
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16358  | https://doi.org/10.1038/s41598-022-20873-6

www.nature.com/scientificreports

m6A RNA methylation 
regulator‑related signatures exhibit 
good prognosis prediction ability 
for head and neck squamous cell 
carcinoma
Yujia Zhai1 & Lian Zheng2*

Head and neck squamous cell carcinoma (HNSCC) has become the sixth most common malignant 
disease worldwide and is associated with high mortality, with an overall 5-year survival rate of less 
than 50%. Recent studies have demonstrated that aberrantly expressed m6A regulators are involved 
in multiple biological and pathological processes, including cancers, but the specific mechanisms 
of m6A regulators in HNSCC are not well elucidated. In this study, we adopted The Cancer Genome 
Atlas (TCGA)-HNSCC database and performed a consensus clustering analysis to classify the HNSCC 
samples. Least absolute shrinkage and selection operator (LASSO) regression was applied to construct 
an m6A signature-based HNSCC risk prediction model. Cell type identification based on estimating 
relative subsets of RNA transcripts (CIBERSORT) algorithms was adopted to evaluate the immune 
cell infiltration level in the tumor microenvironment. Based on the expression of m6A regulators in 
HNSCC, we identified two clusters, cluster 1 (C1) and cluster 2 (C2). C2 showed a better prognosis than 
C1 and was mainly enriched in the HIPPO, MYC, NOTCH, and NRF signaling pathways. We constructed 
an m6A signature-based risk score model and classified patients into high- and low-risk score 
subgroups. The high-risk-score group showed poor clinical characteristics, higher immune infiltration 
levels, higher chemokine and chemokine receptor expression levels, and lower immune checkpoint 
gene expression than the low-risk-score subgroup. In conclusion, our comprehensive analysis suggests 
that the m6A signature-based risk score might function as a good prognostic predictor. Our study may 
provide novel therapeutic clues and help predict the prognosis of HNSCC.

Methylation of adenosines at the N6 position (m6A) has been shown to be the most prevalent modification of 
eukaryotic mRNAs1. Dynamic and reversible m6A modification is coordinated through installation by methyl-
transferases (“writers”), eradication by m6A eraser demethylases (“eraser”), and recognition by binding proteins 
(“readers”). m6A is the most abundant type of mRNA nucleotide modification and plays diverse roles in physi-
ological development and pathophysiological processes, including cancers.

m6A writers include METTL3, METTL14, WTAP, and KIAA1429, and m6A erasers include FTO and 
ALKBH5. m6A readers, which are proteins that recognize m6A and regulate mRNA processing, include 
YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, IGF2BP1, IGF2BP2, and IGF2BP3. In tumor 
biology, m6A modification plays crucial roles in tumorigenesis, proliferation, and metastasis2. Reporters have 
revealed that m6A RNA methylation mediates non-small cell lung cancer proliferation and progression3. Liu 
et al. demonstrated that m6A has oncogenic functions and promotes gastric cancer progression4.

Aberrantly expressed m6A regulators also function as potential biomarkers in cancers5–7. Studies have shown 
that KIAA1429 upregulation predicts a poor prognosis in colorectal cancer6. Through bioinformatics analysis, 
Guo et al. revealed that decreased m6A regulator expression is related to greater immune cell infiltration and 
better survival in pancreatic cancer5. The evidence also indicates that METTL14 downregulation in renal cell 
carcinoma patients is associated with malignant characteristics and predicts a poor prognosis7. These studies 
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suggest that m6A regulators might modulate the tumor microenvironment and exhibit prognostic prediction 
efficacy in HNSCC.

Increasing evidence demonstrates that m6A in the tumor immune microenvironment plays a critical role in 
the pathogenesis of various cancers. m6A modification also functions in homeostasis and tumor immunosurveil-
lance by promoting the antitumor activity of NK cells in the tumor microenvironment8. Low m6A regulator-based 
scores are associated with a better prognosis in small-cell lung cancer after adjuvant chemotherapy9. In addition, 
this low-score cohort exhibits more CD8+ T-cell infiltration and is more responsive to cancer immunotherapy9. 
Nevertheless, the expression pattern and pathophysiological role of m6A in HNSCC remain largely unknown.

In this study, we performed bioinformatics analysis, classified HNSCC patients into subtypes with different 
scores and comprehensively explored the m6A signature-associated clinical features, mutations, phenotype-
related gene clusters, and immune infiltration. We also constructed and validated an m6A regulator-based risk 
score model. Our study may provide novel clues for HNSCC prognosis and immunotherapy predictions.

Results
Copy number variation (CNV) and whole‑exome single‑nucleotide polymorphism (SNV) anal‑
yses of m6A regulators in HNSCC.  Genomic alterations have a great impact on tumor development, 
progression, and therapeutic responses. Aberrant m6A regulator alterations are closely related to malignant 
tumor activities. To investigate the alterations in m6A regulators, we explored SNVs and CNVs in HNSCC from 
TCGA. The results revealed alterations in m6A regulator CNVs, as shown in Table 1, and RBM15 accounted 
for 1.01% amplification, and 47.92% of deletion rate, the landscape of regulators was listed. The proportion of 
YTHDF3 amplification was highest, reaching 20.88%. The various m6A regulator CNVs are illustrated in Sup-
plementary Fig. 1. We also identified the SNVs of m6A regulators and recognized alterations in 86 (16.93%) of 
the 508 total samples, being the more prevalent alterations in KIAA1429 and LRPPRC (Supplementary Fig. 2).

m6A regulators are differentially expressed and associated with prognosis.  m6A modifications 
have a close relationship with tumor progression. To investigate the m6A regulator expression levels, we adopted 
the genomic profiles of 20 selected m6A regulators. The results revealed that 18 of these 20 genes showed sig-
nificant differences between tumor tissues and paired normal tissues (Fig. 1A). To investigate whether the m6A 
regulator status is associated with clinical outcomes, we adopted univariate Cox regression models for the clini-
cal follow-up data. The results revealed that HNRNPC exhibits a close relationship with the overall survival time 
of the patients and might play key roles in tumor progression (p = 0.016) (Fig. 1B). To better investigate the con-
nection between m6A regulators and prognosis, we classified these 20 genes using the Euclidean method with 
the “dist” function based on the expression levels of these 20 genes. We then classified these 20 m6A regulator 
genes into four regulator clusters, namely, regulator cluster A, regulator cluster B, regulator cluster C, and regula-
tor cluster D, based on their genomic expression levels. These results suggest that clusters with similar biological 
functions might present negative correlations. The red line represents positive correlations between YTHDC2 
and IGF2BP1, and other clusters connected with gray lines are negatively correlated each other (Fig. 1C).

Table 1.   m6A modification proportions among 20 genes.

Classification Regulators Duplication Deletion CNV_sum Amplification % Deletion%

Writer

METTL3 958 56 1094 7.31 5.12

METTL14 991 87 1092 1.28 7.97

RBM15 989 92 1092 1.01 47.92

RBM15B 766 325 1092 0.09 29.76

WTAP 1003 62 1092 2.47 5.68

CBLL1 974 25 1092 8.52 2.29

ZC3H13 908 162 1092 2.01 14.84

Eraser
ALKBH5 983 78 1093 2.93 7.14

FTO 999 72 1117 4.12 6.45

Readers

YTHDC1 994 64 1095 3.38 5.84

YTHDC2 929 151 1096 1.46 13.78

YTHDF1 959 20 1092 10.35 1.83

YTHDF2 1023 55 1093 1.37 5.03

YTHDF3 851 13 1092 20.88 1.19

IGF2BP1 1044 11 1092 3.39 1.01

HNRNPA2B1 947 18 1092 11.63 1.65

HNRNPC 963 56 1100 7.36 5.09

FMR1 1013 5 1093 6.86 0.46

LRPPRC 1034 14 1094 4.2 1.28

ELAVL1 990 79 1095 2.37 7.21
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m6A signature‑based subtype.  Distinct m6A regulator-based clusters were characterized by markedly 
different prognoses. To better understand the m6A signatures, samples were clustered based on RNA-seq data 
through unsupervised clustering using ConsensusClusterPlus. We used the cumulative distribution function 
(CDF) and found that the clustering result obtained with k = 2 was relatively stable (Fig. 2A,B). The results dem-
onstrated that cluster 1 exhibited a poorer prognosis than C2 (p = 0.018, Fig. 2C). We also constructed disease-
specific survival (DSS), disease-free interval (DFI) and progression-free interval (PFI) curves to evaluate the 
prognosis of HNSCC patients. The C2 cluster showed significantly improved DSS (p = 0.032; Supplementary 
Fig. 3A) and PFI (p = 0.014, Supplementary Fig. 3B). The DFI (p = 0.67) showed no significant difference between 
the C1 and C2 clusters (Supplementary Fig. 3C). Our evaluation of the differences in tumor-associated pathway 
scores between the two subtypes revealed that the C2 cluster was significantly enriched in the HIPPO, MYC, 
NOTCH, NRF1, TGF-beta, PIK3, RAS and TP53 pathways (Fig. 2D).

Clusters C1 and C2 show significantly different tumor mutation burdens (TMBs) and altera‑
tions.  Different m6A regulator-based clusters were also characterized by significantly different TMBs and 
alterations. To characterize the TMBs in the two clusters, we analyzed the distribution pattern of the TMBs. The 
TMBs showed that the alterations occupied 71.65% of all samples (364 of 508) (Fig. 3A). The results indicated 
that C1 showed a higher TMB than C2 (p = 0.011, Fig. 3B).

Clinical characteristics of the C1 and C2 clusters.  Distinct m6A regulator-based clusters also featured 
significantly different clinical characteristics. To evaluate the clinical feature distribution in the two subtypes, we 
found no significant difference in the survival status, M stage, N stage, age, or HPV16 status (Fig. 3C–G), but 
significant differences in sex, T stage, stage, and tumor grade were detected (Fig. 3H–K). These results suggest 
that m6A signatures are closely related to clinical characteristics. The detailed clinical information is illustrated 
in Supplementary Table 1.

Identification of m6A‑associated DEGs.  In this analysis, we identified 945 DEGs between C1 and C2, 
which included 242 upregulated genes and 703 downregulated genes, as shown in the volcano plot (Fig. 4A). Fur-
thermore, we performed unsupervised consensus clustering of the DEGs between the C1 and C2 subgroups and 
identified 3 clusters (cluster A, cluster B, and cluster C). C1 was mainly located in cluster A (Fig. 4B). According 

Figure 1.   Most m6A regulators are significantly differentially expressed in HNSCC tumor tissues and are 
associated with patient prognosis. (A) m6A regulators were significantly increased in tumor tissues compared 
with normal tissues. (B) Univariate Cox analysis forest map of regulators. (C) Construction of the m6A-
associated regulatory network. The data were analyzed by t tests: *p < 0.05; **p < 0.01; ***p < 0.001.
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to the KM curve, cluster A presented the worst prognosis, whereas cluster C exhibited the best prognosis accord-
ing to 15 years follow data (Fig. 4C). The adjusted pairwise comparisons demonstrated no significant differences 
between clusters C and B and between clusters A and C. Cluster B showed a shorter overall survival time than 
cluster A (p = 0.0066) (Supplementary Fig. 3D–F). In addition, a gene set variation analysis (GSVA) revealed that 
Clusters A, B, and C were enriched in significantly different pathways (Fig. 4D). Cluster A was mainly enriched 
in the retinal metabolic process, peptidyl methionine modification, and isoprenoid biosynthetic process catego-
ries. Cluster B was mainly enriched in natural killer cell activation involved in the immune response, peptide 
cross linking, Golgi ribbon formation, desmosome organization, T helper 2 cell cytokine production, positive 
regulation of ruffle assembly, epidermal cell differentiation, keratinization, cornification and regulation of water 
loss via skin. Cluster C was enriched in cell migration in the hindbrain, positive regulation of endothelial cell 
chemotaxis, synaptic vesicle clustering, cardiac lift ventricle morphogenesis, keratan sulfate catabolic process, 
regulation of developmental pigmentation and regulation of endothelial cell chemotaxis (Fig. 4D). To detect the 
m6A regulator expression levels in different clusters, we examined the distribution of these 20 genes in C1 and 
C2 (Supplementary Fig. 4A). We also examined the distribution of these 20 genes in clusters A, B, and C (Sup-
plementary Fig. 4B).

Construction and validation of an m6A regulator signature‑based prognostic model.  In detail, 
to better construct the prognostic model of m6A regulators, we applied Cox regression and lead absolute shrink-
age and selection operator (LASSO) regression analysis and described the changing trajectory of each inde-
pendent variable. The number of independent variable coefficients approaching zero increased with decrease in 
lambda (Fig. 5A). The confidence interval (CI) for each lambda was examined, as shown in Fig. 5B. The optimal 
model was acquired with a lambda value equal to 0.0173. We adopted the step AIC function from the MASS R 
package and identified 5 genes, namely, CYP26A1, KIF13B, CPVL, FCGBP, and MB. The 5-gene signature-based 
model was constructed according to the following equation: RiskScore = 0.178*CYP26A10.446*KIF13B + 0.305
*CPVL0.238*FCGBP + 0.087*MB. The risk score landscape of each sample is illustrated in Fig. 5C. The AUC at 
1, 3, and 5 years suggested that this 5-gene model presented good prognostic prediction efficacy (Fig. 5D). We 
calculated the risk score of each sample according to the expression level of the TCGA training dataset samples 
and obtained the risk scores of the samples. A Z score analysis of risk scores was then performed to categorize 
samples with scores > 0 into the high-risk group and those with scores < 0 into the low-risk group. The high-risk-
score group presented a poorer prognosis than the low-risk-score group (uncorrected p = 0.001, HR = 2.11, 95% 

Figure 2.   Construction of m6A-related subtypes. (A) CDF curve and CDF curve delta area of the TCGA 
HNSCC cohort. (B) T Sample clustering heatmap, consensus K = 2. (C) KM curve of the two subtypes in the 
TCGA-HNSCC cohort. (D) Estimation of the scores of different subtypes in 10 abnormal tumor pathways. (E) 
Proportions of immune cells in different subtypes.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16358  | https://doi.org/10.1038/s41598-022-20873-6

www.nature.com/scientificreports/

CI 1.61–2.76) (Fig. 5E). The TCGA gene profile was utilized as the validation dataset. The risk score distribution 
landscape and the AUC indicated a good and stable prediction efficiency (Fig. 6A,B). Consistent with the train-
ing set, the high-risk score subgroup showed a poor predicted prognosis (uncorrected p = 0.0026, HR = 1.66, 
95% CI 1.29–2.13, Fig. 6C). To better evaluate the efficiency of the 5-gene model in the TCGA all-sample set, we 
calculated the risk score of each sample and the AUCs at 1, 3, and 5 years (Fig. 6D,E). The high-risk-score group 
presented a shorter survival time than the low-risk-score subgroup (p < 0.0001, HR = 1.84, 95% CI 1.53–2.22, 
Fig. 6F). The results agreed well with previous findings. Based on the previous 5-gene model, we also constructed 
an m6A regulator-associated gene model, and based on the expression of these m6A regulators, we classified 
HNSC patients into high- and low-risk score subgroups. The m6A score model efficiency was evaluated based 
on the TCGA training set and validated based on the TCGA validation set. A total of 424 samples from TCGA-
HNSC were classified into a 212-sample training set and a 212-sample validation set. The detailed clinical infor-
mation of the high- and low-m6A-score subgroups is illustrated in Supplementary Table 1. The high-m6A-score 
group presented a poorer prognosis than the low-m6A-score group (Supplementary Fig. 5A–D).

The high-m6A-score group presented distinct immune-associated signatures. We calculated the infiltration 
levels of 22 immune cell types in the two m6A score-based groups, and the results demonstrated that 8 (36.36%) 
immune cell types showed a significant difference (Fig. 7A). We also performed a single-sample gene set enrich-
ment analysis (ssGSEA) to calculate the IFNγ score of each patient, and significant differences in IFNγ scores 
were observed between the high- and low-score groups (Fig. 7B). To evaluate the differences in chemokine 
gene expression between the two groups, we calculated the chemokine gene expression levels and found that 12 

Figure 3.   m6A modification subtypes show a close relationship with common genomic mutations. (A) 
Significantly altered genes and signatures in the C1 and C2 subgroups. (B) The TMB differed between the 
C1 and C2 subgroups. (C) Number of mutated genes between the C1 and C2 subgroups. (D–K) The m6A-
associated subgroups C1 and C2 presented significantly different clinical feature distributions.
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chemokines showed significantly differential expression between the two groups (Fig. 7C). We also calculated 
the chemokine receptor gene expression levels and found that the expression levels of 6 of 18 (33.33%) genes 
were markedly different (Fig. 7D). Furthermore, we obtained 47 immune checkpoint genes and found that 14 
(29.79%) immune checkpoint genes presented low expression levels in the high-m6A-score group (Fig. 7E). To 
investigate the correlation between m6A regulators and the hypoxia score, we performed GSEA and calculated 
the hypoxia score of each regulator. The results demonstrated that METTL3 (p < 0.05), ZC3H13 (p < 0.001), 
ALKBH5 (p < 0.001), FTO (p < 0.001), YTHDF1 (p < 0.001), YTHD3 (p < 0.001), HNRNPA2B1 (p < 0.01), FMR1 
(p < 0.01), and ELAVL1 (p < 0.01) were significantly correlated with m6A regulators (Supplementary Fig. 6A) (the 
p value in this section is uncorrected). The m6A regulator-based cluster C had a markedly higher hypoxia score 
than cluster A (uncorrected p = 0.001). The high-m6A-score subgroup exhibited a higher hypoxia score than 
the low-m6A-score subgroup. The hypoxia score did not significantly differ between C1 and C2 (Supplementary 
Fig. 6B). We performed univariate and multivariate Cox regression analyses to evaluate the independence of 
the m6A score signature model in terms of clinical application. The univariate Cox regression analysis showed 
that the m6A score was significantly correlated with survival, and the corresponding multivariate Cox regres-
sion analysis revealed that the m6A score-based group (uncorrected p < 0.05, HR = 1.76, 95% CI 1.23–2.53) was 
significantly correlated with survival (Fig. 8A,B). These outcomes revealed that the m6A score model can exhibit 
good prognostic prediction value in the clinic.

Biological functional enrichment in the m6A score model.  To explore the relationship between the 
m6A score and associated biological functions, we performed ssGSEA and determined that five functional path-

Figure 4.   m6A-associated DEGs. (A) Volcano plot of m6A-associated DEGs. (B) Unsupervised cluster analysis 
diagram of m6A-associated DEGs. (C) KM curves of three m6A gene clusters. (D) A GSVA indicated that three 
clusters, A, B, and C, were enriched in different pathways.
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ways were negatively correlated with the m6A score and that 10 pathways were positively correlated with the 
sample m6A score. In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed 
in this study to investigate the enriched signaling pathways10. The results from the KEGG enrichment-based 
cluster analysis of the pathways are illustrated in Fig. 8C. The KEGG pathways cardiac muscle construction, 
glycerophospholipid metabolism and olfactory transduction showed increased enrichment in the high-m6A-
score group (Fig. 8D).

Discussion
Epigenetic modifications have emerged as abundant modifications throughout the transcriptome and play very 
important roles in genome evolution and innovation11. m6A plays a predominant role in controlling gene expres-
sion and influencing physiological and pathological processes12. Increasing evidence demonstrates that alterations 
in m6A regulators are novel and decisive factors in tumor progression, chemotherapy resistance, and immuno-
therapy responses13. m6A modification promotes mitochondrial energy metabolism in the pathogenesis of colo-
rectal cancer by both stabilizing the ZFAS1/OLA1 axis and activating the Warburg effect14. KIAA1429 functions 
as a potential prognostic marker in colorectal cancer because it activates proliferation by downregulating WEE1 
expression in an m6A-independent manner6. Zhang et al. revealed that m6A regulators serve as therapeutic 
targets for overcoming chemotherapy resistance in small-cell lung cancer patients15. The N6-methyladenosine 
reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect, which is implicated in colorectal 
cancer. In our analysis, we comprehensively investigated m6A regulator alterations and their prognostic roles 
and constructed a risk score model based on HNSCC patient-based public databases. To better understand the 
crucial functions of m6A regulators in HNSCC progression and proliferation, we classified m6A regulators into 
two clusters. Cluster 1 exhibited a poor prognosis and was characterized by decreases in the HIPPO-, MYC-, 
NOTCH-, NRF1-, TGF-beta-, PIK3-, and RAS-associated tumor pathways. We also identified three clusters of 
m6A phenotype-associated DEGs. These three clusters presented significantly different prognoses and enrich-
ment pathways. Furthermore, we constructed five hub gene-based risk score models, and validation of these 
models revealed their good clinical stability. Furthermore, we built and validated an m6A score model with 
good stability. RNA m6A modification is abundant in eukaryotes, bacteria and archaea16,17. This RNA modifica-
tion mainly functions in mRNAs and plays a very important role in the metabolism and function of mRNAs. 
Recent studies have revealed that m6A regulators are involved in the occurrence and development of cancers18. 
These regulators mainly have three types of functions: “writers”, “erasers” and “readers”. m6A regulators are 
dynamic and reversible epigenetic modifications that are able to regulate the ability of cells to differentiate and 
regenerate18. The m6A-related DEGs might be involved in abundant functions19. Therefore, exploring the m6A 

Figure 5.   Construction and validation of a m6A phenotype-associated prognostic model. (A) The horizontal 
axis represents the log value of lambda, and the vertical axis represents the coefficient of the independent 
variable. (B) Confidence intervals for each lambda. (C) Risk score, survival time, survival status, and expression 
of 5 genes in the TCGA training group. (D) ROC curve and AUC of the 5-gene signature classification. (E) KM 
survival curve distribution between the high- and low-risk scores of the 5-gene signature in the training set.
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Figure 6.   Validation of the m6A phenotype-associated prognostic model. (A) Risk score, survival time, survival 
status, five-gene expression, ACU curve, and KM curve of the TCGA validation dataset. (B) Risk score, survival 
time, survival status, five-gene expression, ACU curve, and KM curve of the TCGA all-sample validation 
dataset.
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modification mechanism in cancer initiation and progression is of great importance and might pave the way for 
further HNSCC diagnosis and treatment.

Convincing evidence indicates that m6A regulators are involved in a variety of types of pathological and 
physiological immune cell infiltration and immune responses and safeguard homeostasis and tumor immuno-
surveillance functions8. Zhou et al. revealed that the m6A regulator ALKBH5 plays an unexpectedly specific 
role in controlling the pathogenicity of CD4 T cells during autoimmunity20. Our study showed that a high m6A 
risk score indicates poor clinical characteristics, immune infiltration levels, and chemokine, chemokine recep-
tor, and immune checkpoint gene expression. Lin et al. reported that the crosstalk of RNA modifications is also 
involved in immune infiltration characteristics21. Ni et al. demonstrated that in bladder cancer, METTL3 resists 
the cytotoxicity of CD8+ T cells by regulating PD-L1 expression22. Gao et al. found that m6A methylation also 
plays a very important role in the regulation of tumor malignancy and antitumor immunomodulation23. Yi et al. 
demonstrated that m6A regulators exert a very important effect on immune cell infiltration in HNSCC24. Jin et al. 
reported that the m6A regulator ALKBH5 might suppress tumor progression in the immune microenvironment 
through the RIG-1/IFNA axis25.

Yang et al. revealed that m6A regulators are closely related to the tumor microenvironment and might affect 
immunotherapy and chemical strategies for HNSCC26. These findings pave the way for novel HNSCC diagnosis 
and treatment methods. In addition, further exploration of HNSCC might identify more therapeutic targets for 
early diagnosis and treatment. Despite this finding, larger samples and independent validations are still needed 
to develop prognostic biomarkers of the immune features of HNSCC in future studies. Thus, the crucial regu-
latory mechanism of m6A modification in HNSCC progression and the immune microenvironment is quite 

Figure 7.   Correlation analysis of immune infiltration in the m6A-associated high- and low-risk-score groups. 
(A) Infiltration levels of 22 types of immune cells between the high- and low-m6A-risk score-based subgroups 
in the TCGA cohort. (B) CYT scores between the high- and low-m6A-risk-score subgroups. (C) Differences 
in chemokine expression between the high- and low-risk-score groups. (D) Distribution of chemokine 
receptor expression between the high- and low-risk-score groups. (E) Distribution of immune checkpoint gene 
expression between the high- and low-risk-score groups.
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unclear in terms of biological and pathological processes, and further research in both laboratory and clinical 
settings is needed.

In summary, this model was found to exhibit good abilities for HNSCC prognosis prediction, immune infil-
tration level evaluation and risk factor assessment.

Methods and materials
Databases.  Fragments per kilobase million (FPKM) data for HNSCC were obtained from the TCGA 
HNSCC cohort (https://​portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​HNSC). Count data were converted to tran-
scripts per million (TPM) values, and all subsequent analyses were performed using the TPM values. Some 
samples with no corresponding mutation data (or gene expression profile data) were removed. Samples without 
a living status and an alive time less than 0 were eliminated. In this analysis, a total of 424 tumor samples and 44 
normal samples with gene expression profiles and corresponding adjacent normal tissues were included. In total, 
508 HNSCC patients with mutations in TCGA databases were selected for further analysis.

Identification of alterations of m6A regulators.  We downloaded HNSCC single nucleotide variation 
(SNV) and copy number variation (CNV) profiles from TCGA. According to the degree of CNV changes, we 
classified CNVs into three types: amplifications (segment mean > 0.2), duplications (− 0.2 < segment mean < 0.2), 
and deletions (segment mean < − 0.2).

Cox regression analysis.  Variables showing notable differences in a univariate Cox regression analysis 
were applied in this analysis. Variables with a p value < 0.05 in the univariate Cox analysis were subjected to 
stepwise multivariate Cox regression analysis.

ConsensusClusterPlus.  ConsensusClusterPlus is a useful technique in cancer research in which intrin-
sic groups share biological characteristics, with confidence assessments and item tracking27. Cluster analysis 

Figure 8.   The m6A risk score model presents good independence in clinical application. (A) Univariate 
analysis of the m6A risk score model based on clinical factors. (B) Multivariate analysis of the m6A risk score 
model based on clinical factors. (C) Correlation coefficient clustering of risk scores and KEGG pathways. (D) 
Pathway enrichment analysis of different risk score subgroups.

https://portal.gdc.cancer.gov/projects/TCGA-HNSC
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was performed using the ConsensusClusterPlus package in R (https://​www.r-​proje​ct.​org/)27. The following key 
parameters were applied to evaluate the optimal number of clusters (k): clusterAlg = "pam", distance = "spear-
man", cumulative distribution function (CDF) and relative expression level according to the area under the 
curve (AUC).

CIBERSORT.  Tumor-infiltrating immune cells (TIICs) in HNSCC cohorts were recognized by Cell type 
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT). We adopted the ‘CIBERSORT’ 
R package (CIBERSORT R script v1.03; http://​ciber​sort.​stanf​ord.​edu/) to examine the relative expression of 
immune-associated genes in each sample.

GSVA.  The gene sets used in the GSVA were downloaded from the GSEA molecular database. The GSVA was 
conducted using the GSVA package in R based on log2 (normalized counts + 1) expression values. We identified 
p < 0.05 as the threshold for the replication of gene sets. First, 424 samples from the TCGA-HNSC dataset were 
divided into training and validation sets. To calculate each coefficient, we applied the summaryBy function (in 
the doBy package) with the frac parameter set to 0.528. In total, we selected 212 samples in the training set and 
212 samples in the validation set, as shown in Table 2. The sample information of the training and verification 
sets of the TCGA data that were finally obtained is shown in Table 2. The chi-square test was used to test the 
samples belonging to the training and validation sets, and the results showed that there was no bias in our group-
ing and no significant difference between groups (p > 0.05). We applied the univariate Cox proportional risk 
regression model to 853 DEGs. In the analysis of the training set using the survival R package function coxph, 
p < 0.05 was selected as the threshold.

LASSO regression analysis.  The m6A regulator-based signatures might have important prognostic value 
in HNSCC. First, two molecular subtypes were constructed based on the consensus clustering of m6A-related 
genes, and the differentially expressed genes related to the m6A subtype were screened by differential analysis. 
We applied LASSO regression analysis to build prediction models based on the training dataset and validated 
their predictive effectiveness using the validation cohort. The genes associated with prognosis were screened 
by univariate Cox analysis of the initial input of 27 genes, namely, CYP26A1, KIF13B, CPVL, CMYA5, FCGBP, 
XIRP2, NEB, CASQ1, MYH2, NRAP, MYH7, LMOD2, ACTN2, MYOT, HSPB7, APOBEC2, MYL1, MYH1, 
ACTA1, MB, MYOZ1, CSRP3, MYL2, COX6A2, SMPX, CKM and SLN. Then, LASSO analysis and multivari-
ate Cox analysis were applied to construct a risk-score based prognoistic model. Among these differentially 
expressed genes, five key genes were screened by univariate Cox analysis.

Table 2.   The TCGA training set and TCGA test set.

Clinical features TCGA-training set TCGA-validation set p value

OS

0 152 144
0.459

1 60 68

T stage

T1 14 14

0.9741
T2 60 57

T3 56 60

T4 82 81

Stage

I 13 8

0.6265
II 32 34

III 36 42

IV 131 128

Grade

G1 26 25

0.4937
G2 135 132

G3 49 55

G4 2 0

Gender

Female 58 56
0.9128

Male 154 156

Age

≤ 60 99 103
0.7705

> 60 113 109

https://www.r-project.org/
http://cibersort.stanford.edu/
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The glmnet R package was used for LASSO Cox variable selection and model building. The survival R pack-
age was used for the comparison of survival curves. Survival analysis based on the Kaplan–Meier (KM) curve 
was applied to evaluate prognosis.

Statistics.  Statistical analyses and data plotting were performed using the R program (3.6.2)29. Fisher’s exact 
and equal-variance t tests were used in the group comparisons of categorical and continuous variables, respec-
tively. Spearman’s correlation analysis test was applied to evaluate the correlation relationships of different cancer 
types. p ≤ 0.05 indicates statistical significance.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
request.
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