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Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory
demyelinating lesions in the central nervous system. Recently, the dysregulation of
alternative splicing (AS) in the brain has been found to significantly influence the
progression of MS. Moreover, previous studies demonstrate that many MS-related
variants in the genome act as the important regulation factors of AS events and
contribute to the pathogenesis of MS. However, by far, no genome-wide research
about the effect of genomic variants on AS events in MS has been reported. Here, we
first implemented a strategy to obtain genomic variant genotype and AS isoform average
percentage spliced-in values fromRNA-seq data of 142 individuals (51 MS patients and 91
controls). Then, combing the two sets of data, we performed a cis-splicing quantitative trait
loci (sQTLs) analysis to identify the cis-acting loci and the affected differential AS events in
MS and further explored the characteristics of these cis-sQTLs. Finally, the weighted gene
coexpression network and gene set enrichment analyses were used to investigate gene
interaction pattern and functions of the affected AS events in MS. In total, we identified
5835 variants affecting 672 differential AS events. The cis-sQTLs tend to be distributed in
proximity of the gene transcription initiation site, and the intronic variants of them are more
capable of regulating AS events. The retained intron AS events are more susceptible to
influence of genome variants, and their functions are involved in protein kinase and
phosphorylation modification. In summary, these findings provide an insight into the
mechanism of MS.
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INTRODUCTION

Multiple sclerosis (MS) is a serious autoimmune disease of central nervous system (CNS) and is
characterized by inflammatory demyelinating lesions in the white matter (Compston and Coles,
2008). According to the most recent survey in 2020 (the Atlas of MS investigation), the estimated
number of the people affected by MS has reached approximately 2.8 million worldwide (Walton
et al., 2020). Similar to most of the complex diseases, genetic factors are the major contributors to the
individual differences in MS susceptibility, and the role of genetic variants and transcriptional
regulation in MS may be the key to understanding its pathogenesis (Fugger et al., 2009; Olsson et al.,
2017; Yang et al., 2019).

Recently, alternative splicing (AS), a process that enables a gene to generate different transcript
isoforms, has been found to have the characteristic of high complexity and play an important role in
primates and human CNS (Barbosa-Morais et al., 2012; Merkin et al., 2012; GTEx Consortium, 2015;
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GTEx Consortium, 2020). Further, previous studies demonstrate
that dysregulation of AS events in genes significantly influences
the progression of many nervous system diseases, including MS.
For example, the RNA helicase DDX39B, a repressor of AS of
IL7R exon 6, is downregulated in MS peripheral blood
mononuclear cells, and consequently, the overexpression of the
soluble form of the interleukin-7 receptor alpha chain gene
(sIL7R) increases MS risk (Galarza-Munoz et al., 2017).
Inclusion of AS4 exon in Nrxn 1-3 is significantly increased in
the prefrontal cortex of a murine MS model, and the abnormal
splicing promotes the expression of IL-1β, which is an important
mediator of inflammation and leading to cognitive dysfunction in
MS (Marchese et al., 2021). The dysregulated AS of the A1β
transcript results in a significantly diminished adenosine A1
receptor protein, which is an important therapeutic target in
the treatment of MS in peripheral blood mononuclear cells and
brain tissue of MS patients (Johnston et al., 2001).

Moreover, previous studies demonstrate that genetic variants
can control the regulation of AS events by directly altering
nucleotide sequences in the splice site or as splicing
quantitative trait loci (sQTLs) in a genome-wide manner
(Battle et al., 2014; GTEx Consortium, 2015; Takata et al.,
2017; GTEx Consortium, 2020). For MS, numerous disease-
related risk single nucleotide polymorphisms (SNPs) have been
identified by genome-wide association studies (GWAS)
(International Multiple Sclerosis Genetics Consortium et al.,
2013; Sawcer et al., 2014; Patsopoulos, 2018), and a part of
them as the regulation factors of AS events can contribute to
the pathogenesis of MS. For instance, MS risk variants
rs35476409 and rs61762387 can affect the splicing of exon 3
of the PRKCA gene, which is considered to be a functional
contributor to MS predisposition (Paraboschi et al., 2014).
Another MS risk SNP rs6897932 locates in the functional AS
exon of IL7R. Through disrupting the exonic splicing silencer, it
can increase skipping of IL7R exon 6 to produce more soluble and
membrane-bound isoforms of IL7R protein (IL7Ra), which is a
key factor in the immune response pathway of MS (Gregory et al.,
2007). The SNP rs3130253, located within the MOG gene, has a
proven genetic susceptibility to MS. The minor allele (A) of
rs3130253 is associated with the increased splicing of MOG
exon 2 to 3 in the oligodendrocyte cell (1.7-fold) and
influences the extracellular and transmembrane domains of
MOG to induce the development of MS (Jensen et al., 2010).
Although these findings provide valuable insights into the direct
influence of SNPs on AS events in MS, the profile and function of
sQTLs throughout the genome remain poorly understood.

Our previous studies systematically describe the influence of
genomic variants on gene expression in a genome-wide manner
and find that this impact is more significant among the regions of
long intergenic noncoding RNA for MS (Han et al., 2018; Han
et al., 2020). However, by far, the genome-wide research about the
effect of these genomic variants on AS events in MS has been not
yet reported. To solve this problem, in this study, we used the
blood RNA-seq data from 51 MS patients and 91 controls of
European descent that have been previously successfully used for
our expression quantitative trait loci (eQTLs) analysis (Han et al.,
2020). Particularly, we first comprehensively detected the AS

events on a whole-genome scale and performed a differential
splicing analysis between the MS patients and healthy individuals
by using the RNA-seq data. Then, based on the same data, we
genotyped the large-scale genomic variants (mainly the SNPs) in
the entire human genome. According to the previous studies,
genotyping using RNA-seq can be effectively performed in a
lower sample scale (typically tens to hundreds of individuals) and
higher genetic heterogeneity and is more conducive to the
discovery of functional SNPs than the traditional approaches
(e.g., SNP arrays) (Wang et al., 2009; Davey et al., 2011). Next,
combining the data of AS isoform average percentage spliced-in
(PSI) and genomic variant genotype, we performed a sQTL
analysis to identify the cis-acting loci and the affected AS
events in MS. Further, we explored the distribution
characteristics and disease specificity of these cis-sQTL loci.
Finally, we conducted the weighted gene coexpression network
analysis (WGCNA) and gene set enrichment analysis (GSEA) to
investigate the interaction pattern of the AS affected genes and
the functions of these genes to the pathogenesis of MS. The flow
chart is shown in Figure 1.

MATERIALS AND METHODS

Sample Collection and Preprocessing
A total of 142 individuals, including 51 MS patients and 91 age-
and gender-matched healthy controls, were selected from the
Utrecht Medical Center (UMCU) and VU University Medical
Center (VUMC) of Netherlands. The RNA-seq data of blood
samples from these individuals were used for this study (Table 1).
The details are described in previous studies (Best et al., 2017;

FIGURE 1 | The flow chart of the study design for exploring the influence
of genome variants on gene AS and their functions to pathogenesis of MS.
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Han et al., 2020). Briefly, the mirVana miRNA isolation kit was
used to extract the total RNA of these samples. The Truseq Nano
DNA Sample Preparation Kit and Illumina Hiseq 2500 platform
were used for library preparation and sequencing, respectively.
After the RNA read quality control, these sequence data were
stored in the NCBI Sequence Read Archive (SRA) database
(SRP093349). We used the SRA Toolkit software to download
these sequence data and converted them into FASTQ files.

Variant Genotyping and Annotation
The procedure of variant genotyping and annotation on a whole-
genome scale using FASTQ files has been described in our
previous study (Han et al., 2020). Briefly, the BWA software
was first used to align the sequenced reads to the human reference
genome (hg19) with its default parameter settings and generated
the sequence alignment/map (SAM) files (Li and Durbin, 2009).
Then, the SAMtools and BCFtools software were used with their
default parameter settings to perform the format conversion of
these SAM files and variant calling, respectively (Li, 2011; Li et al.,
2009). The genotyped variants were stored in the VCF file.
Further, based on the annotation databases, refGene (about
the functional information of variants) (Pruitt et al., 2007) and
snp138 of dbSNP (about the genomic position and ID of variants)
(Day, 2010), we used the ANNOVAR software to annotate these
genotyped variants (Yang and Wang, 2015). Finally, we
preformed quality control, which is based on the sequencing
quality and variant annotation.We conducted a Hardy-Weinberg
equilibrium (HWE) test using the R package ‘Genetics’ (https://
cran.r-project.org/web/packages/genetics/index.html).
According to the findings of previous studies (Greif et al., 2011;
Quinn et al., 2013), we filtered the low-quality genotyped variants
if their HWE p value <5 × 10−5 or root mean square (RMS)
mapping quality <10 or read depth (DP) < 10 or minor allele
frequency (MAF) < 1%. Moreover, other studies suggest that only
the results catalogued in dbSNP should be retained to reduce the
false positives when performing the SNP calling (Chepelev et al.,
2009; Cirulli et al., 2010; Liu et al., 2012; Xu et al., 2013).
Therefore, we further removed genotyped variants that are not
catalogued in dbSNP according to the annotation results.

Identification and Differential Analysis of AS
Events
Based on the RNA-seq data of the same samples, we used the vast-
tools software to detect the AS events and calculate their PSI
values on a whole-genome scale (Irimia et al., 2014). In particular,
we first aligned the sequenced fragments to human reference

genome (hg19) using the align tool module of vast-tools software
with its default parameters to identify AS events and calculate
their PSI values in each sample. Then, the results (five subfiles for
each AS event) were merged using the combine tool module of
vast-tools software to generate a file containing PSI of each AS
event and quality control content for all samples. The quality
control threshold is according to quality scores in the merged file,
i.e., the mapped reads >10. Next, we used the multiple imputation
method with the generalized linear model to impute missing PSI
values of each AS event by the R package “mice” (Van Buuren and
Groothuis-Oudshoorn, 2011) and counted the number of each
type of AS events. Finally, based on the PSI values, we used the
diff tool module of vast-tools software with its default parameters
to perform a Bayesian inference-based differential AS analysis.
The threshold of significance was set at the minimum value for
absolute value of differential PSI between MS cases and controls
(MV|ΔPSI|) at 0.95 confidence level greater than 10% according
to the previous studies (Fagg et al., 2020; Ha et al., 2021; Hekman
et al., 2021).

Identification of cis-s Quantitative Trait Loci
and Characteristic Analysis
Combining the PSI values of AS events and the data of the
genomic variant genotype from the same samples, we performed
an sQTL analysis to identify the cis-acting loci and the affected AS
events. Particularly, according to previous studies (GTEx
Consortium, 2015; GTEx Consortium, 2020), we first
considered it as the cis region where the distance between
variants and transcription initiation site (TSS) of AS event
corresponding genes less than 1 M, and selected all the
suitable variant and AS event pairs for the cis-sQTL analysis.
The genomic locations of the variants and the TSS of AS event
corresponding genes are based on the annotation files of the
dbSNP (snp138) and Ensembl databases (release 75), respectively.
Then, we used the genotype data of the variants in combination
with the PSI values of AS events to perform the sQTL analysis by
the R package “Matrix eQTL” with a linear regression model
(Shabalin, 2012). The parameters age and gender were used as the
covariates. The threshold of significance level was set at a false
discovery rate (FDR) q value <0.05. The p values are corrected for
multiple testing by the Benjamini–Hochberg method. Finally, we
calculated the percentage of various types of the cis-sQTL variants
and the affected AS events, respectively, and compared them with
the original proportion using a two-tailed Fisher exact test (the
threshold of p < .05). Moreover, we further explored the

TABLE 1 | Summary of the 142 individuals studied in this work.

Individuals Institution Ethnicity Sample size Mean age
(s.d.)

Male/female (%)

MS patients VUMC European 51 46.14 (7.54) 25.5/74.5
Healthy controls VUMC and UMCU European 91 46.92 (8.50) 34.1/65.9
Total 142 46.64 (8.18) 31.0/69.0

VUMC, VU University Medical Center; Amsterdam, Netherlands; UMCU, Utrecht Medical Center, Utrecht, Netherlands. This information is also described in our previous study (Han et al.,
2020).
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FIGURE 2 | The characteristic of the cis-sQTL variants and the affected AS events. (A) The pie charts show the percentage of all variants (left) and cis-sQTL variants
(right) annotated with each class (intergenic, intronic, exonic, ncRNA intronic, ncRNA exonic, 5′/3′-UTR, upstream/downstream, splicing site, and others), respectively.
(B) The pie charts show the proportion in all AS events (left) and affected AS events (right) annotated with each class (EX, INT, ALTA, and ALTD), respectively. (C) The bar
graph indicates the relationship between the abundance of the cis-sQTL variants and the distance of them to the nearest TSS of AS events corresponding genes.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7698044

He et al. Splicing QTLs in Multiple Sclerosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


relationship between the abundance of the cis-sQTL variants and
the distance of them to the nearest TSS.

Weighted Gene Coexpression Network
Analysis and Gene Set Enrichment Analysis
To explore the interaction pattern of the AS affected genes and
their functions to the pathogenesis of MS, we performed the
WGCNA and GSEA in turn. Particularly, we first downloaded the
gene expression count data of the 51 MS patients and 91 healthy
individuals from Gene Expression Omnibus (GEO) data set
GSE89843 (Best et al., 2017) and carried out a standardized
processing of these data using the “preprocess” function of R
package “caret” (https://cran.r-project.org/web/packages/ caret/).
Then, we conducted quality control to identify the outlier samples
using the “hclust” function of R package “WGCNA” (Langfelder
and Horvath, 2008). Further, to ensure the scale-free topology

criterion of the coexpression network, we used the
“pickSoftThreshold” function of R package “WGCNA” to
choose the satisfactory soft threshold power β. Next, based on
the satisfactory soft threshold power β, we used Pearson’s method
to calculate the weighted correlation of gene pairs in an adjacency
matrix and used the dynamic cut-tree algorithm to construct the
hierarchical clustering dendrogram by the R package “WGCNA.”
Finally, we calculated the correlation between the module
membership and the importance of genes in this module to
clinical traits to assess the relationship between the
coexpression module and the clinical traits (including gender,
age, and disease status) by the R package “WGCNA.”

We further use the genes in the modules that are significantly
associated with MS disease status to perform GSEA by DAVID
software (Jiao et al., 2012). The default background of DAVID,
i.e., three pathway data sets (BBID, BIOCARTA, and
KEGG_PATHWAY), three gene ontology data sets
(GOTERM_BP_DIRECT, GOTERM_CC_DIRECT, and
GOTERM_MF_DIRECT), three functional categories
(COG_ONTOLOGY, UP_KEYWORDS, and
UP_SEQ_FEATURE), three protein domains (INTERPRO,
PIR_SUPERFAMILY, and SMART), and one disease data set
(OMIM_DISEASE) for the GSEA. The threshold of significance
was set at FDR q < 0.05. The other parameters were set according
to the default values of the DAVID software.

RESULTS AND DISCUSSION

Variant Genotyping by RNA-Seq Data
We obtained a total of about 3.2 billion sequenced reads from the
blood RNA-seq data of 51 MS patients and 91 healthy controls.
Based on these RNA-seq data, we aligned the sequenced reads to
human reference genome (hg19) using BWA software and used
these aligned reads to call the variant genotypes by SAMtools and
BCFtools software. After quality control based on DP, RMS
mapping quality, MAF, HWE, and dbSNP catalog, we
obtained 620,339 genotyped variants. Finally, the results of
annotation using ANNOVAR software showed that a total of
600,872 genotyped SNPs and 19,467 indels are included in these
genotyped variants, and approximately 56.25%, 33.65%, 0.87%,
5.98%, 0.43%, 1.58%, 1.21%, and 0.02% of them are categorized
into the intergenic, intronic, exonic, ncRNA intronic, ncRNA
exonic, 5′/3′-UTR, upstream/downstream, and splicing site
classes, respectively. These findings reveal an uneven
distribution of these variants in the genome (Figure 2A).

Identification and Differential Analysis of
Alternative Splicing Events
Based on the FASTQ files from the same samples, we used the
corresponding tool modules of vast-tools software to identify the AS
event with their PSI values and performed the differential analysis of
them. After the quality control, we found a total of 2272 significant
differential AS events between the MS cases and healthy individuals
(MV|ΔPSI| at 0.95 confidence level ≥10%) from the more than seven
million identified AS events. These differential AS events are involved

FIGURE 3 | The results of differential analysis of AS event
HsaINT0051850. (A) The x-axis represents MV|ΔPSI | at a 95% confidence
level. The y-axis represents the probability of ΔPSI being greater than some
magnitude value of x. The red line indicates that the maximum probability
of ΔPSI of AS event HsaINT0051850 between MS cases and controls is
greater than 0.90. (B) The histogram shows the two joint posterior
distributions over PSI and the points below the histograms estimate for each
replicate.
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in 1542 genes (Supplementary Table S1). Figure 3 shows the most
significant differential AS event HsaINT0051850 of DPP8 gene
(MV|ΔPSI| at 0.95 confidence level � 0.90). According to the
classification criteria of vast-tools, the types of AS events contain
alternative exon skipping (EX), retained intron (INT), alternative
splice site acceptor choice (ALTA), and alternative splice site donor
choice (ALTD).We found that approximately 54.12%, 37.16%, 5.07%,
and 3.65% of these identified AS events are categorized into EX, INT,
ALTA, and ALTD classes, respectively, which also revealed an uneven
distribution of them (Figure 2B).

Identification ofCis-s Quantitative Trait Loci
and Characteristic Analysis
Combining the PSI values of AS events with the genotype data of the
genomic variant in the cis region from the same samples, we used a
linear regressionmodel to perform the cis-sQTL analysis by R package
“Matrix eQTL” with the parameters age and gender serving as
covariates. In total, we identified 5835 variants affecting 672 AS
events (involving 482 genes) of all these 2272 significant
differential AS events with a significance level of q < 0.05. The top
30 significant results are shown in Table 2 (the full information is
presented in Supplementary Table S2). Further, we found that
approximately 49.39%, 40.78%, 0.93%, 5.58%, 0.29%, 1.22%, 1.72%,
and 0.05% of the cis-sQTL variants are categorized into the intergenic,
intronic, exonic, ncRNA intronic, ncRNA exonic, 5’/3′-UTR,
upstream/downstream, and splicing site classes, respectively

(Figure 2A), and approximately 27.40%, 64.22%, 5.08%, and
3.30% of the affected AS events are categorized into EX, INT,
ALTA, and ALTD classes, respectively (Figure 2B). By the two-
tailed Fisher exact test, we found that the percentage of main types
both in the cis-sQTL variants and the affected AS events show a
significant difference compared with the original proportion.
Particularly, the percentage of the cis-sQTL intergenic variants is
49.39%, but its original proportion in all of the variants is 56.25%
(odds ratio (OR) � 0.76, p � 1.84 × 10−45); the percentage of the cis-
sQTL intronic variants is 40.78%, but its original proportion in all of
the variants is only 33.65% (OR � 1.36, p � 1.09 × 10−52); the
percentage of the affected EX events is 27.40%, but its original
proportion in all AS events is 54.12% (OR � 0.32, p � 9.65 ×
10−69); the percentage of the affected INT events is 64.22%, but its
original proportion in all AS events is only 37.16% (OR � 3.03, p �
5.12 × 10−70). This reveals a specific regulation of the AS events by
variants in MS. Moreover, we also found that these cis-sQTL variants
tend to be distributed in the proximity of the TSS of AS events
corresponding genes (Figure 2C).

Weighted Gene Coexpression Network
Analysis for Affected Alternative Splicing
Events Corresponding Genes
We performed WGCNA to explore the characteristics of the affected
AS event corresponding genes in MS. According to the sample
clustering results for quality control, we removed eight outlier

TABLE 2 | The top 30 significant results of the sQTL variants and the differential AS events affected by them.

SNP ID Position Gene Ensembl ID AS event TSS Beta p
Value

FDR q
value

rs1950969 94236929 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 34.2500 0.00E + 00 1.05E-303
rs1950970 94236975 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 34.2500 0.00E + 00 1.05E-303
rs8017818 93651054 GOLGA5 ENSG00000066455 HsaEX0027985 93260576 −34.2500 0.00E + 00 1.05E-303
rs12226058 43190629 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs12795809 43190576 ACCSL ENSG00000205126 HsaEX6001613 44069531 12.7000 0.00E + 00 1.05E-303
rs61690000 43523415 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs72898940 43315617 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs74545163 43424312 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs7931142 43189976 ACCSL ENSG00000205126 HsaEX6001613 44069531 −12.7000 0.00E + 00 1.05E-303
rs890245 43201830 ACCSL ENSG00000205126 HsaEX6001613 44069531 12.7000 0.00E + 00 1.05E-303
rs113384165 26738788 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs6498005 27270200 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs7187853 27267403 NSMCE1 ENSG00000169189 HsaEX6042948 27280115 −40.0000 0.00E + 00 1.05E-303
rs2976708 125398800 SNX4 ENSG00000114520 HsaEX6058167 125239041 5.1100 0.00E + 00 1.05E-303
rs543453 3139759 PIAS4 ENSG00000105229 HsaEX6091950 4007748 1.2500 0.00E + 00 1.05E-303
rs644193 3139715 PIAS4 ENSG00000105229 HsaEX6091950 4007748 1.2500 0.00E + 00 1.05E-303
rs16949296 45984949 SCRN2 ENSG00000141295 HsaEX6023334 45918699 −66.6580 3.86E-238 1.75E-233
rs11643492 2791938 SRRM2 ENSG00000167978 HsaEX6041902 2802330 52.7000 1.46E-172 6.04E-168
rs2858609 49620817 PIM3 ENSG00000198355 HsaEX6027387 50354161 22.1493 2.47E-124 9.47E-120
rs73179160 50082716 PIM3 ENSG00000198355 HsaEX6027387 50354161 −11.0746 2.47E-124 9.47E-120
rs11671147 8227499 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 49.6873 2.55E-56 7.47E-52
rs62638003 7908051 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 49.6873 2.55E-56 7.47E-52
rs216272 3013971 PIAS4 ENSG00000105229 HsaEX6091950 4007748 −0.5013 5.37E-50 1.53E-45
rs57414916 141780202 EIF2C2 ENSG00000123908 HsaEX6082596 141645718 −5.0980 7.11E-50 1.97E-45
rs2020857 15030752 USP9Y ENSG00000114374 HsaEX0070061 14813160 −8.2372 1.40E-49 3.66E-45
rs138123250 105087582 CALHM2 ENSG00000138172 HsaEX6090238 105212660 −8.8666 1.27E-45 3.16E-41
rs12610435 8021331 ELAVL1 ENSG00000066044 HsaEX0022092 8070529 42.5593 5.34E-45 1.30E-40
rs192519226 48400006 XYLT2 ENSG00000015532 HsaEX6023498 48423453 −22.2205 2.90E-44 6.55E-40
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FIGURE 4 | The results of WGCNA and GSEA. (A) The expression clustering dendrogram of all 4722 genes in the GSE89843 data set. There are four clustered
modules in the hierarchical clustering dendrogram, which contain 360 of 482 affected AS events corresponding genes. These clustered modules are marked as four
different colors, respectively, i.e., turquoise, blue, brown, and grey. (B) The correlation between the module membership and the gene significance in the turquoise
module, which reveals a relatively strong correlation with the disease status (cor � 0.34 and p � 4.5 × 10−71). The gene significance is defined as the correlation
between a single gene expression and sample trait (e.g., gender, age, and disease status) (C) The annotation cluster 1 contains 10 functionally highly similar enriched
terms involved in the protein–protein interaction domain motif. (D) The annotation cluster 2 contains 32 functionally highly similar enriched terms involved in protein kinase
and phosphorylation modification. This figure can be viewed more clearly by enlarging in the electronic version.
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samples (Supplementary Figure S1). Then, we found that the model
fitting index R-squared reaches 0.85 for the first time, and the mean
connectivity approaches zero simultaneously when the soft threshold
power β equals 12 (Supplementary Figure S2). Therefore, we
calculated the weighted correlation of gene pairs and constructed
the coexpression network using the R package “WGCNA” with the
parameter β � 12. The results show that there is a total of fourmodules
(i.e., MEturquoise, MEblue, MEbrown, and MEgrey) in the
coexpression network. The modules are defined as clusters in
which the densely interconnected genes are coexpressed with each
other. The unsupervised clustering analysis with a topological overlap
index was used to measure the network interconnectedness. They
contain a total of 4722 clustered genes according to their
interconnectedness, and 360 of them belong to the affected AS
event corresponding genes (Figure 4A). These AS affected genes
are generally evenly distributed in the four modules according to their
scale. The results of correlation analysis reveal some association of all
the modules with individual gender or age (p < .05). Among them,
however, only the turquoise module shows a relatively strong
correlation with the disease status (cor � 0.34 and p � 4.5 ×
10−71) (Figure 4B), which means that the interaction of the genes
in the turquoise module is relevant to pathogenesis of MS. In the grey
module, for example, the cor and p value are −.027 and .65,
respectively.

Gene Set Enrichment Analysis of Alternative
Splicing Affected Genes in Multiple
Sclerosis–Related Module
Based on the results ofWGCNA,we used the 198AS affected genes in
the MS-related turquoise module to perform the GSEA. According to
the significance threshold FDR q < 0.05, we identified a total of 30
enriched terms. The most significant of them contain the AS-related
terms, e.g., alternative splicing (q � 2.0 × 10−8) and splicing variant (q
� 1.0 × 10−3), which are consistent with the findings of sQTL analysis.
Most of the other significant enriched terms are involved in epigenetic
modification, which is the common biological process associated with
the pathogenesis of MS (Supplementary Table S3). Further, we
performed a functional annotation clustering analysis of the
enriched terms. We identified two annotation clusters with
enrichment score more than 2, which contain 10 and 32
functionally highly similar terms, respectively. Particularly,
annotation cluster 1 (enrichment score � 3.78) contains the
protein–protein interaction domain (e.g., LisH, CTLH, and CRA)
motif-related terms, which are the basic biological properties for
eukaryotes (Figure 4C). The annotation cluster 2 (enrichment
score � 2.12) contains protein kinase and phosphorylation
modification terms, which are significantly associated with the
pathogenesis of MS (Figure 4D). For example, Feng et al. found
that the type I interferons and the p38 MAP kinase can induce
tyrosine and serine phosphorylation of STAT1 in MS patients,
respectively, and the excessive phosphorylation of STAT1 can
induce inflammatory cytokines and demyelination to aggravate the
development of MS (Feng et al., 2002). Trinschek et al. found that
phosphorylation of protein kinase B/c-Akt in MS autoaggressive T
effector cells (Teff) is able to induce the unresponsiveness of the CD4+

and CD8+ course independent MS-Teff by stimulation of the active

regulatory T cells and thereby lead to the ineffective treatment of MS
(Trinschek et al., 2013). Delgado-Roche et al. found that ozone
therapy can promote the phosphorylation of the transcriptional
factor NF-E2-related factor 2 through upregulating the expression
of MAP kinase CK2, which can reduce oxidative stress and pro-
inflammatory cytokines in MS (Delgado-Roche et al., 2017).

CONCLUSIONS

In this study, based on the MS RNA-seq data, we genotyped 620,339
variants and identified 2272 significant differential AS events in the
same samples. Then, combing the two sets of data, we performed a cis-
sQTL analysis and identified 5835 variants affecting 672 differential
AS events in MS. Further, the results of characteristic analysis showed
that the intronic variants are more capable of regulating AS events,
and INT AS events are more susceptible to the influence of genome
variants. Moreover, the cis-sQTL variants tend to be distributed in the
proximity of the TSS of AS events corresponding genes. Finally, the
results of WGCNA and GSEA demonstrate that the regulation of AS
by genome variants are important to MS and their potential function
may be involved in protein–protein interaction domain motif protein
phosphorylation modification. All in all, we performed a strategy to
explore the regulation of AS by genome variants in MS by RNA-seq
data, and these findings will benefit the improvement of
understanding MS pathogenesis.
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