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Review Article

Introduction

The involvement of the reactive oxygen species (ROS) is 
well documented in various disease processes, including 
cancers.1-3 Under normal circumstances, the redox status of 
cells is maintained by a balance between ROS production 
and its sequestration by antioxidants.1 While ROS is used 
as an innate mechanism of host immunity to fight against 
extracellular pathogens, including bacterial and viral infec-
tions, an exacerbated generation causes imbalance in cel-
lular redox potential leading to alterations in signaling 
pathways and neocarcinogenesis.1-8 ROS release can be 
affected by several cellular compartments.9,10 As changes 
in the mitochondrial electron transport activity result in the 
production of ROS (mROS), heteroplasmic mutations in 
the mitochondrial DNA have been shown to increase the 
tumorigenicity of cancer cells via overproduction of 
mROS.8,11,12 Several cellular antioxidant systems, includ-
ing superoxide dismutase and thioredoxin play crucial 
roles in counteracting the damaging effects of increased 
ROS.10,13 Cancer cells, particularly in the tumor microenvi-
ronment exhibit higher basal oxidative stress compared to 
normal cells and thus take advantage of the upregulated 
antioxidant system to circumvent ROS-mediated tumor 
cell damage.10,14,15

Antioxidants and Immunity

The development of cancer has been linked to an inability 
of the host immune system to respond appropriately to 
tumor antigens, which leads to tumor immune evasion.16,17 
The recognition and eradication of cancer cells by the 
immune system are categorized as elimination, equilibrium, 
and escape phases, referred to as the 3Es of immunoediting, 
which are governed by various factors.18-21 Briefly, in elimi-
nation phase, the host immune cells via the surveillance 
process recognize and try to eliminate nascent tumors.21 
Whereas the equilibrium phase starts when a few tumor 
cells become resistant enough to sustain immune surveil-
lance mechanisms and enter into the dormant stage, where 
equilibrium exists between tumor cell proliferation and 
immune cell–mediated apoptosis.21,22 An escape phase is 
established when tumor cells override their destruction by 
the immune system, an immunosuppressive environment is 
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maintained, which favors tumor cell proliferation, and the 
development of clinically detectable tumors is finally 
achieved.21,23 A direct link between antioxidants and modu-
lation of cancer immunoediting has not been fully estab-
lished. Nevertheless, curcumin has been shown to modulate 
immunoediting processes including resurrecting immune 
surveillance mechanisms to help eradicate cancer cells via 
(a) restoration of CD4+/CD8+ T cells, (b) suppression of T 
cell apoptosis, and (c) inhibition of immunosuppression 
through attenuation of immunosuppressive regulatory T 
cells (Tregs) (Table 1).24-28 Curcumin is a yellow-colored 
curcuminoid of turmeric of the family Zingiberaceae that is 
used as an herbal supplement, food flavoring and food col-
oring agent and is known to possess medicinal and anticar-
cinogenic properties that are attributed to its antioxidant 
and anti-inflammatory activities.29-31 In addition, the anti-
oxidant ascorbic acid (vitamin C) has been demonstrated to 
play an important role in stimulating the immune system via 
attenuating chronic inflammatory responses, the persistence 
of which is implicated in the etiology of various diseases, 
including cancer.32 Of note, chronic inflammation in tumors 
mediated via tumor infiltrating leucocytes (TIL) has been 
shown to induce immunosuppression and promote cancer 
growth.33

Immunosuppression (ie, inhibition of the host immune 
system) via diverse environmental agents (such as ultraviolet 
radiation) acting on the skin is classically divided into local 
(localized to the site of application) and systemic immuno-
suppression.37 Of importance, systemic immunosuppression 
has been implicated in human malignancies such as mela-
noma and glioblastoma.38-40 In most cancer models, tumor-
dependent immune suppression has been recognized as one 
of the major events in promoting immune evasion of malig-
nant cells from the host’s antitumor immunity.41-44 While 
tumor antigen-induced effector T-cells are required in induc-
ing antitumor immunity, suppressor cells such as Tregs and 

myeloid-derived suppressor cells (MDSCs) promote tumor 
escape mechanisms.41-47 Importantly, immune checkpoint 
inhibitors such as cytotoxic T lymphocyte associated protein 
4 (CTLA-4) and programmed cell death protein 1 (PD-1) 
have been shown to mediate Tregs-induced immunosuppres-
sion and promote cancer growth. The blockade of these 
immune checkpoint inhibitors via anti-CTLA-4 and anti-
PD-1 antibodies attenuates tumor growth as well as augments 
the effectiveness of cancer therapy approaches.47-50 Notably, 
Tregs and MDSCs have been shown to be associated with 
poor prognosis and cancer treatment failure, including immu-
notherapy and vaccination approaches.51-53 Therefore, agents/
anti-cancer drugs that target these immunosuppressive cell 
types are being explored in several preclinical and clinical 
cancer models and also in combination with known anti-can-
cer drugs against various malignancies.54-57 With regard to 
antioxidant use in attenuating the enhanced tumor growth 
mediated by these immunosuppressive cells, studies by Lee-
Chang et al34 have shown that administration of resveratrol, a 
dietary polyphenol compound possessing antioxidant proper-
ties at low doses that are nontoxic to immune cells, inhibits 
lung metastasis of breast cancer tumor. This resveratrol-
induced effect was mediated via Stat3 inactivation, resulting 
in an inhibition of the generation and function of tumor-
evoked regulatory B cells (tBregs) and their conversion into 
Tregs. In support of these findings, studies by Yang et al35 
have demonstrated that suppression of tumor-derived Tregs 
mediates resveratrol-induced inhibition of syngeneic murine 
EG7 lymphoma and CT26 colon carcinoma tumors in 
C57BL/6 and BALB/c mice models.35 Of importance, resve-
ratrol can exert both antioxidant and pro-oxidant properties 
depending on its concentration and cell types used.58 Along 
similar lines, Wang et al36 have demonstrated that a combina-
tion of fish oil and selenium that possesses anti-inflammatory 
and antioxidant activities exerted synergistic effects in sup-
pressing lung tumor growth mediated via decreasing the 

Table 1.  Effect of Antioxidants on Host Antitumor Immunity: Evidences From Preclinical Studies.

Treatment Experimental Model Results References

Curcumin Swiss albino mice with Ehrlich 
ascites carcinoma cells

Restoration of tumor-induced depletion of host CD4+/
CD8+ T cell proliferation, inhibition of thymocytes and 
splenocytes apoptosis, expansion of central memory and 
effector memory T cells and inhibition of suppressive activity 
of Tregs

27, 28

Resveratrol BALB/c mice with 4T1 breast 
carcinoma cells

Inactivation of Stat3, prevention of tumor-evoked regulatory 
B cells (tBregs) generation and function and restricting the 
tBreg-induced conversion of FoxP3+ Tregs

34

Resveratrol C57BL/6 and BABL/c mice with 
EG6 lymphoma and CT26 
colon carcinoma cell lines

Suppression of tumor-derived Tregs 35

Fish oil and 
selenium 
yeast

BALB/cByJ mice with Line-1 and 
YAC-1 lymphoma cells

Decreased populations of immunosuppressive Tregs and 
myeloid-derived suppressor cells

36
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population of splenic Tregs and MDSCs and thus augmented 
host anti-tumor immunity against lung carcinoma.

Exposure to pro-oxidative stressors generating ROS, 
including ultraviolet B (UVB) radiation and cigarette smoke 
(CS), is associated with the modulation of host immunity. 
Studies including ours have demonstrated the beneficial 
effects of antioxidant administration, including vitamin C 
and N-acetyl cysteine (NAC) in attenuating the systemic 
immunosuppressive effects of various environmental pro-
oxidative agents, including UVB and CS in animal mod-
els.59-65 Of significance, UVB and CS generate a class of 
oxidized lipid mediators nonenzymatically via free radical 
mediated attack on membrane phospholipid glycerophos-
phocholines (ox-GPCs).59-65 In contrast, enzymatic synthesis 
of platelet-activating factor (PAF, 1-hexadecyl-2-acetyl-
glycerophosphocholine) is a tightly regulated process, which 
requires cytoplasmic phospholipase A

2
 (cPLA

2
) that acts on 

1-alkyl glycerophosphocholines (GPC) with sn-2 long-
chained unsaturated fatty acids (eg, arachidonate) forming 
the lyso species which then is acetylated, forming PAF.66,67 
These ox-GPCs possess PAF and PAF-like agonist activities, 
which bind to and activate a 7-transmembrane G-protein 
coupled receptor, the PAF-receptor (PAF-R) which is 
expressed on various cell types (immune and nonimmune) 
including keratinocytes and tumor cells.59-68 Our group uses 
2 functional assays to quantify total PAF-agonists by very 
specific interleukin 8 (IL-8) protein or Ca2+ mobilization 
using stably PAF-R expressing (KBP) and deficient (KBM) 
cells generated retrovirally from human epidermal KB 
cells.59-62,65,69-71 The activity of Ox-GPCs/PAF is regulated 
by PAF-acetyl hydrolases (PAF-AH; PLA2G7).66-68 Of 3 
types, PAF-AHI is the major plasma isoform. PAF-R activa-
tion mediates various biological activities including early 
pro-inflammatory and delayed systemic immunosuppressive 
effects.59-64 Our research group and others have shown that 
ox-GPCs/PAF-R agonists mediate UVB- and CS-induced 
systemic immunosuppression in a PAF-R dependent manner 
which is measured by inhibition of contact hypersensitivity 
(CHS) or delayed type hypersensitivity (DTH) responses to 
an eliciting allergen, dinitrofluorobenzene (DNFB) or an 
antigen, Candida albicans.59-64 In using this methodology, 
for example, to measure UVB-mediated systemic immuno-
suppression, the shaved dorsal back skin of mice were 
exposed to UVB. A group of mice injected intraperitoneally 
with either PBS or the PAF-R agonist, CPAF served as nega-
tive and positive controls. Five days later, a 2x2 cm area of 
the back skin (approximately 2.5 cm distant from the UVB-
radiated site) was sensitized with 0.5% DNFB topically. 
After 9 days, postelicitation changes in CHS were assessed 
by measuring changes in ear thickness. With similar meth-
odology, the local immunosuppressive effect of UVB is 
assessed when dorsal skin of mice is sensitized with DNFB 
onto the UVB-exposed area (a model of local immunosup-
pression) and usually required lower UVB doses. Using this 

methodology we have demonstrated that PAF-R does not 
mediate UVB-induced local immunosuppressive effects,65 
despite its effect in mediating systemic immunosuppression. 
This PAF-R-dependent systemic immunosuppression is 
mediated via upregulation of COX-2 enzyme and COX-2-
generated prostanoids, immunosuppressive cytokine inter-
leukin 10 (IL-10) and the Tregs cell type, in a process 
blocked by antioxidants.59-64 As both environmental and 
therapeutic pro-oxidative stressors generate ROS and thus 
ox-GPCs/PAF-R agonists, we have shown that supplemen-
tation of vitamin C and NAC in drinking water prophylacti-
cally suppressed generation of ox-GPCs/PAF-R agonists 
mediated by UVB, chemotherapy, and radiation therapy—as 
well as diminishing the augmentation of tumor growth 
induced by systemic immunosuppression.69-71 Several stan-
dard chemotherapeutic agents, including dacarbazine and 
melphalan generate PAF-R agonists from both murine and 
human melanoma cells in vitro and intratumorally treated 
melanoma tumor xenografts in vivo.70 Using a dual tumor 
model, we demonstrated that intratumoral melphalan 
(MELP) chemotherapy (of one tumor) augments the growth 
of secondary (untreated) B16F10 melanoma tumor in a 
PAF-R dependent manner.70 Systemic antioxidants, COX-2 
inhibitors or depleting Treg Abs attenuated this MELP-
mediated enhanced growth of secondary tumors in WT 
mice,70 indicating the role of oxidatively generated PAF-R 
agonists and downstream COX-2 and Tregs in modulating 
MELP efficacy. Nevertheless, antioxidant use postchemo-
therapy or to augment cancer therapy effectiveness in pre-
clinical cancer models with regard to immunosuppression 
requires further investigation.

Antioxidants in Cancer Therapy

Despite recent advances in local and systemic treatment 
modalities, chemotherapy, radiation therapy and immuno-
therapy are widely considered either alone or in combina-
tions for a variety of cancers. In chemotherapy, cancer cells 
are targeted by chemically modified agents/natural com-
pounds with cytotoxic properties; radiation therapy uses 
high-energy particles/waves, including x-rays and gamma 
rays, to kill tumor cells; and immunotherapy treatments are 
designed to stimulate the host’s own immune system to attack 
cancer cells. One of the consequences of chemotherapy and 
radiation therapy is the generation of ROS which via its direct 
and indirect effects on tumor cells, induces DNA damage 
and/or affects DNA replication machinery, leading to aberra-
tions in several cellular signaling pathways resulting in che-
motherapy- or radiation therapy-induced cell death.72-74 Most 
of these therapies are not considered a good option as a single 
agent to treat advanced-stage/metastatic cancers, in part due 
to the development of therapy-induced innate and/or acquired 
tumor resistance or local/systemic toxicities leading to either 
reduced response, nonresponsiveness or tumor relapse after 
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an initial antitumor response.75,76 Therefore, potentially new 
therapeutic approaches with agents that exhibit anticancer 
properties and can potentiate chemotherapy- or radiation 
therapy–mediated antitumor responses are required for 
inducing optimal and long-term benefits in cancer patients.

Several nutritional cancer chemopreventive compounds 
having antioxidant properties have been documented to 
potentiate radiation therapy–induced cytotoxic effects on 
cancer cells while reducing its toxicity on normal surround-
ing tissues.77-86 In this regard, multiple studies by Raffoul 
et  al78 have shown that phytochemical soy isoflavones 
(genistein, daidzein, and glycitein), which exhibit anticar-
cinogenic properties in part via their antioxidant activities, 
could be used as potent radiosensitizers to enhance the effi-
cacy of radiotherapy-mediated suppression of the growth 
and metastatic ability of cancers, including prostate can-
cer.78-80 A study comparing the effects of the soy isoflavone 
component genistein on prostate cancer demonstrated that 
both soy and genistein inhibited the growth of in vitro 
human PC-3 prostate cancer cells and in vivo orthotopic 
PC-3 tumors and that these effects were enhanced when soy 
or genistein was combined with radiotherapy.79 
Mechanistically, soy isoflavones attenuated the radiation-
induced increase in expression of apurinic/apyrimidinic 
endonuclease 1/redox factor-1 (APE1/Ref-1) and activation 
of NF-kB and its DNA-binding activity, resulting in poten-
tiating radiotherapy-mediated effects and their use as radio-
sensitizers.79 In addition, soy isoflavones have been shown 
to augment radiation-induced suppression of in vitro growth 
of human A549 non–small cell lung cancer cells via induc-
ing increased DNA damage, inhibition of APE1/Ref-1 
mediated DNA repair and decreased expression of the tran-
scription factors NF-κB and HIF-1α.82 Importantly, agents 
possessing proteotoxic stress activities have been shown to 
enhance radiosensitization. In this regard, Pruitt et al83 have 
demonstrated that dietary polyphenols known as hydroxych-
alones augmented radiation-mediated death of human 
colorectal adenocarcinoma HT-29 and pancreatic cancer 
Panc 1 cells. These effects were mediated via activation of 
the heat shock factor 1 (Hsf1) in a process blocked by pro-
phylactic treatment with α-napthoflavone (ANF), a specific 
inhibitor of cytochrome P450 1A2 (CYP1A2).83 Along sim-
ilar lines, resveratrol and piperine, which possess properties 
including antitumor activities, have been shown to augment 
ionizing radiation (IR)-induced apoptosis and loss of mito-
chondrial membrane potential in murine colon carcinoma 
CT26 and melanoma B16F10 cells via enhancing 
IR-induced ROS generation.84 Moreover, pentoxifylline 
(PTX), a methylxanthine that possesses antioxidant proper-
ties is known to improve tumor tissue oxygenation in 
murine hypoxic tumors as well as inhibiting post radiation-
induced normal tissue injury in mice.85-88 Importantly, PTX 
has been shown to enhance radiation-mediated effects in 
human breast MCF-7 and colon HT-29 carcinoma cells in 

vitro and murine mammary adenocarcinoma SCK tumors in 
A/J mice in-vivo.85-88 In in vitro studies, PTX treatment has 
been shown to enhance radiotherapy-mediated effects in a 
dose and time dependent manner in post-irradiated cells, 
and did not change the cellular response to radiation in pre-
irradiated cells.86

Several chemotherapeutic agents used for the treatment of 
human malignancies generate ROS as one of the potent mech-
anisms to eradicate tumor cells via targeting multiple onco-
genic signaling pathways. Hence, targeting ROS by 
antioxidants not surprisingly has yielded mixed results in the 
therapeutic efficacy of chemotherapy.89-91 Importantly, in a 
systematic review, Block et al92,93 have summarized the impact 
of antioxidant supplementation on the efficacy and toxicity of 
chemotherapeutic agents from several randomized controlled 
trials (RCTs). Antioxidants such as glutathione, melatonin, 
vitamin A and E, NAC, selenium, l-carnitine, Co-Q10, ellagic 
acid, an antioxidant mixture such as vitamin C and E with beta-
carotene or selenium supplementation were evaluated on the 
efficacy of chemotherapeutic regimens, including oxaliplatin 
and cisplatin in combinations with agents such as etoposide, 
gemcitabine for several malignancies including breast, lung 
and gastric cancers.90 Survival of patients and tumor response 
were the primary outcomes of these trials.90 While a statisti-
cally significant improved survival rate either at 1 year or 5 
years was associated with melatonin supplementation, vitamin 
A exerted mixed responses on therapy outcomes and no sig-
nificant differences in the tumor response or survival were 
reported with other antioxidants.90 Of significance, 24 RCTs 
reported significantly decreased toxicities with concurrent 
supplementation of antioxidants (mentioned above) with che-
motherapy in cancer patients compared to patients who were 
not on systemic antioxidants (controls).91 On the other hand, 9 
RCTs reported no differences in the toxicities by antioxidants 
supplementation and 1 RCT with vitamin A reported increased 
toxicity.91 Along similar lines, a systematic review on RCTs by 
Yasueda et  al94 summarized that it is difficult to determine 
whether antioxidant supplements affect treatment outcomes or 
ameliorate adverse effects induced by chemotherapy and 
radiotherapy. The authors concluded that harm caused by anti-
oxidant supplementation remained unclear for patients during 
cancer therapy, except for smokers undergoing radiotherapy.94 
As cancer patients experience therapy-induced adverse side 
effects, including weight loss due to low nutritional intake and/
or loss of appetite, individualized counsel for the use of anti-
oxidants or supplements with antioxidant properties during 
treatment is important to circumvent its detrimental effects 
and/or therapy outcome.

Conclusion

While the safety and benefits of antioxidants use during 
cancer treatment are limited, their indispensable role in the 
maintenance of immune system homeostasis cannot be 
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overruled. A large percentage of cancer patients undergoing 
active treatments uses antioxidants and not all antioxidants 
are likely to be beneficial; as well, their mode of action on 
cellular systems and interaction with anticancer drugs 
remained largely unexplored. Therefore, further preclinical 
and clinical studies are needed to establish the clinical 
implications of antioxidant doses and timings based on 
treatment regimens, disease stage, and especially immune 
suppression status.
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