available alternative solutions. The 

web server WAR [95] is a good example. This tool allows the execution of a total of 14 different 

strategies to align and predict the common secondary structure of multiple RNA sequences. Over the 

years, so many methods have been described that some kind of classification is needed to catalogue 

them. Paul Gardner proposed three categories he refers to as “plans” [66,96]. In plan A, one starts with 

the estimation of a multiple sequence alignment and then the aligned sequences are folded jointly (as a kind 

of consensus). The initial alignment can be done by any standard MSA aligner (e.g., ClustalW [97],  

T-Coffee [98]), and the folding of the aligned sequences can be performed by a plethora of tools (e.g., 

RNAalifold [99], PFOLD [100], ILM [101], ConStruct [102]) optimizing a score based on 

compensated mutations and thermodynamics. However this strategy is effective just in a determined 

sequence similarity range. On one hand, sequences that are too similar do not carry any covariance or 

purifying selection information and are less informative from an evolutionary standpoint. On the other 

hand, sequences need to be similar enough to be meaningfully aligned as below the “twilight zone” of 

similarity sequence alignment tends to obscure the covariance signal [96]. Plan B makes it possible to 
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use evolutionary signals to help improve the reliability of structure predictions. This approach accounts 

for an underlying RNA substitution model where mutation probabilities are affected by structural 

dependencies. The maintenance of a 3D fold is a major evolutionary constraint influencing the 

acceptance of point mutations. From this perspective, a nucleotide located in the stem is not as free to 

mutate as a nucleotide located in a loop. Substitutions taking place in structured functional domains of 

RNAs can disrupt the wild-type conformation and seriously affect the molecular function. As a 

consequence, a nucleotide whose pairing has been disrupted by the mutation of its mate, is more likely 

to mutate itself so as to recover the original structure and rescue the function. Back in 1985 Sankoff 

developed a dynamic programming algorithm able to take into account sequence and structure of an 

RNA molecule simultaneously [94]. Unfortunately this algorithm is computationally expensive, with a 

running time equal to O(N3m), where m is the number of sequences and N their length. This means that 

a pairwise comparison has the tremendous CPU cost of O(N6) which makes this algorithm inapplicable 

most of the times and calls for simplified heuristics. Several banded modifications of the Sankoff algorithm 

impose limits on the size or shape of substructures, like Dynalign [103,104], Foldalign [105,106], 

Stemloc [107], Consan [108]. Another example is pmmulti [109], a Sankoff algorithm variant able to 

perform multiple secondary structure alignments by aligning consensus base pair probability matrices. 

Plan C is used by programs such as R-Coffee [110] or RNAcast [111]. In these methods each 

individual sequence is folded separately before running the alignment. Equivalent secondary structures 

between two RNAs can be used to enhance the alignment accuracy. For instance, let seq1 and seq2 be 

two RNA sequences, x and y be two nucleotides matching in a secondary structure in seq1, and x’ and 

y’ be two nucleotides matching in a secondary structure in seq2. If x aligns to x’ then implicitly y 

should be driven to align to y’. For example, R-Coffee uses RNAplfold [112] to compute the 

secondary structure of the provided sequences. After that, R-Coffee computes the multiple sequence 

alignment having the best agreement between sequences and structures. This pre-folding approach is 

especially valuable when RNAs are too different to be meaningfully aligned merely by using an  

off-the-shelf multiple alignment tools (i.e., ClustalW [97]). Plan C is particularly well suited to 

situations where experimental secondary structures are available.  

The situation is radically different when experimental 3D structure information is available. In this 

case the RNA alignment problem becomes similar to the protein structural alignment problem. This 

problem is nondeterministic polynomial-time complete (NP-complete) and it involves the alignment of 

two distance matrices. In most cases the problem can be solved in a rather satisfying way by using 

heuristics making the best of the geometric information contained in the PDB models. Examples of 

pairwise structural alignment methods for RNA are SARA [113], DIAL [114], iPARTS [115], ARTS [116] 

and SARSA [117]. Besides this, recently several 3D RNA structure database search programs were 

developed, such as LaJolla [118] and FRASS [119]. 

Giving an exhaustive overview of the methods available for folding and aligning structured RNA 

sequences is well beyond the scope of this review. Over the last twenty years, more than 30 methods 

have been described that deal with these issues which is an indication of the complexity of this 

problem, despite 25 years of research following its formal description by Sankoff.  
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3. Detecting ncRNA Homologues 

In the ncRNA field another critical step is the collection of homologues to genes of interest. 

Homologues can be used in several situations, such as the detection of functional motifs, inference of 

possible evolutionary steps or the design of laboratory experiments. For instance, the conservation 

across species of a certain ncRNA can be used to estimate how likely a gene is to be functionally 

important. Such information can be used to prioritize experiments, e.g., knockdown experiments of the 

orthologous gene in a model organism. Over the last few years many different methods have been 

developed to approach the problem of RNA homology detection. As previously shown [120], 

homology search methods can be grouped in three sets: sequence-based, profiles and structure-based 

methods. The first and most straightforward approach to look for homologues is by comparing the 

nucleotide sequences. Already in 1981 Smith and Waterman developed a dynamic programming 

algorithm that allows for pairwise local alignment [121]. Nevertheless, this approach is CPU time 

demanding and implementations of this method have been until recently unpractical for large-scale 

database and genome wide screenings [122]. For this reason, alternative approaches such as  

FASTA [123] or BLAST [124] have been frequently preferred. These methods apply heuristics that 

boost computational speed at the cost of reduced accuracy. In both BLAST and FASTA, the 

underlying idea is to skip the time consuming comparison of entire query and target sequences, but 

rather to start identifying short conserved words in a first step called seeding. After that, more accurate 

time-consuming local alignments are performed. The second class of approaches are based on profiles, 

including HMMs. Profile HMMs are probabilistic models that are generated out of an input multiple 

sequence alignment where each position of the alignment is used to estimate nucleotide frequency. 

These models can be used to screen databases and look for homologs. Profile HMMs are heuristics 

having usually superior accuracy over methods based on single sequences [125,126]. However, such 

models have a linear architecture best suitable for modeling linear protein sequences (as opposed to 

secondary structure relationships). A more appropriate modeling of an RNA alignment should also 

consider RNA base pair interactions. The best sensitivity can be attained when applying approaches 

taking into account at the same time sequence similarity and secondary structures, as the Sankoff 

algorithm does. Unfortunately, the Sankoff algorithm is too computationally demanding, hence the 

need for approximate heuristic implementations of this exact algorithm. Such approximations include 

banded Sankoff tools [104,106,108,127], genetic algorithm implementations such as RAGA [128] and 

covariance models (CMs). CMs are the most commonly used method to carry out efficient database 

screening and can be described as special form of stochastic context free grammar (profile SCFGs). 

CMs were first introduced by Sean Eddy in [129] and implemented in Infernal [130]. This and other 

related applications such as RSEARCH [131] belong to a class of broadly used homology search tools 

based on the automatic learning of statistical models (the CMs) estimated from an input multiple RNA 

alignment decorated with the consensus secondary structure. CMs are probabilistic models that can be 

derived unambiguously out of a structure-annotated sequence alignment and can be used in turn to 

query a target sequence database to find homologs. Conceptually CMs are similar to profile HMM but 

able to include RNA base-pairs interactions information. The modeling of such information results in a 

higher complexity and CMs are represented by a tree-like model architecture, where the tree shape 

directly mirrors the consensus RNA structure. Unlike HMM states that only allow the emission of 
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matches and indels, CMs embed new states to handle paired/not-paired and directionality information. 

For instance, in the paired sites, deletions can involve either a single 5' or 3' nucleotide, or the 

complete base pair. The direction also matters for the insertions that can now concern either the 5' or 3' 

ends of a base pair. In order to permit multi-loops, the bifurcation states are incorporated as well. In 

spite of their superior accuracy, CM cannot be used in all situations and are restricted to the 

identification of unsplit genes. The mapping of queries composed by multiple exons is impossible due 

to the impossibility of aligning secondary structures to a target interrupted by introns whose position is 

unknown. Moreover CMs need to “learn” from a set of homologous transcripts, but the set of 

sequences required to train the model are not always available. There is some circularity in this 

problem where the CM is used to search homologs that are themselves needed to estimate the model. 

Another layer of complexity results from the need to assemble a multiple sequence alignment of 

homologous sequences, needed to train the CM. In the CM the alignment will be used for a 

probabilistic description of matches, mismatches, insertions and deletions. However, generating 

accurate RNA alignments is difficult. In Rfam [132] CMs parameters are trained on high quality 

alignments (seed alignment) obtained from literature with manual curation. This input is used to 

estimate CMs, which are then passed to Infernal for homology searches. This CM/Infernal strategy is 

analogous to HMM/HMMER used for Pfam [133]. An option for spotting promising sequence 

segments and accelerate the detection procedure is to include a pre-filtering step as done for the Rfam 

setup [134]. This can be accomplished by means of ad hoc algorithms [135], profile HMMs like  

ML-heuristic [126] or BLAST with relaxed expectation values (E-values) to avoid losing sensitivity as 

achieved in Rfam [136]. A number of studies have been dedicated to the optimization of BLASTn 

parameters for seeking RNA homologs. For instance, in one study [120,137] the effectiveness of 

BLAST and other popular homology search methods tuned for ncRNA screenings were benchmarked. 

In [138], BlastR is introduced, a method that both takes advantage of di-nucleotide conservation and 

BLASTp as search engine to discover distantly related homologs. BlastR can be mounted on the top of 

computationally demanding algorithms to serve as a pre-filtering tool. One merit of this approach is 

that it neither require profiles nor secondary structure information, but relies solely on information 

encoded in primary nucleotide sequences.  

Together with sequence-based, profiles and structure-based methods, another possibility for 

detecting inter-species homologs involves the use of multiple genome alignments [43]. Once 

established reciprocity between blocks of genomes belonging to different organisms (i.e., syntenic 

regions), coordinate transfer from one gene to its homolog is straightforward and implies the projection 

of corresponding positions. This has been made possible thanks to the availability of genome 

sequences [139–142] and the development of alignment tools able to detect orthologous genomic 

regions, i.e., loci that proceeded from the same genomic position in the ancestral genome [143]. 

Although comparing ncRNAs is currently still a complicated task, there exist several bioinformatics 

options to workaround the poor sequence conservation and effectively perform homology based 

prediction of novel ncRNAs.  
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4. High-Throughput Technologies and Genome-Wide Annotation of ncRNAs  

4.1. Approaches for the High-Throughput Expression Detection  

Recent technological advances have allowed the collection of an unprecedented amount of RNA 

sequence data coming from a wide range of organisms and conditions. For many years the main 

strategy for transcript discovery had been the sequencing of cloned complementary DNA (cDNA) of 

expressed sequence tags (ESTs) [144–146]. EST sequencing was then successfully used for the 

generation of large-scale expression datasets [147], and already by 1991 this approach had been 

utilized for human gene discovery [148]. Although it is widely acknowledged that ESTs represent a 

valuable resource to detect gene expression, they also came with severe limitations such as cost and 

sequencing requirements. Their dependence on bacterial cloning is an important source of bias and 

contamination that can lead to redundancy and under-representation or over-representation of  

host-selected transcripts [149–151]. More recently, oligonucleotide microarray technologies have 

made high throughput expression analysis much more practical, while the even more recently 

developed RNA-seq technologies promising transcriptomic analysis of unprecedented accuracy thanks 

to the application of NGS methods to transcriptome sequencing. Microarrays rely on a collection of 

nucleotide probe spots attached to a solid support. RNAs are labeled with fluorescent dyes, hybridized 

to the arrays, washed, and scanned with a laser [152]. Such arrays have been used for the investigation 

of known or predicted genes and have been until recently one of the most widespread technology for 

transcriptome exploration. Standard expression arrays are affected by several limitations including the 

hybridization and cross-hybridization artefacts [153–155], dye-based identification problems [156–160] 

and physical manufacturing restrictions, impeding the detection of splicing events and the discovery of 

unannotated genes [151]. A variant of traditional expression array is represented by tiling arrays. These 

are chips that use extremely densely spotted and probes representing overlapping contiguous regions of 

genome. Several works relying on this technology and aiming at transcript discovery have been 

published [38,161–164]. However tiling arrays require a substantial quantity of RNA and have further 

limitations affecting their sensitivity, specificity and the detection of splicing [151]. For instance, as 

shown in [165], microarrays lack sensitivity for genes expressed either at low or very high levels and if 

compared with RNA-seq have much smaller dynamic range. As a consequence, microarrays are 

inadequate for the quantification of both the prevailing RNA classes, and the less abundant ones. For 

genes with medium levels of expression, RNA-seq and microarrays return comparable results [165–167]. 

Still, each approach presents very specific advantages and disadvantages. A thorough comparison of these 

two approaches lies outside the purpose of this text (for reference, see [152,166,168]). Additional methods 

for high-throughput RNA discovery include the serial analysis of gene expression (SAGE) [169,170], 

several updated variants such as LongSAGE [171], RL-SAGE [172], SuperSAGE [173] and analogous 

approaches like the massively parallel signature sequencing (MPSS) [174]. In general, SAGE-like 

methods consist in the cloning and then the sequencing of short tags (17–25 nucleotides) coming from 

RNA extract. The resulting tag sequences can be compared against the source genome or a reference 

RNA database to attain the digital count of transcript quantities. Two other protocols that can be used 

in combination with high-throughput sequencing are the paired-end ditags (PETs) [175] and the rapid 

amplification of cDNA ends (RACE) [176–178]. Both approaches can be used to demarcate transcript 
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boundaries, i.e., define start and end of a transcript. Such information is extremely valuable in situ 

ations where the first and last exons can be respectively 5' and 3' associated with other transcript 

isoforms, thus making it difficult to define gene boundaries. Similarly, the cap analysis of gene expression 

(CAGE) [179,180] is a technique that allows high-throughout profiling of transcriptional starts points. 

Another promising application for ncRNA discovery, named RNA CaptureSeq, has been recently 

reported [181]. This approach is able to reach unprecedented sequencing depth. RNA CaptureSeq is 

inspired from exome sequencing techniques and relies on the use of tiling arrays in order to enrich the 

population of RNAs one wants to sequence. This enrichment step allows a sequencing depth that 

would be impossible when dealing with the full transcriptome. Although RNA CaptureSeq is not 

suited to generate full transcriptome profile, it can be used to target specific genomic sites and detect 

transcript isoforms expressed at very low abundance. As shown in [181] RNA CaptureSeq can be used 

to fuel the detection of ncRNAs that are missed by genome-wide standard RNA sequencing. 

4.2. Datasets  

Undoubtedly, high-throughput technologies enable the tremendous possibility to get both qualitative 

and quantitative information on whole transcripts mass produced by cells. This has resulted in  

high-resolution views of RNA expression dynamics throughout different tissues and time points [182–184] 

and fueled the development of ncRNA specific databases, such as Rfam [132], NRED [20],  

lncRNAdb [33], RNAdb [185], fRNAdb [186] and NONCODE [187]. Furthermore, various groups 

and projects, such as RefSeq [188], GENCODE [14,189], HAVANA team [190,191], Ensembl [192] 

and FANTOM [193] undertook the task to comprehensively annotate functional elements, including 

ncRNAs, of a number of species using experimental data. The RefSeq repository houses annotations 

resulting from automated analyses, collaboration and manual curation [188,194]. The GENCODE 

pipeline combines HAVANA and Ensembl automatic annotations to annotate the human gene features 

generated in the context of the ENCODE project [14,45,189]. The HAVANA team has the goal to 

provide manually curated annotations of transcripts aligned to human, mouse and zebrafish genomes. 

Ensembl runs an automatic genebuild process including ab initio gene predictions and release 64 

supported a total of 61 species [192]. The Ensembl genebuild system is adapted to every species in the 

set according to the data that is available. For instance Ensembl imports and merges high quality 

HAVANA annotations exclusively for human and mouse. The FANTOM consortium aims to provide 

functional annotations to the full-length cDNAs [193]. The annotations generated by these consortia 

are freely available through genome browsers, including UCSC [195], Ensembl [196] and VEGA [197]. 

As new genomic regions get annotated and new transcript sequences become publicly available, these 

gene sets continue to growth [14,188,194]. A recent publication [14] indicated that in the last years the 

number of annotated protein-coding and non-coding transcripts in GENCODE has dramatically 

increased. For instance, passing from GENCODE version 3c (July 2009, http://www.gencodegenes.org/ 

archive_stats.html) to version 7 (December 2010, http://www.gencodegenes.org/archive_stats.html), 

the number of protein-coding transcripts increased from 68,880 to 76,052, and the number of lncRNAs 

jumped from 10,457 to 15,512. In terms of gene annotations, the number of known protein-coding 

genes has remained almost unchanged, while the ncRNA gene annotations expanded tremendously 

(see Figure 4). 
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Figure 4. Number of non-coding and protein-coding genes annotated over the last Ensembl 

releases. The x-axis indicates the number and the date of the release. The vertical axis 

reports the number of ncRNA (blue line) and protein-coding genes (red line). 

 

The overall picture, however, remains blurred by inconsistent findings, suggesting that more 

analyses are still needed. For instance, the recent estimates reported by the ENCODE project indicate 

that about the 62% of human genomic bases are expressed in long transcripts, while 5.5% only of the 

whole genome is found within the GENCODE annotated exons [198]. This discrepancy can be in part 

explained by the fact that GENCODE catalogues transcripts using cDNA/EST alignments [14] rather 

than RNA-seq short-read data. A classic low-throughput EST sequencing operated by the Sanger 

technology can identify mostly high abundant transcripts [199], while deep coverage RNA-seq 

experiments can reveal rare but potentially regulatory transcripts. Nonetheless, ESTs are longer than 

RNA-seq reads, and can provide more reliable transcriptional evidence [200]. 

4.3. NGS Challenges  

To make the most out of the extraordinary possibilities that NGS offers, it is essential to understand 

the current limitations. One important point is that the reads returned by standard NGS platforms are 

usually short (35–500 base pairs [201]) and as a consequence it becomes necessary to reassemble the 

full-length transcripts. Small non-coding RNAs (i.e., miRNA and piRNAs) represent an exception and 

there is no need to reassemble them, as they are small enough to be entirely covered by the read length. 

Unfortunately the process of reassembling transcriptomes starting from short reads is difficult. 

Normally RNA-seq dataset are big (gigabases to terabases), and thus need to be handled by sufficient 

large memory and by multi-CPU computers able to execute the algorithms in parallel with sufficient 

high-performance storage to store primary, temporary and output data. Although various short-read 

assemblers [202–204] were successfully applied to genome assembly, these packages cannot be easily 
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used to reconstruct transcriptomes. Applying tools normally designed for genome reconstruction to the 

problem of transcriptome assembly leads to multiple complications. A key issue is that the DNA 

sequencing depth is supposed to be identical over the entire genome while transcriptome sequencing 

depth is expected to fluctuate significantly. For this reason, DNA short-read assemblers could 

erroneously interpret highly abundant transcripts as repetitive genomic regions. Furthermore, when 

using genome short-read assemblers the read strand is not taken into account. On the contrary, when 

available, a transcriptome assembler should exploit the strand information to unravel possible antisense 

expressions on different strands. Finally, the transcript modeling is involved as transcript variants 

coming from the same gene can share exons and are difficult to resolve unambiguously [199].  

It is possible to work out the transcriptome assembly following a reference-based approach, a  

de novo assembly or combinations of each [199]. The first considers the initial mapping of the reads on 

a reference genome, and then the usage of transcript assemblers. To the end of labeling each read with 

the genomic location they come from, a new class of software, generally referred as read mapper, has 

recently shown up. In this context, the availability and the quality of the underlying reference genome 

are critical. Besides that, when dealing with massive amount of short-read data the CPU and the 

memory costs can be challenging, and several algorithms are being tailored to achieve best mapping 

efficiency [205–211]. Other important issues relate to the mapping of reads crossing exon-junction 

boundaries [212,213] and the uncertainty or lack of accuracy in read alignments. For most downstream 

applications, the accurate positioning of the reads back to the source genome is crucial. To improve the 

mapping accuracy, the process can take into account the read quality information [214,215]. The 

quality scores, introduced by the Phred algorithm [216,217], indicate the reliability of each base call in 

each read in a log-likelihood scale. Since bases with reduced quality scores have an increased 

probability to be sequencing errors, a read mapper should either use less severe penalization for 

mismatches at positions with low base-call quality, or not align such positions at all. The information 

about the quality score is particularly relevant when mapping reads of large size. This is a result of the 

fact that 3' ends of longer reads are affected by sequencing errors at higher rates [215]. Besides 

choosing a threshold for accepted mismatches, other important and sometimes arbitrary decisions 

regard the split mapping and multiple mapping reads. The first refers to reads that could not be aligned 

to the reference genome unless split in subparts. Such reads could either highlight the presence of an 

unreported exon-junction boundary, or be sequencing artefacts. The second indicates reads that align 

multiple times across the reference genome. This mapping uncertainty is caused by repeated elements 

and may results in flawed expression establishments. On one hand, removing multiple mapping reads 

from the analysis would imply an underestimation of the expression of genes embedding repeats.  

On the other hand, considering multiple mapping reads would lead to artefactual expression 

measurements. Once mapped the reads, additional issues concern the application of transcript 

assemblers. Several computational tools have been developed with the purpose of reconstructing 

transcripts in their entire length, i.e., annotating exon-intron transcript structures. These methods 

include Cufflinks [218], Isolazo [219] and Scripture [42]. In [220] the authors have shown that 

variations across transcript assemblers can be source of confusion, with low consistency across 

methods and a high number of false positives [200,219]. Transcript assemblers seem to have a better 

agreement when reconstructing protein-coding transcripts [43] with the agreement dropping 

dramatically when modeling large intervening ncRNAs (lincRNAs). For instance, Cufflinks and 
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Scripture share only 46% agreement for lincRNA transcript models [43]. Such discrepancies are 

caused by the differences in how each assembler reconstruct lowly expressed transcripts [43]. In other 

words, about half of the isoforms estimated by a method in areas with low read density do not 

correspond to isoforms called by the other method. This poor agreement between transcript assemblers 

highlights the need for further improvements, calling for the development of new algorithms to 

accurately represent low abundant transcripts.  

Another possibility to assemble a transcriptome from-short reads is de novo assembly of transcripts. 

This strategy does not require any reference genome and is therefore independent on the correct 

alignment of the reads to the splice sites. Advantages of this approach are that it is less reliant on 

accurate genome annotation and can be applied to organisms without sequenced or fully annotated 

genomes. Examples of applications adopting this strategy are described in [221–223]. Nevertheless, 

the application of de novo assembly to complex transcriptomes (e.g., higher eukaryotes) is complicated 

by the dataset sizes and the dense network of alternatively spliced variants. Furthermore, de novo 

transcriptome assemblers need much deeper sequencing than reference-based assemblers and are 

largely affected by sequencing errors [199]. 

Once transcriptome dataset is generated, there are additional complications in the downstream 

analysis if trying to distinguish genuine ncRNAs from mRNAs. Currently, this issue is becoming 

increasingly important as many researchers are only interested in one or the other. The most 

straightforward procedure would be to compare a newly generated transcriptome against existing gene 

annotations. However in most cases annotations are far from complete and the great majority of genes 

they include are protein-coding. As a consequence, in a normal RNA-seq experiment a substantial 

fraction of read contigs map outside of annotated exons [198]. Previously unreported transcripts can be 

either classified as ncRNA or mRNA according to the protein-coding potential they have. The in-silico 

assignment of a transcript to one of these two groups is not always trivial and may require dedicated 

expert curation [190]. Some transcript isoforms might insert coding exons and therefore could be 

partially translated, i.e., generating small peptides. There are further ambiguities for coding transcripts 

whose untranslated structured molecules are also functional as ncRNAs [224] and for genes having 

both coding and non-coding isoforms [225]. A commonly used approach to predict the coding 

potential involves the codon substitution frequency (CSF) estimation [226,227]. This measure is based 

on an input multiple alignment of orthologous sequences. The CSF score deems a region to be coding 

depending on how the sequences of the multiple alignment evolved, i.e., showing distinctive mutation 

patterns, as are expected in coding and non-coding loci. A coding region is expected to embed 

prevalently conservative amino acid substitutions and synonymous codon substitutions, while showing 

low occurrence of nonsense and missense mutations. Although CSF has been successfully applied in 

various research projects [226,228,229], the score is not always easy to estimate with the availability 

of trustworthy orthologues being the main limiting factor when dealing with new transcriptome 

datasets. Issues include scarcity or even the absence of orthologs, erroneous insert of pseudogenes in 

the set and absence of informative variations. For instance, as shown in [40] many putative human 

lncRNAs are not found in other species, and cannot be analyzed using CSF. Besides this, primate 

specific lncRNAs rarely show sufficient changes to highlight sense/nonsense mutations patterns. In 

addition to CSF, other strategies not relying on evolutionary signatures can be effectively used to 

predict if a transcript is going to be translated into protein or not. For example, there are dedicated 



Int. J. Mol. Sci. 2013, 14 15438 

 

 

BLAST flavors including BLASTx and RPS-Blast [124,230] that can be used to identify transcripts 

whose translational product possesses a match in protein databases such as Pfam [133] and UniProt [231]. 

Other algorithms include CPC (Coding Potential Calculator), a support vector machine (SVM) 

classifier including both Open Reading Frame (ORF) and homology predictions features [232], 

PORTRAIT (Prediction of transcriptomic ncRNA by ab initio methods) a SVM classifier not using 

homology information [233] and CPAT (Coding Potential Assessment Tool), a logistic regression 

model built with four sequence features including ORF predictions [234]. Unfortunately, 

bioinformatics predictions can easily return mistaken assignments when dealing with ncRNAs closely 

related to coding mRNAs, and result in some confusion when transferring annotation across species, or 

within a genome. Such observations may wrongly suggest pseudogenization events or a turnover 

between proteins and ncRNAs. 

4.4. Other Approaches  

Over the last few years, other approaches alternative or complementary to RNA-seq have been 

attempted to generate high-throughput ncRNA annotations. In 2009, Mitchell Guttman and co-workers 

published the first of a series of analysis that recently came out linking lncRNA detection to histone 

modifications [13]. In this work, the authors pioneered a chromatin-state based method to identify 

well-defined transcriptional units occurring between known protein-coding genes. Their analysis relied 

on the observation by [235] that promoters of genes expressed by the RNA polymerase II (Pol II) are 

signed by trimethylation of lysine 4 of histone H3 (H3K4me3) while the transcribed area is marked by 

trimethylation of lysine 36 of histone H3 (H3K36me3). Following this observation, the authors did 

chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) [235] to generate 

profiles of chromatin states. This approach revealed 1600 mouse lincRNAs, corresponding to 

H3K4me3-H3K36me3 chromatin domains and lying outside of protein-coding regions. The prediction 

reliability has been estimated by additional analysis showing that lincRNAs are more conserved than 

neutrally evolving sequences and that most of experimentally tested loci were found to be expressed [13]. 

An alternative strategy used for ncRNA detection involves a combination of different high-throughput 

data sources and their integration using bioinformatics [236]. This approach, named incRNA,  

relies on a machine learning method and has been applied to the genome-wide identification of 

Caenorhabditis elegans ncRNAs. incRNA combines predicted and experimental data for a total of 

nine different information sources. These include the expression data coming from various 

developmental stages and conditions, as well as the GC content, the predictions of RNA secondary 

structure folding energy, the prediction of evolutionary conserved DNA sequence and secondary 

structure. These results illustrate how the integration of multiple information sources ends in highly 

accurate predictions of novel ncRNA genes.  

Recently, a number of works reporting a massive quantity of novel ncRNA genes in various species 

have been published [40,43,44,237,238]. Such rapid growth has been possible thanks to the parallel 

development of new and ever more sophisticated bioinformatics approaches. Nevertheless, such 

analyses remain superficial with uncertainties of different type and degree affecting most predictions. 

For example, the homology search pipeline described in [40] is not sensitive enough to map rapidly 

evolving lncRNAs, hence the limit to play comprehensive evolutionary study. Moreover such lncRNA 
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predictions should be taken with care, not just because they are not experimentally verified, but also 

because they are far from representing the complete genome-wide lncRNA figure. For validation 

purpose, some works provide the number of predicted lncRNA supported by expression evidences. For 

instance in [13] the authors confirmed by tiling array the expression of ~70% lncRNA predictions. In 

other cases as in [44], RT-PCR has been used to validate 15 newly identified lncRNAs. On the short 

run available transcription data is expected to increase very rapidly, and the necessity to accurately and 

quickly validate ncRNAs is becoming more pressing than ever. 

Table 1. A summary of methods, datasets and browsers for non-coding RNA analysis. The 

first column indicates the resource type. The second column the resource name. The third 

column reports the PubMed ID when available, if not the web address. The fourth column 

provides a brief description of the resource.  

 Resource Pubmed ID Description 

Comparing 

ncRNAs 

(Section 2) 

Mfold 6163133 Single sequence RNA secondary structure 

prediction. RNAfold 12824340 

WAR 18492721 
WEB server allowing the execution of different 

alignment methods 

RNAalifold 12079347 

Folding previously aligned RNAs 

(Plan A) 

PFOLD 12824339 

ILM 14693809 

Construct 10518612 

Dynalign 11902836 

Sankoff derived algorithm for the simultaneous 

alignment and secondary structure prediction 

(Plan B) 

Foldalign 9278497 

Stemloc 15790387 

Consan 16952317 

pmmulti 15073017 

R-Coffee 18420654 Aligners taking into account previously estimated 

secondary structure 

(Plan C) 
RNAcast 16020472 

SARA 18689811 

3D structure alignment method 

DIAL 17567620 

iPARTS 20507908 

ARTS 16204124 

SARSA 18502774 

LaJolla 

http://www.mdpi. 

com/1999-4893/ 

2/2/692 

FRASS 20553602 
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Table 1. Cont.  

 Resource Pubmed ID Description 

Detecting 

ncRNAs 

(section 3) 

ML-heuristic 16267089 Profile HMM 

RAGA 9358168 Genetic algorithm 

RSEARCH 14499004 
Covariance model 

Infernal 12095421 

BlastR 21624887 BLAST-based dinucleotide homology search 

Datasets and 

browsers 

(section 4) 

ENCODE 22955616 

Consortium  Ensembl 22086963 

FANTOM 11217851 

HAVANA 

http://www.sanger.

ac.uk/research/ 

projects/ 

vertebrategenome/

havana/ 

Annotation team 

GENCODE 22955987 
Project for the annotation of all human gene 

features 

UCSC 12045153 
Genome browser 

VEGA 18003653 

RefSeq 18927115 Collection of DNA, transcripts, and proteins 

Rfam 12520045 

ncRNA database 

 

NRED 18829717 

lncRNAdb 21112873 

RNAdb 17145715 

fRNAdb 17099231 

NONCODE 15608158 

5. Discussion and Conclusions 

ncRNA functional characterization is a rapidly expanding research area. In the past few years, it has 

become clear that the majority of the transcripts in cells are more than mere intermediates between the 

hereditary information encoded in DNA and the mechanical operative component represented by 

proteins. Indeed, it appears that numerous transcripts may not be translated at all while still being 

involved in critical biological functions such as cell differentiation and chromatin remodeling. Taking 

together 15 human cell lines, the cumulative coverage of transcribed regions is ~62% and ~75% of the 

whole human genome for processed and primary transcripts, respectively [239]. This “pervasive 

transcription” is strikingly high, especially when considering that a mere 3% of the human genome 

codes for protein-coding exons. [198]. Numerous novel, previously uncharacterized RNA species have 

been recently detected. A sizeable fraction of them are defined as lncRNA, i.e., functional molecules 

longer than 200 nucleotides that do not show any coding potential. Some of these molecules are 

spliced, capped, differentially expressed in tissues/cells or developmental stages and tend to be more 

conserved across species than would result from neutral evolution. For these reasons and because of 

the increasing number of transcripts whose function has been experimentally validated, it is believed 

that many of these new ncRNAs belong to an important, relatively unexplored class of regulatory 
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elements. Thanks to ongoing improvements in sequencing technologies it has become possible to 

collect a significant amount of these uncharacterized transcripts. The latest generation of sequencing 

technologies makes it possible to perform large scale sequencing of entire transcriptomes. This 

technique, known as RNA-seq has already had a dramatic impact on our perception of the human 

transcription landscape [183,239]. Similar studies have been carried out in a number of genetic model 

organisms including rodents [44,151], plants [240], insects [184], worms [241] and yeasts [242].  

In [243] the author argues that RNA-seq represents the most promising technology for transcriptome 

research. The main strength of RNA-seq approaches are the high degree of dynamic range they offers, 

returning better sensitivities than microarrays without the need of a priori speculation regarding the 

genomic loci being transcribed [244]. If the pace of scientific progress is maintained and if costs keep 

decreasing, one can reasonably expect this technology to rapidly become a key component of 

personalized medicine, especially when considering the new venues of development that are currently 

being considered [152,245].  

From a functional perspective, much remains to be done for accurate characterization and functional 

analysis of ncRNAs. To infer the function of novel ncRNAs one possibility is looking for functional 

motifs. This can be done by running motif finders algorithms to predict structurally conserved and 

potentially functional motifs [246–252]. Furthermore, the functional characterization of a novel 

ncRNA can be aided by the detection of protein-RNA binding motifs and the identification of protein 

interaction partners. Experimental approaches suited for this include RIP (Rna Immunoprecipitation) 

and CLIP (Cross-Linking and ImmunoPrecipitation) [253]. Comparative studies also offer a very 

efficient way to have functional insights and prioritizing analysis. They can be used to predict function 

by homology, assess phylogenetic relationships, detect functional motifs or classify related molecules 

in order to identify families. A major challenge when tackling ncRNA comparisons results from the 

remarkable variability of traits and functions. Considering sizes only, ncRNA molecules can be as 

short as a miRNA (~22 nt) and up to ~17 kb long in the case of Xist [2]. Another difficulty when 

comparing ncRNAs is that most of these genes have poorly conserved sequences. Such diversity 

challenges our ability to compare, classify and search with conventional alignment tools. In addition 

ncRNA genes have no equivalent of codon bias and ORFs that help powering the statistical component 

of machine learning approaches when doing protein prediction [254]. The strongest signal contained 

by RNA sequences is usually evolutionarily conserved secondary structures. Many efficient algorithms 

exist that are able to predict potential structures using MFE or SCFG computations. Unfortunately, 

these predictions ignore the contribution of the environment and are not always accurate enough to 

significantly improve alignment accuracy and homology modeling. Emerging technologies allowing 

the high-throughput generation of experimentally derived secondary structures [255] will hopefully 

help addressing this problem. Unfortunately, taking into account secondary structures while comparing 

sequences is a challenging procedure, too intensive from a computational point of view to be practical 

in most circumstances [108]. This makes it is difficult to compare mono-exonic genes while taking the 

secondary structure into account, and totally impossible when the transcripts are multi-exonic (i.e., the 

secondary structures are interrupted by introns). It has been shown [40,237] that BLAST can be 

effectively used for lncRNA homolog prediction, in combination with splicing informed heuristics 

such as exonerate [256] or GeneWise [257]. This strategy is not new, and similar approaches have 

already been used for the discovery of protein-coding homologs [258–260]. As one would expect, 
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homology based RNA searches are severely limited by the capacity to align distant homologues. For 

instance, when searching the human lncRNA complement against mammalian genomes [40] or when 

using an estimated pig complement [237], the authors only managed to find, beyond primates, less 

than 50% of the query genes across cow, mouse or dog. This result may reflect a high turnover, but the 

conservation/disappearance patterns, poorly correlated to phylogenetic history, are most likely 

indicative of a limited detection capacity. Other confounding factors include misassembled or partially 

sequenced genomes. Additional analysis would be needed to validate the Blast/exonerate mapping 

approach. At this stage, it is therefore impossible, without further experiments, to establish whether 

lncRNA queries that failed to map are really absent in the target species or undetected. In this context, 

high quality templates, such as the GENCODE queries used in [40], offer better likelihood to return 

precise annotation. In the same publication it is also predicted that sizeable fraction of the human 

lncRNAs is primate specific [40]. This result is in agreement with a recently published study [44] 

where the authors identified lncRNAs expressed in rodents’ adult liver, and then compared the 

expression of the orthologous genomic regions. This work illustrates that loss of lncRNA transcription 

among rodents is associated with loss of sequence constraints and that many lncRNA genes seems to 

be species or lineage specific. Another application of homology based approaches is the possibility to 

identify novel human lncRNA genes candidates by using non-human templates as query [237]. As 

shown in the paper [237], there are 131 pig lncRNAs mapping to unannotated regions of the human 

genome. This result suggests that although human is probably one of the most extensively annotated 

higher-eukaryote, extra improvements might be achieved using data gathered in other non-model 

organisms. In [40] the authors also extend the lncRNA conservation study to a multiple genome 

alignments strategy based on PhastCons conservation scores. The analysis is in agreement with 

previous reports [13,30] and confirms that lncRNAs sequences are less constrained than those of 

protein-coding genes. Remarkably, it was shown that the distribution of lncRNA exons conservation is 

bimodal, with a fraction substantially approximate to ancestral repeats, and another group appreciably 

shifted toward the protein-coding set. This indicates that some lncRNA are under a selection as strong 

as that seen for proteins and suggests that a sizeable fraction of lncRNA genes are probably functional. 

The fraction of lncRNAs having a mutation rate almost indistinguishable from repeats suggests that at 

least some lncRNAs (close to a third) may be transcriptional noise. However, despite this abundance of 

lncRNA sequences that do not appear to be under selection, the transcript product itself might still 

have a biological role and as shown in [261,262] the transcription process itself of some ncRNA can 

bear regulative functions.  

Despite the difficulties encountered when comparing ncRNAs, homology search of ncRNAs can be 

successfully used to detect new genes. New and ever more sophisticated algorithms will help 

addressing the challenges brought by NGS technologies. The ultimate goal is the creation of thorough 

transcriptome annotations and unbiased expression profiling of each individual transcript. It is still too 

early to tell. However, if they live up to their promises and expectation, the discovery of this new large 

class of RNAs may well define one of the turning points of modern biology.  
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